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Smallholder maize farming systems in sub-Saharan Africa (SSA) are vulnerable 
to drought-induced yield losses, which significantly impact food security and 
livelihoods within these communities. Mapping and characterizing genomic 
regions associated with water stress tolerance in tropical maize is essential for 
future breeding initiatives targeting this region. In this study, three biparental F3 
populations composed of 753 families were evaluated in Kenya and Zimbabwe 
and genotyped with high-density single nucleotide polymorphism (SNP) 
markers. Quantitative trait loci maping was performed on these genotypes 
to dissect the genetic architecture for grain yield (GY), plant height (PH), ear 
height (EH) and anthesis-silking interval (ASI) under well-watered (WW) and 
water-stressed (WS) conditions. Across the studied maize populations, mean 
GY exhibited a range of 4.55–8.55  t/ha under WW and 1.29–5.59  t/ha under 
WS, reflecting a 31–59% reduction range under WS conditions. Genotypic and 
genotype-by-environment (G  ×  E) variances were significant for all traits except 
ASI. Overall broad sense heritabilities for GY were low to high (0.25–0.60). For 
GY, these genetic parameters were decreased under WS conditions. Linkage 
mapping revealed a significant difference in the number of QTLs detected, 
with 93 identified under WW conditions and 41 under WS conditions. These 
QTLs were distributed across all maize chromosomes. For GY, eight and two 
major effect QTLs (>10% phenotypic variation explained) were detected under 
WW and WS conditions, respectively. Under WS conditions, Joint Linkage 
Association Mapping (JLAM) identified several QTLs with minor effects for GY 
and revealed genomic region overlaps in the studied populations. Across the 
studied water regimes, five-fold cross-validation showed moderate to high 
prediction accuracies (−0.15–0.90) for GY and other agronomic traits. Our 
findings demonstrate the polygenic nature of WS tolerance and highlights the 
immense potential of using genomic selection in improving genetic gain in 
maize breeding.
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1 Introduction

Across Africa, circa 40% of maize-growing areas are exposed to 
recurrent drought (Fisher et al., 2015), with a frequency of 10-20% 
(Tesfaye et al., 2016). These droughts are responsible for substantial 
grain yield losses exceeding 20% in smallholder farming systems. 
Previous studies have shown that with each additional degree day 
above 30°C, maize grain yield under water-stressed (WS) conditions is 
reduced by 1.7% (Lobell et al., 2011). These drought-induced yield 
losses can be  attributed to several trait-related factors  - including 
reduced kernel size, inhibited ear elongation (Wang et al., 2019) and 
delayed silking (Sah et al., 2020). Water stress can also have negative 
effects on the nutritional quality of maize grain (Barutcular et al., 2016; 
Sehgal et al., 2018), which is a concern for the already malnourished 
smallholder farmer communities in sub-Saharan Africa (SSA). Over 
the past decades, the adverse effects of WS have been more pronounced 
in rainfed (Lunduka et al., 2019) maize-dependent smallholder farming 
systems in SSA. In this region, maize grain yield [range: 1–3 tonne ha−1 
(Prasanna et al., 2020)] and quality losses are further compounded by 
other limiting factors such as heat stress (Chukwudi et al., 2021), low 
soil nitrogen stress (Ndlovu et al., 2022; Kimutai et al., 2023), insect 
pest infestations (Deutsch et al., 2018), disease incidences (Beyene 
et al., 2017) and limited access to quality seeds among smallholders 
(Breen et al., 2024).

Despite the widely reported unpredictability of drought (Seleiman 
et al., 2021), farmers and researchers can adopt a range of strategies to 
curb yield losses (Muroyiwa et al., 2022). Such strategies include the 
development, release, and adoption of WS-tolerant maize varieties. 
On-farm trials conducted in SSA have shown that WS-tolerant varieties 
of maize can have a 5–40% grain yield advantage over traditional 
varieties under WS conditions (Tesfaye et  al., 2016). Such yield 
advantage has been reported to generate extra income for maize-
dependent households [e.g., up to US$240/ha or > 9 months of food 
sufficiency in Zimbabwean households (Lunduka et  al., 2019)]. 
Advancing genetic gains for WS-tolerant maize varieties is, therefore, 
an essential component of the basket of technology options for 
improving the resilience of smallholder maize farming systems (Habte 
et al., 2023) in SSA. However, breeding for WS-tolerant maize varieties 
presents several challenges due to the complex nature of WS and the 
need to advance genetic gain concurrently for a range of yield-
related traits.

Breeding for higher maize grain yields under WS has been 
limited by genotype-by-environment (G × E) effects and low 
heritability (Collins et  al., 2008). As water stress tolerance is a 
multigenic trait, investigations of grain yield under WS also involve 
evaluating a range of secondary traits, including anthesis-silking 
interval (ASI) (Bolaños and Edmeades, 1996; Gopalakrishna 
K. et  al., 2023), reduced water potential and root development 
(Thirunavukkarasu et al., 2014), ear height-to-plant height ratio 
(Zhao et al., 2019) and number of ears per plant (Badu-Apraku 
et al., 2019). Other studies have also measured high water-holding 
capacity, enhanced cell wall biosynthesis and stability of 
photosynthesis (Zhang et al., 2020). Most of these traits have higher 
heritabilities than grain yield and can be good secondary traits to 
enhance selection for drought tolerance in maize. Using 
conventional breeding to improve traits associated with WS 
tolerance presents a range of challenges, including its laborious and 
slow nature (Nikolić et  al., 2013). However, there is significant 

potential to overcome some WS-tolerance breeding challenges by 
incorporating molecular breeding [e.g., quantitative-trait loci 
(QTL) mapping (Zhao et al., 2019; Hu et al., 2021; Sarkar et al., 
2023), genome-wide association studies (GWAS) (Khan et al., 2022; 
Anilkumar et al., 2023; Chen et al., 2023) and genomic selection 
(GS) (Beyene et  al., 2015; Cerrudo et  al., 2018; He et  al., 2019; 
Ndlovu et  al., 2022, 2024; Zhang et  al., 2022)] and phenomics-
assisted breeding [i.e., high-throughput phenotyping (Wu et al., 
2021)] approaches. To unravel the genetic architecture of WS 
tolerance in tropical maize, molecular breeding approaches have 
become crucial for improving this complex trait.

A range of studies have identified genomic regions associated 
with the tolerance of maize lines to WS conditions. These studies 
have shown that WS tolerance is a complex trait governed by 
many minor QTLs (Choudhary et  al., 2023). For instance, 
Osuman et  al. (2022) identified 27 single nucleotide 
polymorphisms (SNPs), with four SNPs [SNP_138825271 (Chr. 
3), SNP_244895453 (Chr. 4), SNP_168561609 (Chr. 5), and 
SNP_62970998 (Chr. 6)] having pleiotropic effects on anthesis 
days, silking days and husk cover under terminal drought. Under 
both WS and well-watered (WW) conditions, Zaidi et al. (2016) 
identified 37 SNPs for grain yield and shoot biomass. Two of 
these SNPs (SNPs S1_211520521 and S2_20017716) were 
associated with shoot biomass and transpiration efficiency under 
WS. For plant height, 120 SNPs were identified by Wallace et al. 
(2016) from 15 tropical maize populations grown under WS in 
SSA. Thirunavukkarasu et al. (2014) identified SNPs associated 
with functional traits such as stomatal closure, root development, 
flowering, detoxification, and reduced water potential under 
drought stress, Yuan et  al. (2019) identified 46 differentially 
expressed candidate genes under both WS and WW conditions. 
At the seedling stage, Chen et al. (2023) identified 15 candidate 
genes for water stress tolerance in maize.

Combining QTL mapping with GWAS can enhance the 
identification of markers associated with various traits of interest 
(Chen et al., 2016; Zhou et al., 2018; Li et al., 2020; Ndlovu et al., 
2022; Sallam et  al., 2022). The identified markers can then 
be  utilized in marker-assisted recurrent selection (MARS) for 
improving WS tolerance in tropical maize (Beyene et al., 2016). GS 
is also a promising tool for improving polygenic traits (like WS 
tolerance in maize). Unlike MARS, GS can capture the effects of 
many small-effect QTLs (Bentley et al., 2014; Cerrudo et al., 2018). 
Several studies also showed that incorporation of markers linked 
to major effect QTLs as a fixed effect in genomic prediction model 
can improve the prediction accuracy as observed for Striga 
resistance (Gowda et al., 2021) and maize lethal necrosis resistance 
in maize (Gowda et al., 2015). To understand the effectiveness of 
QTL mapping and GS in dissecting the genetic basis of WS 
tolerance, a set of tropical bi-parental maize populations evaluated 
in Kenya and Zimbabwe were used in this study. The study sought 
to (i) compare the quantitative genetic parameters (i.e., heritability, 
variance, and genetic correlation) of grain yield and secondary 
traits under WW and WS conditions; (ii) identify the genomic 
regions through linkage mapping and joint linkage association 
mapping for grain yield and other traits in three F3 populations 
evaluated in multiple locations; and (iii) assess the potential of GS 
in improving grain yield and related traits under WW and 
WS conditions.
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2 Materials and methods

