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Functional assessment using 3D
movement analysis can better
predict health-related quality of
life outcomes in patients with
adult spinal deformity: a machine
learning approach
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Nabil Nassim1, Karl Semaan1, Abir Massaad1, Mohamad Karam1,
Maria Saade1, Elma Ayoub1, Ali Rteil1, Elena Jaber1, Celine Chaaya1,
Julien Abi Nahed2, Ismat Ghanem1 and Ayman Assi1,3*
1Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon, 2Technology Innovation Unit,
Hamad Medical Corporation, Doha, Qatar, 3Institut de Biomécanique Humaine Georges Charpak, Arts et
Métiers ParisTech, Angers, France

Introduction: Adult spinal deformity (ASD) is classically evaluated by health-related
quality of life (HRQoL) questionnaires and static radiographic spino-pelvic and
global alignment parameters. Recently, 3D movement analysis (3DMA) was used
for functional assessment of ASD to objectively quantify patient’s independence
during daily life activities. The aim of this study was to determine the role of
both static and functional assessments in the prediction of HRQoL outcomes
using machine learning methods.
Methods: ASD patients and controls underwent full-body biplanar low-dose
x-rays with 3D reconstruction of skeletal segment as well as 3DMA of gait and
filled HRQoL questionnaires: SF-36 physical and mental components
(PCS&MCS), Oswestry Disability Index (ODI), Beck’s Depression Inventory (BDI),
and visual analog scale (VAS) for pain. A random forest machine learning (ML)
model was used to predict HRQoL outcomes based on three simulations: (1)
radiographic, (2) kinematic, (3) both radiographic and kinematic parameters.
Accuracy of prediction and RMSE of the model were evaluated using 10-fold
cross validation in each simulation and compared between simulations. The
model was also used to investigate the possibility of predicting HRQoL
outcomes in ASD after treatment.
Results: In total, 173 primary ASD and 57 controls were enrolled; 30 ASD were
followed-up after surgical or medical treatment. The first ML simulation had a
median accuracy of 83.4%. The second simulation had a median accuracy of
84.7%. The third simulation had a median accuracy of 87%. Simulations 2 and 3
had comparable accuracies of prediction for all HRQoL outcomes and higher
predictions compared to Simulation 1 (i.e., accuracy for PCS = 85 ± 5 vs. 88.4 ± 4
and 89.7% ± 4%, for MCS = 83.7 ± 8.3 vs. 86.3 ± 5.6 and 87.7% ± 6.8% for
simulations 1, 2 and 3 resp., p < 0.05). Similar results were reported when the
3 simulations were tested on ASD after treatment.
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2023.1166734&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2023.1166734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/articles/10.3389/fsurg.2023.1166734/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2023.1166734
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Mekhael et al. 10.3389/fsurg.2023.1166734

Frontiers in Surgery
Discussion: This study showed that kinematic parameters can better predict HRQoL
outcomes than stand-alone classical radiographic parameters, not only for physical but
also for mental scores. Moreover, 3DMA was shown to be a good predictive of HRQoL
outcomes for ASD follow-up after medical or surgical treatment. Thus, the assessment of
ASD patients should no longer rely on radiographs alone but on movement analysis as well.

KEYWORDS

adult spinal deformity, machine learning, 3D movement analysis, gait, follow-up, functional
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Introduction

A global aging of the worldwide population is taking place

as the proportion of the population over 60 years old is

predicted to increase to 22% in 2,050 and 32% in 2,100 (1).

This is known to be associated with an increase in multiple

degenerative disorders, especially in the musculoskeletal

system, such as adult spinal deformity (ASD), an already

highly prevalent pathology affecting between 32% and 68%

of subjects older than 65 years (2). Patient care and

research on spinal deformity has gained a lot of attention

during the last decade because of the economic impact of

the pathology on the health system (3) and its burden on

the psychosocial state of the patient (4, 5).

Adult spinal deformity (ASD) consists of a variety of

postural and spino-pelvic alterations of the lumbar or

thoracolumbar spine, involving one or more of the three

planes (6). Until now, treatment planning for patients with

spinal deformity is based on clinical examination and static

radiographic assessment of the deformity (7, 8), a trivial

evaluation method, knowing that a spinal deformity is an

orthopedic pathology that requires a standard radiography

for its assessment.