2.1 Plant materials, experimental design, 
and crop management

Three biparental F3 maize populations comprised of 753 families 
developed by the Global Maize Program of the International Maize 
and Wheat Improvement Centre (CIMMYT) were evaluated under 
WW and managed WS conditions. Population 1 comprised 240 F3 
families from the cross CML543 × CML444, Population 2 comprised 
255 F3 families from the cross CML543 × LaPostaSeqC7-F71 and 
Population 3 comprised 258 F3 families from the cross 
CKL5009 × LaPostaSeqC7-F71. CML444 and LaPostaSeqC7-F7 are 
known WS-tolerant lines; CML543, on the other hand, perform better 
under WW and is resistant to foliar diseases. CML444 from heterotic 
group B is extensively used as a drought tolerant donor line in SSA and 
is adapted to mid-altitude region. It is also known to be tolerant to low 
soil N stress and resistant to maize streak virus, ear rot, and northern 
corn leaf blight. CML543 is another promising elite line that was 
developed from a CML202xCML395 derived population known for 
being tolerant to foliar diseases like gray leaf spot, northern corn leaf 
blight and common rust. LapostaSeqC7-F71 and CKL5009 are the 
other parents used in population development. LapostaSeqC7-F71 
was derived from the LapostaSequia germplasm, a known source for 
developing WS-tolerant elite donors. In addition to WS-tolerance, 
LapostaSeqC7-F71 also exhibits tolerance to ear rot. CKL5009, 
developed from Kenya Agricultural and Livestock Research 
Organization’s germplasm, is known to be moderately tolerant to 
drought and tolerant to low soil N conditions. All 753 F3 families from 
the three bi-parental populations were test-crossed to a single cross-
tester for phenotypic evaluation. The testcross progenies were 
evaluated across six sites in Kenya and one site in Zimbabwe (Table 1). 
Field trials in Kakamega and Kiboko were all evaluated over a 
two-year period.

Trials of each test cross were planted in single row (4 m) plots with 
2 replications at all locations. The field layout was an alpha (0,1) lattice 
design. Experiments were laid out in a 40 × 6, 51 × 5 and 43 × 6 alpha 
lattice design for F3 pop  1, pop  2 and pop  3, respectively. Four 
commercial checks (DKC8031, H513, WH504 and WH505) and two 
parents of each population were used so that the total of the 
experimental genotypes were 240, 255 and 258 for F3 pop 1, pop 2 and 
pop 3, respectively. Standard agronomic management practices were 
followed. All populations were planted in the same season in adjacent 
plots. The genotypes were subjected to WW and WS management 
conditions. In the WS trial, drought stress was imposed following the 

CIMMYT-established protocol (Bänziger et al., 2000). Trials for WS 
evaluations were irrigated once a week until 2 weeks prior to the 
expected flowering date in each population. Irrigation was withdrawn 
and the water stress condition was maintained till harvest. For WW 
trials, planting was done in the main rainy season and whenever 
needed, irrigation was provided to avoid any stress.

2.2 Phenotypic data collection and 
analyses

A total of ten traits (i.e., grain yield (GY), anthesis date (AD), 
silking date (SD), anthesis-silking interval (ASI), plant height (PH), 
ear height (EH), ear rot (ER), ears per plant (EPP), ear position (EPO) 
and ear aspect (EA)) were measured for all bi-parental populations 
under WW and WS regimes. All ears harvested from each plot were 
shelled and weighed to determine total GY (in kg), then converted to 
t/ha by dividing the total GY per plot by the plot area. The grain 
moisture content (MOI) of the shelled grains at harvest was 
determined using a hand-held moisture meter and recorded in 
percentages. The ASI was calculated as the difference between SD and 
AD in days. SD was recorded as the number of days from sowing to at 
least 50% silk emergence in each plot, while AD was recorded as the 
number of days from sowing to when 50% of the plants per plot had 
shed pollen. PH was measured in centimetres (cm) from the base of 
the plant to the tip of the tassel. EH was measured in cm from the 
ground to the node bearing the highest ear. Five representative plants 
were measured at maturity in each plot for both PH and EH. EA was 
measured on a scale of 1–5, where 1 = nice and uniform cobs with the 
preferred texture; 5 = cobs with undesirable texture. EPO was 
calculated as the ratio of EH to PH.

Analyses of variance for each bi-parental population at each and 
across environments (i.e., WW and WS regimes) were performed 
using ASREML-R (Gilmour et  al., 2009) and META-R (Alvarado 
et  al., 2020). The following statistical mixed model was used to 
estimate variance components:

 
Y G E GE R E B R E eijko i j ij kj ojk ijko= + + + ( ) + ( ) + ( ) +µ . ,

where Yijko is the phenotypic performance of the ith genotype at 
the jth environment in the kth replication of the oth incomplete block, 
μ is an intercept term, Gi is the genetic effect of the ith genotype, Ej is 
the effect of the jth environment, (GE)ij is the interaction effect 
between genotype and environment, R(E)kj is the effect of the kth 

TABLE 1 Agro-climatic characteristics and management at seven field sites used for the evaluation of the bi-parental populations of tropical maize.

Location Country Longitude Latitude Altitude (masl) Management

Kiboko-1 Kenya 37075′E 02015’ S 975 Water-stressed

Kiboko-2 Kenya 37075′E 02015’ S 975 Water-stressed

Chiredzi Zimbabwe 31°34′E 21°01’S 430 Water-stressed

Embu Kenya 37°27′E 01°31’N 1,350 Well-watered

Kakamega-1 Kenya 34o45’E 00o16’N 1,585 Well-watered

Kakamega-2 Kenya 34o45’E 00o16’N 1,585 Well-watered

Kitale Kenya 01o01E 39o59N 1849 Well-watered
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replication at the jth environment, B(R.E)ojk is the effect of the oth 
incomplete block in the kth replication at the jth environment, and eijko 
is the residual. The genotypic effect (Gi), genotype by environment 
interaction (GEI) and effect of incomplete blocks were treated as 
random effects to estimate their variances and residual error. 
Environments and replications were treated as fixed effects. Assuming 
fixed genotypic effects, a mixed linear model was fitted to obtain the 
best linear unbiased estimates (BLUEs). Broad-sense heritability (H2) 
was estimated as the ratio of genotypic to phenotypic ratio from the 
variance components. META-R software (Alvarado et al., 2015) was 
used to obtain the best linear unbiased prediction (BLUP) for each 
genotype across environments. BLUEs and BLUPs across the 
population were also obtained with the mixed model through 
META-R software.

2.3 Molecular data analysis

All three bi-parental populations used in this study were also used 
in earlier QTL mapping studies for maize lethal necrosis (MLN) 
disease (Gowda et al., 2018). Detailed description of the molecular 
markers used and the linkage map construction are also described in 
our earlier study (Gowda et al., 2018). In brief, DNA of all lines of the 
bi-parental populations was extracted from seedlings at the 3–4 leaf 
stage and genotyped using the genotype-by-sequencing (GBS) 
platform at the Institute for Genomic Diversity, Cornell University, 
Ithaca, USA, using high density markers, as per the protocol described 
in (Elshire et al., 2011). For SNP calling, raw data in a FASTQ file 
together with the barcode information and Tags On Physical Map 
(TOPM) data, which had SNP position information was used. 
We used TOPM data from AllZeaGBSv2.7 downloaded from Panzea,1 
which contained information for 955,690 SNPs mapped with B73 
AGPv2 coordinates. The TASSEL-GBS pipeline was used for calling 
SNPs (Glaubitz et al., 2014). TASSEL ver. 5.2 (Bradbury et al., 2007) 
was used to exclude SNPs with heterozygosity of >5%, minor allele 
frequency (MAF) of <0.05, and a minimum count of 90% by filtering 
from raw GBS SNP markers in all populations. The number of SNPs 
was further reduced by selecting homozygous and polymorphic 
markers between the parents in each population. SNPs were further 
filtered based on the minimum distance between the markers. 
We used the criteria of minimum distance between adjacent SNPs as 
≥200 Kilo base pairs (Kbps) to ensure uniform distribution of markers 
throughout the genome. For joint linkage association mapping 
(JLAM), markers from all three bi-parental populations were 
combined, and markers with <1% missing value and > 5% MAF and 
Heterozygosity of <5% were retained. Finally, a set of 5,490 SNPs that 
are uniformly distributed across the genome were used for 
JLAM analyses.

QTL IciMapping ver. 4.1 (Meng et al., 2015) was used to construct 
the linkage map based on data from all three biparental populations. 
QTL IciMapping was used to remove the highly correlated SNPs that 
do not provide any additional information by using an inbuilt tool 
BIN. This resulted in the retention of 560, 556 and 555 high-quality 
SNPs in populations 1, 2 and 3, respectively. These SNPs were used to 

1 https://www.panzea.org/

construct linkage maps using the MAP function, by selecting the most 
significant markers using stepwise regression. A likelihood ratio test 
was used to calculate the logarithm of odds (LOD) for each marker at 
a score of >3 with a 30 cM maximum distance between two loci. The 
Kosambi mapping function (Kosambi, 1944) was used to transform 
the recombination frequencies between two linked loci. BLUPs across 
environments were used to detect QTLs based on Inclusive interval 
mapping (ICIM) for each population. The phenotypic variation 
explained by individual QTLs and the total variation explained by 
QTLs was estimated. QTL naming was done with the letter “q” 
indicating QTL, followed by an abbreviation of the trait name, the 
chromosome, and the marker position, respectively.

2.4 Joint linkage association mapping

For JLAM, high-quality and uniformly distributed 5,490 SNPs 
across three F3 populations were selected. The SNPs were then used 
to construct a linkage map based on their physical positions. A 
biometric model (Würschum et al., 2012; Kibe t al., 2020) was used 
to perform JLAM, with BLUPs across environments and populations 
being applied for analysis. After testing several biometric models, 
one which performed well for association studies in multiple 
segregating biparental populations (Würschum et al., 2012) was used 
to conduct the JLAM. This model controls the differences in 
population means by incorporating population effect, and the 
genetic background by using cofactors and marker effects across 
populations. This model was explained in detail by Liu et al. (2011) 
and Würschum et al. (2012). With this model, first-step cofactors 
were selected based on the Schwarz Bayesian Criterion (Schwarz, 
1978) by including a population effect and in the second step, p 
values were calculated for the F-test by using a full model (including 
SNP effect) versus a reduced model (without SNP effect). Cofactors 
were selected by using PROC GLM SELECT from SAS 9.4 (SAS 
Institute Inc. 2015) and genome-wide scans for QTLs were applied 
in R (ver. 4.3.1) (R Core Team, 2023).

2.5 Genomic prediction

Genome-wide prediction was applied for GY and all other traits 
within and across three F3 populations with five-fold cross-validation. 
BLUEs across locations obtained under WW and WS management 
were used with a ridge-regression BLUP prediction model (Zhao et al., 
2012; Sitonik et al., 2019). For genomic prediction, 4,000 common 
SNPs for each of the three populations which were distributed 
uniformly across the genome with no missing values were selected. To 
understand the effect of different training populations on accuracy, 
genomic prediction was carried out in three scenarios of cross-
validation within and across biparental populations. Scenario 1: both 
training and testing populations are drawn from within each 
segregating population. In Scenario 2, the training population is 
derived from across populations, and the testing population was 
drawn from within each population whereas, for Scenario 3, both the 
training and testing population was derived from across populations. 
For Scenarios 2 and 3, the estimation of marker effects was based on 
the genotypic variance of the total populations. For Scenario 1, the 
estimates of the genotypic variance and heritability within segregating 
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populations were used in the rr-BLUP model. The prediction accuracy 
of GS was calculated as r GS = r MP /h, where h refers to the square root 
of heritability and r MP is the correlation between observed and 
predicted phenotypes (Dekkers, 2007). For each trait in each 
population and each scenario, 100 iterations were done for sampling 
the training and testing sets.

3 Results

3.1 Effect of water stress on maize grain 
yield and related traits

The mean GY of the four parents CML543, CML444, 
LapostasequiaC7-F71 and CKL5009 (used to develop the studied 
bi-parental maize populations) were 6.97, 6.30, 6.31 and 5.87 t/ha 
under WW conditions, and 2.32, 2.68, 5.08 and 3.69 t/ha under 
managed WS conditions, respectively. Across the three bi-parental 
maize populations, significant variations were observed for GY, EH, 
PH and ASI in both WW and WS regimes (Figure 1; Tables 2, 3). 
Mean GY for pop 1 (CML543 × CML444), pop 2 (CML543 × LPSC7-
F71) and pop 3 (CKL5009 × LPSC7-F71), and across populations 
were 6.38, 7.04, 6.04 and 6.41 t/ha under WW and 2.66, 3.72, 4.08 and 
3.50 t/ha under WS management, respectively (Figure 1). Across the 
three bi-parental maize populations, mean GY ranged from 4.55 to 
8.55 t/ha and 1.29 to 5.59 t/ha under WW and WS conditions, 
respectively. Overall analysis showed that under WS environments, 
GY reductions were 59, 48, and 31% in pop 1, pop 2 and pop 3, 
respectively. The ranges of ASI values were wider under WS 
conditions than under WW conditions (Figure  1). Across all 
populations, we  observed ASI, PH and EH means of 1.48 days, 
241.65 cm, and 127.76 cm, respectively under WW conditions. Under 
WS conditions, the recorded means for ASI, PH and EH were 
2.12 days, 210.71 cm, and 127.1 cm, respectively. Interestingly, mean 
ASI across the studied maize populations was 2.6 days longer under 
WS conditions than under WW conditions. The BLUEs and BLUPs 
for each and combined populations and markers used in this study 
are presented in Supplementary Table S1.

Analyses of variance for ‘within’ and ‘across’ environments 
revealed significant genotypic and genotype by environment (G × E) 
variances for all traits except for ASI (under WW conditions) and EH 
(under WS conditions) in pop 1 (Table 2). For GY, we observed low to 
moderate heritability estimates of 0.60, 0.54, 0.25 and 0.65 under WW 
conditions and 0.30, 0.32, 0.58 and 0.54 under WS management for 
pop 1, pop 2, pop 3 and all combined, respectively (Table 2). It is 
important to highlight that the lowest broad sense heritabilities under 
WS conditions were greater than the lowest values achieved under 
WW conditions, yet they remained below the highest values achieved 
under WW conditions. For individual populations, broad sense 
heritabilities for ASI ranged from 0.43–0.53 and 0.18–0.50 under WW 
and WS conditions, respectively. For PH, heritability ranged from 
0.68–0.79 (WW) and 0.43–0.65 (WS). The estimates of broad-sense 
heritability for EH ranged between 0.72–0.85 (WW) and 0.39–0.79 
(WS). Under WW conditions and for all studied populations, the 
broad sense heritability of GY was highest (65%), followed by EH 
(51%), PH (45%) and ASI (35%). While, under WS environments, 
broad sense heritabilities were estimated at 54, 47, 23 and 17% for GY, 
EH, PH and ASI, respectively. Generally, the broad-sense heritability 

of all studied maize traits was low under WS compared to WW 
conditions (Table 2).

Correlation analyses showed that GY was significantly and 
negatively correlated with Turcicum leaf blight (TLB) severity 
(−0.53), husk cover (−0.24), ear rot (−0.20), and ear aspect (−0.60) 
under WW conditions. GY was also shown to be  positively and 
significantly correlated with PH (0.60), EH (0.41), anthesis date 
(0.28), silking date (0.22), and ears per plant (0.40) (Figure 2) under 
the same conditions. Under WS conditions, GY was significantly and 
negatively correlated with anthesis date (−0.69), silking date (−0.7), 
ASI (−0.27), ear rot (−0.4), ear aspect (−0.38) and ear position 
(−0.25). It was also significantly and positively correlated with ears 
per plant (0.71).

3.2 QTLs associated with grain yield and 
related traits under well-watered and 
water-stressed conditions

The linkage map was constructed for F3 pop 1, pop 2 and pop 3 
using 560, 556 and 555 high-quality polymorphic SNPs, respectively. 
The mean distances between adjacent markers were recorded at 8.07, 
7.50 and 8.04 cM for F3 pop 1, pop 2 and pop 3, respectively. The 
identified QTLs for GY, ASI, PH and EH at WW and WS conditions 
for each population are presented in Tables 3–6. Our QTL analyses 
identified totals of 93 and 41 QTLs for GY, ASI, PH and EH, under 
WW and WS conditions, respectively. For the studied four traits, 23, 
39 and 31 QTLs (under WW conditions) and 8, 4, and 29 QTLs 
(under WS conditions) in pop 1, pop 2 and pop 3 were detected, 
respectively.

In F3 pop 1, QTL analysis revealed a total of 23 QTLs for GY (8), 
PH (9) and EH (6) under WW conditions and 8 QTLs for ASI (4), PH 
(3) and EH (1) under WS conditions (Supplementary Table S2). For 
this population, no QTLs were detected for GY under WS conditions 
(Table 3). In pop 2, QTL analysis revealed 39 QTLs for GY (8), ASI 
(5), PH (12) and EH (14) under WW conditions and four QTLs for 
GY (1), ASI (1), and PH (2) under WS conditions. In pop 3, 31 and 29 
QTLs were detected for the four traits under WW and WS conditions, 
respectively. Interestingly, the highest number of QTLs detected in this 
population were for PH (13) and EH (13) under WS conditions. 
Furthermore, no QTLs were detected for ASI under WS conditions in 
this population (Tables 5, 6).