Since any orthopedic or surgical intervention is mainly

driven by the improvement of patient’s quality of life,

HRQoL scores, both in their physical and mental

components, became key indicators to evaluate patients’

follow-up (4). The physical components specifically are

related to the ability of patients to live normally and

exhibit an adequate level of independence during daily life

activities such as walking, sitting and standing, climbing

stairs, etc. Therefore, this functional component is necessary

in order to efficiently understand the overall patient’s

quality of life.

More recently, many authors discussed the necessity of

functional evaluation (9–11). Recent studies based on 3D

movement analysis evaluation have shown the importance of

dynamic assessment in ASD during walking or other daily life

activities (10–13). While some of these studies have shown a

relationship between HRQoL scores and kinematic parameters

(10–13), the role of functional assessment in illustrating the

quality of life of the patient is still unknown. Thus, the aim of

this study was to determine the role of both static and functional

assessments in the prediction of HRQoL outcomes using

machine learning methods.
02
Methods

Data collection and acquisitions

This is an IRB approved (CEHDF1259) single-center

prospective study. Inclusion criteria for the subjects with ASD

were age over 20 years, self-reported back pain, and any of the

following radiographic criteria: frontal Cobb >20°, sagittal vertical

axis (SVA) >5 cm, pelvic tilt (PT) >25°, pelvic incidence –

lumbar lordosis mismatch (PI-LL) >10° and/or thoracic kyphosis

(TK) >60°. Exclusion criteria included any neurological disease

or lower limb pathology that might alter patient’s movement. A

group of ASD was followed up after orthopedic, medical or

surgical treatment.

A group of asymptomatic control subjects with no history of

pain or surgery at the levels of the lower limbs or the spine, no

musculoskeletal disorders, and no history of degenerative joint

diseases was included. All subjects signed a written informed

consent form.

Demographic data was collected for both ASD and controls

(age, height, weight and sex). Subjects underwent full-body low-

dose biplanar x-rays (EOS® Imaging, Paris, France) in the free-

standing position (14, 15). Three-dimensional spine

reconstruction were performed by trained operators using a

dedicated software (SterEOS®, EOS® Imaging, Paris, France;

Figure 1A), from which the following 3D spino-pelvic and global

postural parameters were generated: pelvic incidence (PI), sacral

slope (SS), pelvic tilt (PT), L1S1 lordosis (LL), PI-LL mismatch,

T1T12 kyphosis (TK), sagittal vertical axis (SVA), CAM-HA (the

horizontal offset from the plumbline dropped from the center of

the acoustic meati to the hip axis) (16), as well as knee flexion/

extension and pelvic shift. The coronal Cobb angle and the

apical vertebral rotation (AVR) were also calculated. Additionally,

the following cervical and horizontal gaze parameters were

measured: chin brow vertical angle (CBVA), the slope of line of

sight (SLS), the cervical SVA distance, C0C2 and C2C7 angles

(Figures 1B,D) (17).

All subjects underwent gait analysis using 8 optoelectronic

cameras (Vicon®, Oxford, UK). In total, 41 reflecting markers

were placed over bony landmarks based on the Davis and

Leardini protocols for lower limb and trunk kinematics

respectively (Figure 2) (18, 19). All subjects were asked to walk

barefoot at a self-selected speed on a 10-m walkway several

times. Classic kinematic parameters were calculated using

Nexus® and Procalc® (Vicon®, Oxford, UK). The collected
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FIGURE 1

3D reconstructions of the spine based on biplanar X-rays (A), with calculation of spino-pelvic and global alignment parameters (B, C, D).
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parameters consisted of time-distance parameters and kinematic

waveforms during the gait cycle (with the calculation of the

mean, maximum, minimum and range of motion ROM) of the

trunk, spine, pelvis and lower limb joints in the three planes.

The Gait Deviation Index (GDI), which is a subject specific score

evaluating the overall pelvis and lower limb kinematic alterations

during walking (varies between 0 and 100; 100 represents normal

gait and deteriorates with decreasing scores) (20), was also

calculated.