The phenotypic variation explained (PVE) for all the detected 
QTLs ranged from 2.51 to 27.77%. Interestingly, these two extremes 
were observed in pop 3 for WS_PH (2.51%) and WW_GY (27.77%). 
Significant QTLs with major effects, explaining >10% of the PVE, were 
identified for GY (nine QTLs under WW and two QTLs under WS 
conditions). Noteworthy, a few significant major effect QTLs were also 
identified for ASI, PH and EH under both WW and WS conditions 
(Tables 4–6).

JLAM QTL analysis across the three bi-parental populations 
identified 25 QTLs for GY under the WW conditions and 4 under 
the WS (Table 7). For this analysis, PVE ranged from 0.80–3.9% and 
1.4–11.8% for WW and WS environments, respectively. For GY, 
most of the QTLs were identified in chromosomes 4 and 6 (5 QTLs 
each). For ASI, 16 and 15 QTLs were identified under WW and WS 
environments, respectively (Table  8). PVE for ASI ranged from 
0.1–4.9% and 1.3–10.9% for WW and WS environments, 
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respectively. Interestingly, most of the QTLs associated with ASI 
were identified in chromosomes 8 (n = 4) and 1 (n = 6) under WW 
and WS conditions, respectively. However, across the two water 
regimes, no QTLs were identified for ASI in chromosomes 4 and 10. 
We also identified 19 QTLs for PH under WW (12) and WS (7) 
environments (Table 9). Notably, chromosome 1 had no QTLs for 
PH under both WW and WS conditions. For EH, our analysis 
identified 20 QTLs under WW (6) and WS (14) environments. 
Unlike the other traits, chromosomes 9 and 10 had no QTLs for EH 
across the two studied management conditions. For GY, the QTL 
on chromosome 6 (qGY6_89) had the largest effect with 11.80% of 
PVE under WS condition and was found overlapping with QTL for 
WW_PH (qPH6_87) in F3 pop 2 and with WW_EH (qEH6_90) in 
F3 pop 1 (Tables 5–7). Another major effect was QTL identified for 
ASI (qASI1_107) which explained 10.9% of the PVE and did  
not overlap with any QTL detected in the individual 
population analyses.

3.3 Prediction accuracies of grain yield and 
related traits under WW and WS conditions

Five-fold cross-validation was used to assess the prediction 
accuracy for GY, ASI, PH and EH traits by combining data from three 
populations and within each population. Prediction accuracies for the 
training and testing within-within (WW scenario 1) populations were 
0.67, 0.58 and 0.57 for GY under well-watered conditions and 0.38, 
−0.15 and 0.20 under water stress conditions for pop 1, pop 2 and 
pop 3, respectively (Figure 3). For ASI, prediction accuracies for pop 
1, pop 2 and pop 3 were 0.55, 0.74 and 0.61 under WW conditions and 
0.30, 0.31 and 0.41 under WS conditions, respectively. For PH, 
prediction accuracies of 0.75 and 0.67, 0.68 under WW conditions and 
0.48, 0.30 and 0.62 under WS conditions were recorded for pop 1, pop 
2 and pop 3, respectively. For EH, prediction accuracies of 0.38, 0.20 
and 0.60 under WW management and 0.67, 0.58 and 0.60 under WS 
management were recorded for pop 1, pop 2 and pop 3, respectively. 

FIGURE 1

Phenotypic distribution of grain yield and related traits tested under well-watered and water-stressed conditions in Kenya and Zimbabwe. The orange 
and purple color plots represent the field trials conducted under well-watered and water-stressed conditions, respectively.
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For across-within scenario (AW scenario 2) where training population 
is derived by combining all three populations and testing population 
is derived from within single population, prediction accuracies for GY 
were higher under well-watered conditions with 0.56, 0.59 and 0.44 
compared to WS conditions (0.25, −0.01 and 0.15) for pop 1, pop 2, 
and pop 3, respectively. For ASI, PH and EH, the prediction accuracies 
were varied from 0.58 to 0.70, 0.63 to 0.78 and 0.62 to 0.70 under well-
watered conditions, respectively. Whereas under water stress 
conditions prediction accuracies for ASI, PH and EH were ranged 
from 0.34 to 0.44, 0.31 to 0.72 and 0.35 to 0.61, respectively. The 
prediction accuracy across all populations combined showed high 
values for all traits in both well-watered (0.53–0.90) and water stress 
(0.41–0.89) conditions (Figure 3).

4 Discussion

Water stress is one of the most significant abiotic factors impacting 
GY and quality in maize-dependent farming systems of 
SSA. WS-tolerant maize varieties can offer an inexpensive solution to 
low-input farming systems in drought-prone regions. Improving WS 

tolerance in maize cultivars using advanced tools such as doubled 
haploid technology and marker-assisted selection necessitates a 
deeper knowledge of its genetic basis (Hu et al., 2021). Mapping of 
QTLs associated with WS tolerance, and its related secondary traits 
can facilitate the use of molecular markers for improving WS tolerance 
in tropical maize. In this study, three bi-parental populations were 
evaluated under WW and WS conditions in Kenya and Zimbabwe. 
The populations were mapped for QTL associated with GY, PH, EH 
and ASI. These related complex quantitative traits have been widely 
used for selection in the development of WS-tolerant maize lines and 
hybrids (Zhao et al., 2019).

4.1 Well-watered and water-stressed 
conditions induced significant variations in 
phenotypic mean, variance, and heritability

Our phenotypic analyses showed that GY, PH and EH were 
substantially decreased under WS conditions across the studied 
bi-parental populations. This is consistent with the findings of 
previous studies (Adebayo and Menkir, 2014; Wang et al., 2019; Balbaa 

TABLE 2 Genetic parameters for the individual and combined three bi-parental populations evaluated under well-watered and water-stressed 
conditions in multiple environments.

Well-watered Water stressed

Trait GY (t/ha) ASI (days) PH (cm) EH (cm) GY (t/ha) ASI (days) PH (cm) EH (cm)

CML543 × CML444 F3 pop 1

Mean 6.38 1.49 249.43 139.21 2.66 2.67 194.59 119.17

σ2
G 0.23** 0.17** 41.25** 40.97** 0.02* 0.15* 21.99** 20.69**

σ2
GE 0.26** 0.00 3.91* 8.77** 0.02* 0.23** 7.83** 0.00

σ2
e 0.71 1.23 150.62 108.93 0.19 1.33 97.86 87.19

h2 0.60 0.53 0.68 0.72 0.30 0.33 0.54 0.59

CML543 × LapostaSequiaF71 F3 pop 2

Mean 7.04 1.50 241.91 124.06 3.72 2.65 195.44 118.51

σ2
G 0.15** 0.12** 29.45** 26.88** 0.03* 0.04* 11.39* 8.13*

σ2
GE 0.17** 0.11** 9.97** 8.19** 0.05** 0.10** 0.15* 5.46*

σ2
e 0.73 1.01 54.50 31.11 0.29 0.91 88.62 64.81

h2 0.54 0.43 0.76 0.82 0.32 0.18 0.43 0.39

CML543 × LapostaSequiaF71 F3 pop 3

Mean 6.04 1.38 225.83 115.60 4.08 1.65 207.45 126.94

σ2
G 0.03* 0.13** 27.96** 27.38** 0.06** 0.13** 22.63** 27.41**

σ2
GE 0.12** 0.02* 2.60* 1.23* 0.01 0.01 3.32* 2.68*

σ2
e 0.51 0.85 54.84 36.73 0.23 0.76 67.64 39.40

h2 0.25 0.53 0.79 0.85 0.58 0.50 0.65 0.79

Across three bi-parental maize populations

Mean 6.41 1.48 241.65 127.76 3.50 2.12 210.71 127.10

σ2
G 0.35** 0.10** 21.59** 21.37** 0.32** 0.14** 13.74* 22.85**

σ2
GE 0.20** 0.15** 44.79** 40.29** 0.05* 0.25** 20.00** 11.00**

σ2
e 1.06 1.24 120.78 84.54 1.03 2.17 147.34 81.56

h2 0.65 0.35 0.45 0.51 0.54 0.17 0.23 0.47

* and ** indicate significance at p < 0.05 and p < 0.01, respectively. σ2G, σ2GxE, σ2e, and h2, refer to genotypic variance, genotype x environment interaction variance, error variance and broad 
sense heritability, respectively.
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et al., 2022; Gopalakrishna K. et al., 2023; Huang et al., 2023), which 
demonstrated that WS has an impact on GY and its related traits in 
maize. In our study, the average GY was highest (4.55–8.55 t/ha) and 
lowest (1.29–5.59 t/ha) for WW and WS conditions, respectively. The 
observed discrepancy in GY between those for WW and WS 
conditions underscores the influence of WS on maize crop 
productivity in SSA. We  also found that, across environments, 
WS-induced GY reductions were highest for pop 1 (59%) and lowest 
for pop 3 (31%). Our results indicate that under conditions of WS, all 
studied bi-parental populations experienced reductions in 
GY. Notably, among the three tested genotypes, Pop 3 exhibited a 
comparatively higher level of WS tolerance, as evidenced by its lower 
GY losses under WS and also the contribution of favourable alleles 
from known WS tolerant parent (LaPostaSequiaC7-F71).