All subjects filled the following HRQoL questionnaires: visual

analog scale (VAS) for pain, the Oswestry Disability Index

(ODI), the Short Form Health Survey (SF-36) evaluating both

physical (PCS) and mental (MCS) health components, and

Beck’s Depression Inventory (BDI) (Figure 3).
Statistical analysis

In order to investigate differences in demographics,

radiographic, kinematic parameters and HRQoL outcomes

between ASD and controls, a Mann–Whitney’s U test or

Student’s t-test was applied, depending on data normality

(assessed using Shapiro–Wilk’s test).

In order to predict HRQoL outcomes based on radiographic

and/or kinematic parameters, a machine learning model based

on random forest regression was used. A random forest is an

estimator that fits an operator-defined number of classifying

decision trees on various sub-samples of the training dataset.

Prediction is made by evaluating the information of the ensemble
Frontiers in Surgery 03
of the decision trees, to improve the accuracy of prediction and

control over-fitting (Figure 4).

Three simulations were conducted with different inputs that

the model crosses with every single tree in the forest, and then

averages the response over all the trees in order to predict one

common output: HRQoL outcomes (Figure 5). The number of

trees selected was 1,000 trees, a choice made with the main aim

to obtain maximal accuracy of prediction, with the less time of

calculation possible.

The first simulation predicted HRQoL outcomes based on the

radiographic spino-pelvic parameters. The second simulation

predicted HRQoL outcomes based on the kinematic parameters.

Whereas the third simulation predicted HRQoL outcomes based

on both radiographic spino-pelvic and kinematic parameters.

The accuracy of prediction defined as the percentage of correct

predictions of each HRQoL outcome was calculated as follow: if the

predicted value lies within the range of the expected value ± the

margin of error [3 points for all HRQoL outcomes except 1

point for VAS for pain (21)], then it was considered as an

accurate prediction, otherwise as inaccurate. The percentage of

accurate predictions among all predicted values was reported.

The root mean squared error (RMSE) was also calculated to

quantify the difference between predicted and expected values.

Subjects are divided randomly into 10 groups and a ten-fold

cross validation is applied to ensure that every group of patients

is used once for testing and 9 times for training. Therefore, 10

accuracy and 10 RMSE values are obtained for each HRQoL

outcome. The average of all 10 values represents the average

accuracy and RMSE of the model for each outcome (Figure 6).
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FIGURE 2

Reflective markers’ placement for lower limb and trunk kinematics calculation during walking.

FIGURE 3

Health-related quality of life questionnaires including SF-36 survey, visual analogue scale for pain, oswetry disability index and Beck’s depression
inventory.
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FIGURE 4

Visualization of a random forest machine learning model.

FIGURE 5

The 3 simulations performed to predict HRQoL outcomes with the following inputs: x-ray predictors (simulation 1), 3D movement analysis predictors
(simulation 2) and x-ray + 3D movement analysis predictors (simulation 3).
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The 10 accuracy and the 10 RMSE values obtained for each

parameter were then compared between simulations using a one-

way ANOVA test or Kruskal–Wallis test depending on the

normality of data.

In order to investigate the possibility of predicting HRQoL

outcomes after medical, orthopedic and surgical treatment, the 3

aforementioned trained models were performed on the group of

ASD after follow-up.

Level of significance was set to 0.05 and was adjusted if

necessary using a Bonferroni correction method. Statistical

analysis was conducted using SPSS® (IBM®, New York, USA;

version 2017).
Frontiers in Surgery 05
Results

Population

Datawas collected from173ASDpatients (52 ± 19 years, 123 F) and

57 control subjects (50 ± 9 years, 35 F) with similar age distribution (p >

0.05, Table 1). Out of the 173 ASD patients, 63 had frontal deformity

(frontal Cobb >20°), 66 had hyperkyphosis (thoracic kyphosis >60°),

and 44 were enrolled based on their sagittal malalignment (SVA>

5 cm, PI-LL > 10° and/or PT > 25°). In total, 30 patients were followed

up 6 months to two years after medical treatment (N = 7), orthopedic

treatment (physical therapy: N = 2) and surgery (N = 21).
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FIGURE 6

Visualization of the 10-fold cross validation of the model.

TABLE 1 Demographic comparison between groups.