Like GY, ASI serves as one of the traits utilized in maize breeding 
initiatives (Silva et al., 2022) for selecting water stress tolerance. In our 
study, significantly wide ranges (2.6 days longer) were observed for 
ASI under WS compared to WW conditions across the studied 
genotypes. A wider ASI in maize under WS indicates an extended 
duration between the initiation of anthesis and silking – i.e., likely due 

to slowed reproductive development. This asynchrony can have 
adverse effects on pollination, potentially leading to low GY. Araus 
et al. (2012) alluded that maize plants exhibiting a wider ASI during 
WS conditions tend to either produce no seeds or yield only a limited 
number of grains per ear. The specific causes of the elongated ASI 
triggered by WS remain uncertain (Liu et al., 2021). Like GY response 
across genotypes, the mean values of PH and EH exhibited their 
lowest points under conditions of WS compared to WW conditions. 
These findings serve to highlight the adverse influence of WS on these 
GY-related traits and, by extension, maize crop performance in 
SSA. In this respect, further research into the mechanisms governing 
the observed GY and related trait variations can provide valuable 
insights for enhancing the resilience of smallholder maize 
systems in SSA.

Earlier studies have reported that the slow rate of genetic gain in 
breeding for WS tolerance can be attributed to high GxE interaction 
and low heritability and the polygenic nature of this trait (Mathew 
et al., 2019; Sallam et al., 2019; Zhang et al., 2022). Across the studied 
bi-parental populations and field conditions, broad-sense heritabilities 
were low (0.17) to high (0.85) for the studied traits. Most importantly, 

TABLE 3 Number of QTLs associated with grain yield under well-watered and water-stressed conditions detected in three F3 populations.

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

F3 pop 1 CML543 × CML444

WW_GY qGY1_199 1 588 7.48 9.32 42.59 0.23 0.08 S1_198739875 S1_199756190

qGY2_194 2 430 3.77 5.20 0.16 0.09 S2_193189169 S2_198859260

qGY3_208 3 39 9.54 13.04 0.30 −0.02 S3_212501788 S3_207551089

qGY3_206 3 44 5.59 11.18 −0.27 −0.04 S3_207551089 S3_206260377

qGY4_150 4 295 9.65 13.16 −0.28 −0.01 S4_149725104 S4_150813768

qGY5_50 5 306 3.21 3.74 0.17 −0.04 S5_55216459 S5_46946857

qGY8_155 8 216 4.74 6.03 −0.18 −0.13 S8_153860376 S8_159336080

qGY9_155 9 10 3.14 16.19 0.19 −0.46 S9_155445883 S9_146872747

F3 pop 2 CML543 × LapostaSeqF71

WW_GY qGY3_85 3 275 5.41 7.41 34.76 0.04 −0.32 S3_85662699 S3_81746578

qGY4_210 4 79 3.07 16.76 −0.29 −0.01 S4_210692761 S4_209568060

qGY4_191 4 117 5.94 19.27 0.26 −0.27 S4_192238206 S4_190672218

qGY4_70 4 259 3.79 5.15 −0.01 0.24 S4_49729965 S4_73097597

qGY8_135 8 156 6.32 8.10 0.21 −0.04 S8_136138158 S8_134078364

qGY8_133 8 161 3.48 6.64 −0.19 −0.01 S8_134078364 S8_132170809

qGY9_9 9 346 5.71 7.98 −0.20 −0.04 S9_9640583 S9_6794782

qGY10_6 10 3 3.08 4.47 0.15 0.02 S10_4308155 S10_6530067

WS_GY qGY4_70 4 262 3.07 24.45 20.92 0.28 0.10 S4_73097597 S4_54124398

F3 pop 3 LapostaSeqF71 × CKL5009

WW_GY qGY4_60 4 458 3.31 27.77 34.65 −0.24 −0.13 S4_60944899 S4_49729965

qGY10_70 10 278 3.83 28.25 0.09 −0.10 S10_42442641 S10_71472634

WS_GY qGY1_195 1 212 3.81 6.28 25.18 0.05 −0.01 S1_190394399 S1_199640380

qGY2_215 2 132 4.01 24.98 0.10 −0.04 S2_217686135 S2_212803577

qGY2_185 2 211 3.98 7.39 0.05 0.01 S2_185019543 S2_181424849

LOD, logarithm of odds; Add, additive effect; Dom, dominance effect; PVE, phenotypic variance explained; GY, grain yield; WW, well-watered; WS, water-stressed. The exact physical position 
of the SNP can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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FIGURE 2

Phenotypic correlations between grain yield and other agronomic traits evaluated under well-watered and water-stressed conditions. The correlation 
values <0.11 were interpreted as ‘not significant’ at p  <  0.05. GY, grain yield; AD, days to anthesis; SD, days to silking; ASI, anthesis silking interval; PH, 
plant height; EH, ear height; EPO, ear position; EPP, number of ears per plant; HC, husk cover; TLB, Turcicum leaf blight; MOI, grain moisture content; 
EA, ear aspect; and ER, ear rot.

TABLE 4 Number of QTLs associated with anthesis-to-silking interval under well-watered and water-stressed conditions detected in three F3 
populations.

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

F3 pop 1 CML543 × CML444

WS_ASI qASI1_265 1 124 3.64 6.36 16.08 −0.22 −0.11 S1_264962509 S1_267153406

qASI1_39 1 301 3.14 5.43 −0.13 0.26 S1_38609777 S1_39743833

qASI2_14 2 36 3.01 18.88 0.39 0.14 S2_9920694 S2_14334182

qASI7_125 7 266 3.87 6.79 −0.24 −0.03 S7_123586636 S7_127579232

F3 pop 2 CML543 × LapostaSeqF71

WW_ASI qASI1_245 1 143 3.72 5.37 22.41 −0.07 0.07 S1_248287688 S1_244472614

qASI2_156 2 255 4.24 6.57 0.00 −0.14 S2_155786568 S2_157235338

qASI4_175 4 183 3.43 5.09 0.08 −0.01 S4_177124549 S4_172996349

qASI8_165 8 24 3.01 9.94 −0.11 0.04 S8_168275493 S8_160531262

qASI9_155 9 11 5.31 12.93 0.12 −0.04 S9_155445883 S9_148918231

WS_ASI qASI10_35 10 95 3.57 20.99 16.58 −0.31 0.02 S10_36380033 S10_34023708

F3 pop 3 LapostaSeqF71 × CKL5009

WW_ASI qASI4_175 4 252 3.14 5.64 16.78 0.15 −0.09 S4_177124549 S4_172996349

qASI9_91 9 248 3.18 5.84 −0.15 0.09 S9_92486034 S9_90971499

qASI9_91 9 256 4.70 8.22 0.18 0.04 S9_90971499 S9_98491971

qASI10_90 10 159 3.60 6.50 0.17 0.00 S10_90243627 S10_79537481

WS_ASI qASI5_175 5 124 3.26 6.18 27.85 0.19 0.07 S5_180440672 S5_167276704

qASI5_175 5 452 3.32 24.59 −0.52 −0.31 S5_217608792 S5_29623366

qASI6_130 6 354 3.74 20.71 0.55 −0.15 S6_128790659 S6_139874840

qASI7_13 7 423 3.11 19.01 0.59 −0.40 S7_5146124 S7_13176585

LOD, logarithm of odds; Add, additive effect; Dom, dominance effect; PVE, phenotypic variance explained; ASI, anthesis-silking interval; WW, well-watered; WS, water-stressed. The exact 
physical position of the SNP can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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TABLE 5 Number of QTLs associated with plant height under well-watered and water-stressed conditions detected in three F3 populations.