Demographics ASD (n = 173) Controls (n = 57) p-value
Age (years) 52 ± 19 50 ± 9 0.05

Weight (Kg) 74 ± 16 75 ± 13 0.47

Height (cm) 163 ± 10 167 ± 9 0.001

Sex
Male 53 (29%) 22 (39%) <0.001

Female 123 (71%) 35 (61%)

Bold: significant p-value (p < 0.05).

Mekhael et al. 10.3389/fsurg.2023.1166734
Comparison of radiographic, kinematic parameters and

HRQoL outcomes are displayed in Tables 2, 3, 4 respectively.
Machine learning model results

In the first simulation, when spino-pelvic parameters were

given alone as inputs, a median accuracy of HRQoL outcome

prediction of 83.4% was recorded, with a maximum of 97% (for
Frontiers in Surgery 06
Role Emotional component in SF36) and a minimum of 68%

(for ODI). A median RMSE of HRQoL outcome prediction of

1.68 was recorded, with a maximum of 2.68 (for ODI) and a

minimum of 0.45 (for VAS for pain).

In the second simulation, when kinematic gait parameters

were given alone as inputs, a median accuracy of HRQoL

outcome prediction of 84.7% was recorded, with a

maximum of 99% (for Role Emotional component in SF36)

and a minimum of 70.8% (for ODI). A median RMSE of

HRQoL outcome prediction of 1.55 was recorded, with a

maximum of 2.53 (for ODI) and a minimum of 0.38 (for

VAS for pain).

In the third simulation, when both kinematic and spinopelvic

parameters were given as inputs, a median accuracy of HRQoL

outcome prediction of 87% was recorded, with a maximum of

98.3% (for Role Physical component in SF36) and a minimum of

71.7% (for ODI). A median RMSE of HRQoL outcome

prediction of 1.56 was recorded, with a maximum of 2.54 (for

ODI) and a minimum of 0.38 (for VAS for pain).
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TABLE 2 Radiographic parameters comparison between groups.

Radiographic parameters ASD
(n = 173)

Controls
(n = 57)

p-value

Mean SD Mean SD
SVA (mm) 28.3 56.7 −8.0 22.2 <0.001

CAM plumb line (mm) 6.0 58.4 −25.2 32.4 <0.001

Spino Sacral Angle (°) 121.9 16.9 130.5 8.4 <0.001

T9 Tilt (°) 13.2 5.6 13.2 4.1 0.92

PI (°) 53.1 12.3 49.2 11.4 0.009

SS (°) 34.2 11.5 37.1 9.4 0.09

PT (°) 18.9 10.9 12.3 6.7 <0.001

L1S1 (°) 53.0 20.4 61.3 10.9 0.01

PI-LL (°) 0.1 20.2 −12.1 10.2 <0.001

T4T12 (°) 46.4 18.9 44.0 13.4 0.5

T1T12 (°) 50.9 17.9 49.6 14.6 0.88

Cobb angle (°) 17.4 17.4 6.1 9.6 <0.001

Apical vertebral rotation (°) 7.6 8.9 2.2 5.4 <0.001

Knee flexion (°) 1.8 9.5 −3.2 5.1 <0.001

CBVA (°) 3.1 5.5 1.9 6.4 0.21

SLS (°) 4.7 7.6 5.7 6.7 0.47

CO-C2 (°) 30.0 12.2 34.0 8.9 0.02

C2-C7 (°) 10.2 16.0 5.2 13.4 0.03

cSVA (°) 4.7 7.1 10.5 10.1 <0.001

Bold: significant p-value (p < 0.05).

TABLE 3 Kinematic parameters comparison between groups.

Kinematic parameters ASD
(n = 173)

Controls
(n = 57)

p-value

Mean SD Mean SD

Gait Deviation Index (GDI) 87.5 14.6 94.5 12.1 0.001

Mean Pelvic Tilt (°) 9.7 7.8 11.7 7.3 0.17

ROM Pelvic Tilt (°) 3.8 1.6 3.6 1.2 0.64

Mean Pelvic Obliquity (°) 0.0 2.4 0.1 1.3 0.862

ROM Pelvic Obliquity (°) 8.0 4.0 9.7 3.4 0.001

Mean Pelvic Rotation (°) 0.4 3.7 1.3 2.6 0.05

ROM Pelvic Rotation (°) 10.5 4.6 11.3 3.8 0.06

Mean hip Flexion/Extension (°) 15.7 8.8 16.9 8.5 0.438

ROM hip Flexion/Extension (°) 41.2 7.3 44.7 5.2 0.002

Mean hip Internal/External Rotation (°) −3.9 13.2 −0.7 9.5 0.10

ROM hip Internal/External Rotation (°) 33.0 14.6 33.8 12.6 0.47

Mean hip Abduction/Adduction (°) −0.5 4.4 −0.5 3.8 0.99

ROM hip Abduction/Adduction (°) 13.7 4.2 14.4 3.6 0.15

Mean Knee Flexion/Extension (°) 21.8 5.8 21.2 5.4 0.495

ROM Knee Flexion/Extension (°) 55.6 8.7 59.8 7.9 0.001

Mean Dorsal/Plantar Flexion (°) 6.7 4.8 5.5 5.0 0.13

ROM Dorsal/Plantar Flexion (°) 30.5 8.5 29.1 6.4 0.50

Mean Foot External/Internal Rotation (°) −11.8 9.2 −10.3 5.9 0.19

ROM Foot External/Internal Rotation (°) 10.4 4.6 10.0 4.1 0.60

Mean Thorax Flexion/Extension (°) 7.8 11.2 4.6 4.7 0.356

ROM Thorax Flexion/Extension (°) 3.1 1.3 3.2 1.2 0.847

Mean Shoulder-Pelvis Rotation (°) 1.3 3.7 0.9 3.2 0.635

ROM Shoulder-Pelvis Rotation (°) 14.0 5.6 16.1 4.4 0.002

Walking Speed (m/s) 1.0 0.3 1.2 0.2 <0.001

Cadence (step/min) 102.7 14.2 111.9 12.3 <0.001

Step Length (m) 0.5 0.1 0.6 0.1 <0.001

Bold: significant p-value (p < 0.05).

TABLE 4 Health related quality of life (HRQoL) outcomes comparison
between groups.

HRQoL outcomes ASD
(n = 173)

Controls
(n = 57)

p-value

Mean SD Mean SD
PCS (SF36) 40.9 9.6 49.0 8.4 <0.001

MCS (SF36) 51.6 8.8 53.6 7.6 0.27

Physical Functioning PF 42.1 11.9 49.4 11.9 <0.001

Role Physical RP 38.7 6.4 46.5 9.1 <0.001

Bodily Pain BP 45.1 9.6 53.3 7.8 <0.001

General Health GH 47.0 10.2 52.0 8.9 0.001

Vitality VT 47.1 11.6 51.9 11.1 0.01

Social Functioning SF 49.9 10.3 53.3 8.2 0.05

Role Emotional RE 42.2 5.7 48.8 8.1 <0.001

Mental Health MH 54.1 11.3 55.3 10.0 0.86

VAS for pain 5.5 2.7 4.3 2.4 0.002

ODI 28.8 18.4 19.1 12.6 <0.001

BDI 10.2 7.7 7.3 6.2 0.005

Bold: significant p-value (p < 0.05).
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In terms of accuracy of prediction, simulations 2 and 3 had

comparable results for all HRQoL outcomes (Table 5).

Simulations 2 and 3 showed statistically significant higher
Frontiers in Surgery 07
predictions of HRQoL outcomes when compared to Simulation

1. For instance, PCS was predicted at 88% and 89% of accuracy

in simulations 2 and 3 but at 85% in simulation 1 (p < 0.005).

ODI was predicted at 71% of accuracy in simulations 2 and 3

but at 68% in simulation 1 (p < 0.05).

In terms of RMSE of prediction, simulations 2 and 3 had

comparable results for all HRQoL outcomes (Table 6).

Simulations 2 and 3 showed statistically significant higher

predictions of HRQoL outcomes when compared to Simulation

1. For instance, RMSE for PCS component in SF36 was 1.53 and

1.54 in simulations 2 and 3 but 1.68 in simulation 1 (p < 0.05).

RMSE for ODI was 2.53 and 2.54 in simulations 2 and 3 but

2.68 in simulation 1 (p < 0.05).