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

F3 pop 1 CML543 × CML444

WW_PH qPH1_240 1 59 3.91 4.68 43.96 0.08 2.32 S1_238752622 S1_241001627

qPH3_175 3 113 3.56 15.29 2.69 0.55 S3_179251623 S3_171703625

qPH4_50 4 416 4.71 11.06 2.07 1.15 S4_41839869 S4_130024331

qPH5_45 5 334 3.37 3.84 1.34 0.33 S5_51427709 S5_43147454

qPH6_70 6 210 4.31 4.97 −1.52 0.25 S6_74462121 S6_67218451

qPH6_160 6 382 6.44 7.67 −2.02 −0.20 S6_156878226 S6_167594329

qPH8_100 8 123 5.40 18.11 2.39 −1.80 S8_65785251 S8_111044893

qPH8_150 8 239 3.04 8.71 1.73 −2.03 S8_163655109 S8_149891724

qPH8_145 8 261 7.16 10.59 2.19 −1.01 S8_149891724 S8_114742936

WS_PH qPH7_149 7 327 3.30 5.88 20.23 −1.91 −1.15 S7_149852693 S7_148148303

qPH8_130 8 178 6.84 12.56 −2.79 −1.39 S8_130328693 S8_131340896

qPH10_30 10 419 3.34 14.63 2.68 2.59 S10_4244837 S10_34023708

F3 pop 2 CML543 × LapostaSeqF71

WW_PH qPH2_130 2 233 3.13 9.37 50.59 1.88 0.36 S2_81807776 S2_139435119

qPH3_230 3 5 8.87 8.69 1.84 −0.13 S3_230439536 S3_228551502

qPH3_227 3 10 7.61 9.52 −1.96 0.02 S3_228551502 S3_226806334

qPH3_137 3 215 3.63 3.91 −0.33 −1.60 S3_137679135 S3_136337566

qPH4_210 4 71 4.95 8.85 −1.72 −0.56 S4_213777313 S4_210692761

qPH6_87 6 204 7.23 7.45 −1.91 0.52 S6_89123242 S6_86182651

qPH7_170 7 10 3.96 3.80 −1.15 0.25 S7_172496672 S7_170251440

qPH7_130 7 106 3.91 3.97 1.16 −0.09 S7_136855242 S7_128139766

qPH8_143 8 137 4.18 4.29 1.25 −0.35 S8_142011621 S8_144367600

qPH8_140 8 144 7.96 7.73 −1.73 −0.37 S8_144367600 S8_138521503

qPH8_100 8 243 3.53 4.89 −1.46 0.20 S8_101670845 S8_98766563

qPH8_5 8 457 4.11 4.40 −1.22 −0.11 S8_5319373 S8_2288877

WS_PH qPH9_120 9 134 3.11 6.15 8.27 1.74 0.75 S9_122035076 S9_112333377

qPH9_80 9 245 3.21 5.82 −0.77 −0.19 S9_86530554 S9_64295850

F3 pop 3 LapostaSeqF71 × CKL5009

WW_PH qPH1_246 1 338 3.35 11.10 42.77 −2.52 −1.71 S1_245744980 S1_248615699

qPH1_275 1 433 3.45 4.24 −1.30 −1.17 S1_276683320 S1_275032102

qPH3_213 3 143 3.11 7.74 −2.18 0.04 S3_213548502 S3_212501788

qPH4_132 4 334 3.89 4.24 −1.57 0.32 S4_131701338 S4_134995001

qPH5_180 5 108 6.22 7.05 −2.18 −0.61 S5_182032257 S5_180440672

qPH6_08 6 275 4.00 4.46 −1.74 0.28 S6_8143156 S6_5442499

qPH7_24 7 162 3.95 5.50 1.91 −0.44 S7_24795707 S7_23352528

qPH8_90 8 317 3.83 5.43 −0.22 2.87 S8_95129491 S8_85101441

qPH8_65 8 340 8.89 12.34 −2.97 −0.20 S8_38701797 S8_65781214

qPH8_65 8 348 13.57 17.37 3.20 0.31 S8_65781214 S8_64174106

WS_PH qPH1_245 1 329 3.71 2.89 58.35 0.11 −1.26 S1_241001627 S1_245744980

qPH1_245 1 336 7.43 8.43 1.49 0.00 S1_245744980 S1_248615699

qPH1_250 1 342 10.80 9.29 −1.56 −0.13 S1_248615699 S1_253109076

qPH2_210 2 141 3.16 4.21 −0.23 −1.47 S2_212803577 S2_201799296
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heritability estimates for GY and EH were low to high for both WW 
and WS conditions. High heritability estimates indicate the potential 
for traits to be  improved through recurrent selection processes 
(Gowda et al., 2021; Ndlovu et al., 2022). High broad-sense heritability 
estimates hint at the possibility of even greater narrow-sense 
heritability, suggesting the feasibility of achieving substantial genetic 
advancement for these traits. We also found that the broad sense 
heritabilities of all studied maize traits at individual population levels 
decreased under WS conditions compared to WW conditions. This 
was consistent with studies by Chen et  al. (2023) and Zhao et  al. 
(2019), who also presented lower heritabilities for traits under 
WS conditions.

For genotypic variance, statistical significance at p ≤ 0.05 was 
observed for all traits (Table 2). Genotypic variance decreased for GY 
and PH under WS. A study by Badu-Apraku et al. (2017) on early 
white maize in Nigeria also reported a decreased GY heritability and 
magnitude of genotypic variance under WS conditions. G × E 
interaction variance was also significant (p ≤ 0.05) for all traits in 
pop 1 and pop 2 indicating the substantial variation observed in terms 
of the performance of genotypes in different environments. We also 
observed significant negative correlations between GY and other 
yield-related traits in both WW and WS conditions (Figure 2). This 
suggests adopting a cautious approach when trying to improve 
multiple traits simultaneously under both WW and WS conditions.

4.2 Multiple QTLs identified for 
well-watered and water-stressed 
environments

Linkage mapping in three bi-parental maize populations identified 
multiple QTLs for GY, PH, EH and ASI under WW (93) and WS (41) 
conditions. Previous studies have also found multiple QTLs for 
WS-related traits and GY in maize (Sanguineti et al., 1999; Li et al., 
2016; Zhao et al., 2018; Abdelghany et al., 2019; Zhao et al., 2019; Hu 
et  al., 2021; Sarkar et  al., 2023). Although previous studies have 
identified QTLs and genes associated with improved GY and related 
traits, untapped maize populations probably harbour additional 
genetic variations. In our study, QTL analyses in individual bi-parental 
populations identified 22, 18, 49 and 45 QTLs for GY, ASI, PH and 

EH, respectively. The highest number of QTLs was identified in pop 3 
(n = 60) and pop  2 (n = 43) under WW and WS conditions, 
respectively. Notably, four QTLs were identified for GY under WS 
(qGY4_70 (Chr. 4), qGY2_215, qGY2_185 (Chr. 2), and qGY1_195 
(Chr. 1)). Under both WW and WS environments, GY-associated 
QTLs were distributed across all chromosomes except chr 6 and 7 
(Table 3). Agrama et al. (1999) found genomic regions associated with 
WS tolerance on chromosomes 1, 3, 5, 6 and 8. Hu et  al. (2021) 
reported QTLs on chromosomes 3, 5, 7 and 10 for yield-related traits 
under different water regimes. Comparison of QTL detected across 
populations revealed several common genomic regions across 
populations, like two QTLs, qGY1_199 in pop 1 and qGY1_195 on 
pop 3 were overlapped at 190–200 Mbp on chromosome 1 (Table 3). 
Another QTL for GY on chromosome 4 (qGY4_70) detected on pop 2 
overlapped with QTL (qGY4_60) detected on pop 3. For ASI, one QTL 
(qASI4_175) was detected in both pop  2 and pop  3 under WW 
conditions (Table 4). For PH, one QTL (qPH8_130) detected under 
WS was located within the region of the QTL (qPH8_145) detected 
under WW management (Table 5). These genomic regions are most 
interesting to know their role in trait improvement and bring most of 
these favourable alleles into elite lines through marker-assisted 
selection. In the case of ASI, nine QTLs each were identified under 
WW and WS conditions. In both water regimes, chromosome 3 did 
not harbour any QTLs for ASI. Significant QTLs with major effects 
(explaining more than 10% of the phenotypic variance) were identified 
for GY (qGY6_89) and ASI (qASI1_107) under WS conditions.

The absence of QTLs associated with GY and related traits on 
certain chromosomes in our analysis, compared to previous studies, 
highlights the complex interplay of genes and environmental pressures 
that significantly shape QTL identification in tropical maize. The 
observed disparities can be attributed to distinct maize populations 
and growing/management conditions employed (Ndlovu et al., 2024). 
This further emphasizes the need to consider these prevailing 
interactions when investigating genetic influences on maize traits 
under WS conditions.

Linkage mapping uses variation within a population whereas 
JLAM is known to explore variations both within and across 
populations. This allows JLAM to detect new QTLs which are not 
detected through individual linkage mapping. In our study, among 
the 25 QTLs detected for GY under WW conditions, only two 

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

qPH3_05 3 559 6.92 5.29 0.96 0.99 S3_8122530 S3_3525325

qPH4_214 4 146 9.69 9.49 −0.94 1.76 S4_215105658 S4_213777313

qPH4_135 4 341 3.07 2.51 −0.70 0.12 S4_134995001 S4_136178733

qPH5_180 5 106 9.90 8.52 −1.37 −0.76 S5_182032257 S5_180440672

qPH6_140 6 52 3.89 3.17 −0.86 −0.13 S6_143755461 S6_140908415

qPH6_140 6 59 5.08 4.94 1.08 0.08 S6_140908415 S6_138562829

qPH6_10 6 297 9.49 7.81 −1.41 −0.05 S6_6901831 S6_10346160

qPH7_95 7 268 4.29 6.61 1.36 0.24 S7_98849992 S7_94238156

qPH8_65 8 353 17.66 15.68 1.92 0.32 S8_65781214 S8_64174106

LOD, logarithm of odds; Add, additive effect; Dom, dominance effect; PVE, phenotypic variance explained; PH, plant height; WW, well-watered; WS, water-stressed. The exact physical position 
of the SNP can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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TABLE 6 Number of QTLs associated with ear height under well-watered and water-stressed conditions detected in three F3 populations.