Similar results were reported when the 3 previously mentioned

simulations were tested on the follow-up ASD group (Table 7 and

Figures 7, 8):

The first simulation with spino-pelvic parameters from the

follow-up ASD patients as inputs resulted in a median accuracy

of 83.3% (for PCS in SF36), with a maximum of 96.7% (for Role

Physical component in SF36) and a minimum of 66.7% (for

ODI). A median RMSE of HRQoL outcome prediction of 1.68

was found, with a maximum of 2.64 (for ODI) and a minimum

of 0.46 (for VAS for pain).

The second simulation with kinematic parameters from the

follow-up ASD patients as inputs resulted in a median accuracy

of 85%, with a maximum of 100% (for Role Emotional

component in SF36) and a minimum of 70% (for ODI). A

median RMSE of HRQoL outcome prediction of 1.5 was found,

with a maximum of 2.5 (for ODI) and a minimum of 0.35 (for

VAS for pain).

The third simulation combining both kinematic and

spinopelvic parameters from the follow-up ASD patients as

inputs, resulted in a median accuracy of 86.7% (for MCS in

SF36), with a maximum of 100% (for Role Emotional

component in SF36) and a minimum of 73.3% (for ODI). A

median RMSE of HRQoL outcome prediction of 1.55 was found,
frontiersin.org
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TABLE 5 Accuracy of prediction of HRQoL outcomes for primary ASD and controls over the 10-fold cross validation, with comparison between the 3
simulations.

HRQoL outcomes Simulation 1 (x-ray) Simulation 2 (3D
movement analysis)

Simulation 3 (x-ray + 3D
movement analysis)

Between-simulation comparisons

Average SD 95% C.I. Average SD 95% C.I. Average SD 95% C.I. p-value Simulation 1 vs.
Simulation 2

Simulation 1 vs.
Simulation 3

Simulation 2 vs.
Simulation 3

PCS (SF36) 85.0 5.0 81.9 88.1 88.4 4.0 85.9 90.8 89.7 3.9 87.3 92.1 <0.001 * *

MCS (SF36) 83.7 8.3 78.5 88.8 86.3 5.6 82.9 89.8 87.7 6.8 83.5 91.9 0.001 * *

Physical Functioning PF 77.7 8.6 72.4 83.1 80.4 3.7 78.1 82.6 81.7 5.0 78.6 84.8 <0.001 * *

Role Physical RP 92.4 5.6 88.9 95.9 98.0 1.4 97.1 98.9 98.3 1.5 97.4 99.2 <0.001 * *

Bodily Pain BP 83.4 5.7 79.9 86.9 85.4 5.2 82.1 88.6 87.7 3.3 85.6 89.8 <0.001 * *

General Health GH 83.0 6.0 79.3 86.8 84.0 4.8 81.1 87.0 86.4 4.1 83.8 88.9 <0.001 * *

Vitality VT 74.4 6.9 70.1 78.6 76.4 12.3 68.7 84.0 77.7 6.0 74.0 81.4 0.01 *

Social Functioning SF 83.4 6.6 79.3 87.4 84.0 6.0 80.3 87.8 85.0 6.3 81.1 88.9 0.004 *

Role Emotional RE 97.0 1.4 96.1 97.9 99.0 1.5 98.1 99.9 98.0 1.4 97.1 98.9 <0.001 * *

Mental Health MH 76.7 10.3 70.3 83.1 76.7 7.8 71.9 81.6 77.1 10.3 70.7 83.4 0.07

VAS for pain 72.7 9.7 66.7 78.7 74.1 8.9 68.6 79.6 74.7 8.5 69.4 80.0 0.002 * *

ODI 68.0 7.1 63.6 72.4 70.8 9.5 64.9 76.7 71.7 7.0 67.4 76.1 0.005 * *

BDI 89.7 3.8 87.3 92.0 91.0 3.2 89.0 93.0 91.3 2.4 89.8 92.9 <0.001 * *

Bold or *p < 0.05.

TABLE 6 Root mean squarred error (RMSE) of predictions of HRQoL outcomes for primary ASD and controls over the 10-fold cross validation, with
comparison between the 3 simulations.