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

F3 pop 1 CML543 × CML444

WW_EH qEH2_25 2 74 4.10 4.99 42.07 1.52 0.73 S2_26004514 S2_24257802

qEH4_165 4 259 5.88 7.78 2.00 −0.09 S4_165637692 S4_166866479

qEH6_90 6 65 5.08 6.67 −1.86 0.94 S6_90931126 S6_86257555

qEH6_160 6 376 6.05 14.00 −2.64 −1.17 S6_156878226 S6_167594329

qEH8_70 8 314 13.63 20.00 3.19 −1.01 S8_69119155 S8_72750921

qEH8_65 8 321 11.65 18.50 −3.19 −0.65 S8_72750921 S8_59316871

WS_EH qEH8_130 8 180 9.29 17.82 15.98 −3.09 −1.30 S8_130328693 S8_131340896

F3 pop 2 CML543 × LapostaSeqF71

WW_EH qEH2_55 2 348 5.85 4.85 58.97 −1.23 −0.42 S2_55249812 S2_50644503

qEH3_227 3 6 3.77 4.33 1.29 −0.34 S3_228551502 S3_226806334

qEH3_220 3 17 6.62 7.78 −1.57 −0.71 S3_226806334 S3_212501788

qEH3_170 3 108 8.52 7.74 −1.66 0.22 S3_171639585 S3_169577878

qEH3_150 3 183 5.15 3.90 −1.24 −0.18 S3_153858200 S3_148833306

qEH5_200 5 322 3.24 3.08 −1.01 −0.18 S5_196508562 S5_201580291

qEH5_205 5 333 5.34 4.44 1.27 −0.08 S5_201580291 S5_207514182

qEH7_171 7 8 7.98 13.01 −2.16 −0.19 S7_172496672 S7_170251440

qEH7_88 7 233 5.62 4.24 −1.08 −0.61 S7_87193242 S7_88803418

qEH8_143 8 136 7.41 5.94 1.47 −0.51 S8_143280651 S8_142011621

qEH8_143 8 143 5.07 5.35 −1.44 −0.42 S8_142011621 S8_144367600

qEH8_115 8 200 8.67 7.46 1.70 −0.59 S8_118858352 S8_114638748

qEH8_114 8 208 10.19 8.58 −1.84 −0.63 S8_114638748 S8_111824358

qEH6_16 9 307 4.85 3.93 −1.09 −0.51 S9_16728498 S9_15608594

F3 pop 3 LapostaSeqF71 × CKL5009

WW_EH qEH1_200 1 216 4.45 6.07 48.83 −0.12 −2.85 S1_199640380 S1_200910153

qEH3_213 3 137 3.64 4.95 1.68 −0.06 S3_213548502 S3_212501788

qEH3_212 3 148 8.37 9.72 −2.29 −0.38 S3_212501788 S3_206481439

qEH5_181 5 108 6.03 6.12 −2.03 0.12 S5_182032257 S5_180440672

qEH7_24 7 162 6.57 8.69 2.29 −0.60 S7_24795707 S7_23352528

qEH7_95 7 168 5.94 9.03 −2.26 −0.54 S7_23352528 S7_95431651

qEH8_144 8 89 3.66 4.95 −1.68 0.18 S8_146891047 S8_144367600

qEH8_144 8 94 3.23 3.78 1.45 −0.24 S8_144367600 S8_143280651

qEH8_40 8 339 8.80 9.23 −2.41 1.11 S8_43051270 S8_38701797

qEH8_40 8 345 8.63 11.40 2.38 1.25 S8_38701797 S8_65781214

qEH10_145 10 52 3.39 8.59 −2.07 −0.10 S10_140851297 S10_149390708

WS_EH qEH1_225 1 298 4.82 5.91 60.37 −1.44 0.38 S1_225033350 S1_229482334

qEH3_214 3 126 5.19 4.80 −1.30 0.36 S3_214830240 S3_213548502

qEH4_230 4 113 3.19 5.15 0.86 1.57 S4_225687739 S4_231141298

qEH5_180 5 109 10.71 8.69 −1.90 −0.22 S5_180440672 S5_167276704

qEH6_140 6 52 3.63 2.87 −1.02 0.19 S6_143755461 S6_140908415

qEH6_140 6 63 3.80 2.95 −1.03 0.08 S6_140908415 S6_138562829

qEH6_140 6 372 4.27 4.40 −1.59 −2.69 S6_155235957 S6_122406660

qEH7_165 7 5 5.23 5.08 −0.62 −1.86 S7_167104322 S7_164828478
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QTLs (qGY3_208 and qGY4_70) overlapped with QTLs detected 
through linkage mapping. JLAM analyses revealed 25 and 4 QTLs 
under WW and WS conditions for GY, respectively, which were 
distributed across all chromosomes and individually explained 
0.8–11.8% of the phenotypic variance (Table  7). JLAM results 
indicated that GY is controlled by many minor effect genes, as 
shown in low PVE for each QTL (Table 7). However, we found one 
major effect QTL on chromosome 6 (qGY6-89) which explained 
11.8% of phenotypic variation and was found overlapping with the 
PH QTL (qPH6-87) on pop  2 (Tables 5, 7). Because of limited 
recombination events during population development, linkage 
mapping identifies the genomic region with 10-20 cM intervals. On 
the contrary, JLAM identifies the single marker which is closely 
linked to the causative gene for the trait of interest. Two QTLs 
(qGY3_208 and qGY4_70) detected through JLAM overlapped 
with the QTL detected in linkage mapping helped to reduce the 
confidence interval of the QTLs and may even be closer to the 
causal variant responsible for GY. On the other hand, a comparison 
of QTLs detected across WW and WS conditions revealed no 
common QTL for GY, PH and EH. On the contrary, we found four 
QTLs for ASI (qASI1_234, qASI8_22, qASI9_105 and qASI9_108) 
were consistently detected across WW and WS regimes. ASI is 
critical in hybrid breeding, specifically in commercial seed 
production and also in drought-prone regions for good seed 
setting. Therefore, these genomic regions are important to achieve 
synchrony in flowering time in diverse management.

4.3 Genomic prediction accuracies under 
different water regimes

Genomic prediction demonstrated its usefulness in maize 
breeding by facilitating the rapid selection of superior genotypes. 
This was achieved by using molecular markers which help to capture 
maximum favourable alleles for various traits of interest. Breeding 
for drought tolerance is resource and time-intensive. Genomic 
prediction offers an alternative and complementary tool to achieve 
high selection efficiency with optimum resources (Beyene et  al., 
2015, 2019, 2021; Atanda et al., 2021). Several studies reported that 
genomic-prediction-based models are effective in identifying better-
performing genotypes for GY and other agronomic and disease 
resistance traits (Crossa et al., 2017; Sitonik et al., 2019; Ertiro et al., 
2020; Kibe et al., 2020a; Gowda et al., 2021; Ndlovu et al., 2022; 
Kimutai et al., 2023; Ndlovu et al., 2024). The effectiveness of GS 
compared to traditional phenotypic selection plays a significant role 

in determining its likelihood of adoption in breeding programs 
(Beyene et al., 2019; Kibe et al., 2020b). In our study, the moderate 
to high levels of prediction accuracy observed across the bi-parental 
populations hold the potential for enhancing breeding efforts to 
improve WS tolerance in tropical maize germplasm. The same trends 
were observed in previous studies which reported moderate to high 
accuracies for GY and related traits under WS (Dias et al., 2018; 
Zhang et  al., 2022). The moderate to high prediction accuracy 
we report here indicates that the methodology used is reliable in 
predicting the performance of GY and related traits in bi-parental 
maize populations under different water regimes. This reliability 
enhances the effectiveness of breeding for WS tolerance programs 
by enabling the selection of genotypes for desired traits 
more efficiently.

Combining the three populations and forming the training set 
and testing set from the total populations resulted in substantial 
improvement in the prediction accuracy (Figure 3). This was due 
to the increase in the population size of the training set and the 
high relatedness between training and testing sets. Unlike other 
traits, GY exhibited a negative prediction accuracy for drought 
tolerance in population 2 under within-within and across-within 
prediction scenarios (Figure 3). Similar results were also reported 
for prediction among biparental populations of maize 
(Riedelsheimer and Melchinger, 2013; Sitonik et  al., 2019) and 
sugar beet (Würschum et al., 2013). Mismatched alleles between 
markers linked with WS tolerance in pop 2 could explain the 
negative prediction accuracy. Moreover, low genotypic variation 
and heritability for GY response to WS conditions might have 
also contributed.