HRQoL outcomes Simulation 1 (x-ray) Simulation 2 (3D
movement analysis)

Simulation 3 (x-ray + 3D
movement analysis)

Between-simulation comparisons

RMSE SD 95% C.I. RMSE SD 95% C.I. RMSE SD 95% C.I. p-value Simulation 1 vs.
Simulation 2

Simulation 1 vs.
Simulation 3

Simulation 2 vs.
Simulation 3

PCS (SF36) 1.68 0.11 1.62 1.75 1.50 0.15 1.41 1.59 1.56 0.16 1.46 1.66 0.04 * *

MCS (SF36) 1.68 0.05 1.65 1.71 1.50 0.14 1.41 1.59 1.56 0.14 1.47 1.64 0.01 * *

Physical Functioning PF 2.06 0.14 1.98 2.15 1.91 0.12 1.84 1.99 1.92 0.12 1.85 2.00 0.03 * *

Role Physical RP 0.81 0.04 0.79 0.83 0.73 0.07 0.69 0.77 0.74 0.06 0.71 0.78 0.01 * *

Bodily Pain BP 1.72 0.07 1.67 1.76 1.57 0.07 1.53 1.61 1.56 0.08 1.51 1.61 <0.001 * *

General Health GH 1.34 0.09 1.28 1.39 1.20 0.21 1.07 1.33 1.27 0.41 1.01 1.52 0.3

Vitality VT 2.26 0.14 2.17 2.35 2.08 0.14 1.99 2.17 2.07 0.19 1.95 2.19 0.03 * *

Social Functioning SF 1.91 0.10 1.85 1.97 1.83 0.07 1.78 1.87 1.81 0.08 1.77 1.86 0.04 *

Role Emotional RE 0.79 0.04 0.77 0.82 0.72 0.05 0.69 0.74 0.73 0.06 0.69 0.76 0.005 * *

Mental Health MH 2.25 0.07 2.20 2.29 2.01 0.15 1.92 2.11 2.02 0.14 1.93 2.11 0.002 * *

VAS for pain 0.45 0.05 0.42 0.48 0.38 0.03 0.36 0.41 0.32 0.04 0.30 0.34 0.002 * *

ODI 2.68 0.05 2.65 2.71 2.49 0.16 2.39 2.59 2.55 0.14 2.46 2.64 0.03 * *

BDI 1.25 0.05 1.22 1.28 1.06 0.17 0.95 1.16 1.11 0.20 0.99 1.23 0.04 *

Bold or *p < 0.05.

TABLE 7 Accuracy and RMSE of prediction of HRQoL outcomes for the 30 follow-up ASD patients as the testing group.

HRQoL outcomes Simulation 1 (x-ray) Simulation 2 (3D movement
analysis)

Simulation 3 (x-ray + 3D
movement analysis)

Accuracy of prediction (%) RMSE Accuracy of prediction (%) RMSE Accuracy of prediction (%) RMSE
PCS (SF36) 83.3 1.80 86.7 1.50 90 1.55

MCS (SF36) 80 1.60 86.7 1.53 90 1.49

Physical Functioning PF 80 2.00 80 1.85 83.3 1.85

Role Physical RP 96.7 0.84 93.3 0.71 96.7 0.68

Bodily Pain BP 83.3 1.68 83.3 1.52 86.7 1.55

General Health GH 83.3 1.32 83.3 1.15 86.7 1.18

Vitality VT 70 2.30 73.3 2.02 76.7 2.00

Social Functioning SF 83.3 1.88 86.7 1.79 86.7 1.79

Role Emotional RE 90 0.81 100 0.72 100 0.71

Mental Health MH 76.7 2.27 80 2.00 76.7 2.01

VAS for pain 70 0.46 73.3 0.32 76.7 0.37

ODI 66.7 2.64 70 2.51 73.3 2.46

BDI 86.7 1.23 90 1.04 93.3 1.09
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FIGURE 7

Health related quality of life outcomes and their accuracy of prediction using ML algorithm based on x-ray (spino-pelvic parameters), 3D movement
analysis (kinematic parameters) and x-ray + 3D movement analysis combined (spino-pelvic and kinematic parameters).

FIGURE 8

Health related quality of life outcomes and their root mean squared error (RMSE) of prediction using ML algorithm based on x-ray (spino-pelvic
parameters), 3D movement analysis (kinematic parameters) and x-ray + 3D movement analysis combined (spino-pelvic and kinematic parameters).

Mekhael et al. 10.3389/fsurg.2023.1166734
with a maximum of 2.48 (for ODI) and a minimum of 0.36 (for

VAS for pain).
Discussion

Spinal deformity is a major cause of quality-of-life

deterioration. While classical evaluation of ASD patients is based

on full body standing static radiographs and health-related

quality of life questionnaires (HRQoL), dynamic evaluation is
Frontiers in Surgery 09
still missing in their clinical assessment. Previous studies have

reported that both radiographic and kinematic alterations

correlated with quality of life deterioration (22). More recent

studies have shown that gait analysis is a useful tool to

objectively quantify patients’ function during daily life activities

(11, 23). However, it is still unknown if 3D gait analysis is a

reliable tool in HRQol scores prediction. This study showed that

gait kinematics are great predictors of QoL outcomes and, when

combined with radiographic measurements, can explain up to

99% of the variance in QoL presented by these patients.
frontiersin.org

https://doi.org/10.3389/fsurg.2023.1166734
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Mekhael et al. 10.3389/fsurg.2023.1166734
In an attempt to investigate the main predictors of QoL scores,

three machine learning models were computed.

The first simulation revealed that radiographic parameters

alone could predict QoL scores, however with suboptimal

accuracies (median = 83.4%) and RMSE (median = 1.68). This

result is in accordance with previous findings that described

postural malalignment as a principal determinant of QoL

deterioration in ASD patients (22, 24–26). Other studies reported

that surgical restoration of an aligned posture, i.e., restoration of

normative or more adapted spino-pelvic and global postural

parameters, was associated with improved QoL scores (27).

In the second simulation, gait parameters alone were better

predictors of QoL outcomes with a median accuracy of 84.7%,

that was significantly higher than the first simulation and a

median RMSE of 1.55, that was significantly lower than the first

simulation. This is the first study to prove that QoL scores in

patients with ASD could be explained and predicted by

kinematic parameters collected through gait analysis. The higher

accuracies and lower RMSE noted when compared to the first

simulation proved that gait kinematics are more representative of

function than static radiographic parameters.

In the third simulation, both radiographic and gait parameters

were able to successfully predict up to 99% of the alterations of the

QoL scores, with a median accuracy of 87%, and a median RMSE

of 1.56 showing that patient QoL can be well determined by both

static and dynamic parameters simultaneously. This finding also

suggests that improving radiographic and gait parameters

simultaneously might be a promising way to enhance QoL in

these patients.

Nevertheless, the simulation which combined x-ray to 3D gait

analysis didn’t show neither considerable gain in accuracy of

prediction nor considerable loss in RMSE when compared to the

simulation based on 3D gait analysis alone. This emphasizes the

major role of 3D gait analysis in the assessment of patients with

ASD compared to the conventional radiographic assessment.

Furthermore, this study showed that 3D movement analysis is a

better predictor than x-Ray of HRQoL outcomes that determine

physical consequences of spinal deformity (pain, disability…)

estimated by PCS in SF36, VAS for pain and ODI. Moreover, it

was interesting to note that 3D movement is also a better predictor

of HRQoL outcomes that determine mental repercussions of spinal

deformity (depression, anxiety…) on the patient, estimated by MCS

in SF36 and BDI. This finding seems to be trivial, since mental

health is known to go hand by hand with a patients’ ability to

perform independently and adequately daily life tasks.

Interestingly, the 3 simulations, performed with the 30 follow-

up ASD patients as the testing group, presented similar results.

This advocates for the importance of dynamic evaluation, using

3D movement analysis, not only in the primary assessment of

patients with ASD but also in the evaluation of surgical and/or

medical interventions.

A random forest regressor model was preferred to be used

instead of other machine learning models such as SVM or neural

networks, since it was more suitable to the aim of this study and

the type of data provided, by adopting a systematic decision tree-

like approach.
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The major limitation of this study relies within not taking into

consideration patient’s comorbidities which might affect quality of

life outcomes and thus being a confounding factor in their prediction.

In conclusion, this study showed that functional assessment,

based on 3D movement analysis, is an important predictor of

HRQoL outcomes in patients with ASD. Therefore, the

assessment of ASD patients should no longer rely on radiographs

alone but on movement analysis as well. Knowing that 3D

movement analysis is costly, time consuming and requires

technological and biomechanical expertise, future research should

seek a more practical but valid method to provide kinematic

parameters that can be easily used in clinical routine practice.
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