Under WW management, the prediction accuracy for GY was 
0.67, 0.58 and 0.57 in the within-within scenario for pop 1, pop 2 and 
pop 3, respectively (Figure 3). In scenario 2, a training population 
combining individuals from three populations achieved prediction 
accuracies of 0.56, 0.59 and 0.44 for pop 1, pop 2 and pop 3, 
respectively (Figure 3). Though there is a reduction in accuracy for 
scenario 2, the recorded accuracies are still comparable to those of 
phenotypic selection. The recorded moderate to high prediction 
accuracies likely stems from the shared parentage between the studied 
maize populations. Breeding for WS tolerance remains a challenging 
task. While the reported prediction accuracies indicate some success 
in achieving this goal, they still fall short of those achievable through 
phenotypic selection. However, since it’s possible to fit three maize 
cycles per agricultural calendar (Beyene et al., 2019), GS is expected 
to get a similar or higher genetic gain over phenotypic selection in the 
coming years. For ASI, PH and EH, accuracies are relatively high 

QTL 
name

Chr Position 
(cM)

LOD PVE 
(%)

TPVE 
(%)

Add Dom QTL confidence interval

Left SNP Right SNP

qEH7_160 7 24 3.14 2.88 −0.84 −0.97 S7_161855642 S7_154741580

qEH7_25 7 161 6.50 7.45 1.74 −0.12 S7_28818246 S7_24795707

qEH7_25 7 167 4.87 3.70 −1.21 0.17 S7_23352528 S7_95431651

qEH8_144 8 90 4.08 4.21 −1.22 −0.45 S8_144367600 S8_143280651

qEH8_65 8 351 16.06 14.23 2.21 0.63 S8_65781214 S8_64174106

LOD, logarithm of odds; Add, additive effect; Dom, dominance effect; PVE, phenotypic variance explained; GY, grain yield; WW, well-watered; WS, water-stressed. The exact physical position 
of the SNP can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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which clearly supports the usefulness of GS in their improvement 
under both WW and WS conditions.

5 Conclusion

The negative impact of drought on maize production has been 
profound, significantly impairing the livelihoods and food security of 
millions of people in SSA. Drought tolerance, an important trait, can 
play a vital role in mitigating the yield losses caused by drought in 
smallholder maize farming systems. Here, we investigated the genetic 
parameters (i.e., heritabilities and genetic-based variances), mapped 
QTLs for WS tolerance and assessed the potential of using GS in 
bi-parental maize populations evaluated under WW and WS 

conditions in Kenya and Zimbabwe. For these genotypes, broad sense 
heritabilities were low to high and genetic variances were significant 
for the studied traits. For GY, these parameters were decreased under 
WS. According to our QTL mapping results, WS tolerance in maize is 
controlled by multiple genes with small effects. Several QTLs identified 
in this study were found to be overlapping across different analyses 
and with earlier studies. The genomic regions consistently detected 
more than one population and/or traits that are promising and need 
to be prioritised for inclusion in marker-assisted recurrent selection. 
This is vital in our efforts to increase favourable alleles in selected elite 
maize germplasm. The specific genomic loci identified in this study 
can also be  used in selecting for improved GY and related trait 
performances under WS conditions. Additionally, our results 
demonstrated that incorporating GS into maize breeding for WS 

TABLE 7 Analysis of GY-associated markers under well-watered and water-stressed conditions, allele substitution (α) effects, and the total phenotypic 
variance (R2) of the joint linkage association mapping based on combined three F3 populations.

WW_GY QTL name chr Position (Mbp) α-effect p value PVE (%)

S1_42012727 qGY1_42 1 42.01 −0.19 6.46E-06 1.00

S1_99283222 qGY1_99 1 99.28 0.3 2.20E-06 1.10

S1_262175904 qGY1_262 1 262.18 −0.24 1.37E-06 1.10

S2_204872338 qGY2_205 2 204.87 −0.15 5.23E-07 1.20

S2_208974622 qGY2_209 2 208.98 0.13 7.87E-06 0.90

S3_114352108 qGY3_114 3 114.35 0.13 4.96E-05 0.80

S3_207898219 qGY3_208 3 207.9 −0.33 3.16E-11 2.10

S4_38028976 qGY4_38 4 38.03 −0.22 4.26E-10 1.90

S4_69920709 qGY4_70 4 69.92 −0.26 3.01E-05 0.80

S4_152397975 qGY4_152 4 152.4 0.2 6.01E-07 1.20

S4_231141298 qGY4_231 4 231.14 −0.22 4.28E-09 1.60

S4_232139676 qGY4_232 4 232.14 −0.17 2.16E-05 0.80

S5_190481535 qGY5_191 5 190.48 0.15 2.06E-05 0.90

S5_199231742 qGY5_199 5 199.23 −0.19 6.35E-07 1.20

S5_206027675 qGY5_206 5 206.03 0.14 4.63E-05 0.80

S6_96673215 qGY6_97 6 96.67 −0.21 9.23E-08 1.40

S6_112123594 qGY6_112 6 112.12 0.27 1.56E-05 0.90

S6_124667680 qGY6_125 6 124.67 −0.31 1.27E-05 0.90

S6_158689057 qGY6_159 6 158.69 −0.22 3.30E-08 1.50

S6_162690530 qGY6_163 6 162.69 −0.15 1.42E-05 0.90

S8_115294871 qGY8_115 8 115.3 −0.26 2.92E-10 1.90

S8_173704036 qGY8_173 8 173.7 0.22 4.48E-19 3.90

S9_143177138 qGY9_143 9 143.18 0.16 5.61E-07 1.20

S10_88396836 qGY10_88 10 88.4 0.23 2.23E-09 1.70

S10_100028254 qGY10_100 10 100.03 0.14 3.05E-07 1.20

WS_GY

S5_16303706 qGY5_16 5 16.3 0.13 3.93E-13 4.30

S6_29639026 qGY6_30 6 29.64 0.07 3.26E-05 1.40

S6_89403767 qGY6_89 6 89.4 −0.29 2.96E-31 11.80

S7_99206507 qGY7_99 7 99.21 0.12 5.46E-12 3.90

*Chr, Chromosome; PVE, proportion of phenotypic variance explained; GY, grain yield; WW, well-watered; WS, water-stressed; Mbp, Mega base pairs. The exact physical position of the SNP 
can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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tolerance can effectively complement traditional phenotypic selection. 
In addition, future research should also prioritize the validation of the 
QTLs identified in this study to further improve the efficiency of 
WS-tolerance maize breeding efforts in SSA.
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TABLE 8 Analysis of ASI-associated markers under well-watered and water-stressed conditions, allele substitution (α) effects, and the phenotypic 
variance (PVE) of the joint linkage association mapping based on combined three F3 populations.

WW_ASI QTL name chr Position (Mbp) α-effect p value PVE (%)

S1_219379659 qASI1_219 1 219.38 0.19 8.64E-05 1.3

S1_233633174 qASI1_233 1 233.63 0.24 3.31E-06 1.2

S1_234787174 qASI1_234 1 234.79 0.48 4.08E-13 7.0

S2_9982799 qASI2_10 2 9.98 0.23 3.78E-05 0.5

S3_44094305 qASI3_44 3 44.09 0.38 1.52E-09 0.5

S3_48807819 qASI3_49 3 48.81 −0.52 3.08E-08 3.1

S5_39671048 qASI5_40 5 39.67 0.17 5.88E-05 1.1

S5_69514509 qASI5_70 5 69.52 0.85 8.23E-12 0.1

S5_70773399 qASI5_71 5 70.77 −0.75 3.37E-09 4.9

S7_117541299 qASI7_118 7 117.54 −0.18 1.40E-05 2.1

S8_19830105 qASI8_20 8 19.83 −0.29 2.82E-08 0.7

S8_21847291 qASI8_22 8 21.85 0.36 2.14E-07 1.1

S8_113714982 qASI8_114 8 113.72 −0.23 2.20E-06 2.9

S8_141395117 qASI8_141 8 141.40 −0.33 7.21E-05 0.7

S9_104993163 qASI9_105 9 104.99 0.49 8.85E-11 0.5

S9_108293552 qASI9_108 9 108.29 0.24 3.98E-05 4.5

WS_ASI

S1_48660741 qASI1_49 1 48.66 −0.19 1.24E-05 1.7

S1_100991498 qASI1_101 1 100.99 1.68 3.27E-12 4.4

S1_105951838 qASI1_106 1 105.95 0.99 2.00E-06 2

S1_106498930 qASI1_107 1 106.50 −2.66 6.85E-27 10.9

S1_188742138 qASI1_189 1 188.74 0.20 2.67E-05 1.6

S1_234787174 qASI1_235 1 234.79 0.29 1.57E-06 2

S3_39217617 qASI3_39 3 39.22 0.27 5.61E-05 1.4

S6_92390840 qASI6_92 6 92.39 0.22 9.03E-05 1.4

S6_154887691 qASI6_155 6 154.89 −0.29 2.03E-13 4.9

S7_124507887 qASI7_125 7 124.51 −0.33 1.31E-07 2.5

S7_173489659 qASI7_173 7 173.49 0.29 7.12E-06 1.8

S8_21847291 qASI8_22 8 21.85 0.30 1.11E-06 2.1

S8_142370328 qASI8_142 8 142.37 −0.24 9.85E-05 1.3

S9_104993163 qASI9_105 9 104.99 0.33 4.12E-05 1.5

S9_108399137 qASI9_108 9 108.40 −0.45 4.77E-06 1.9

*Chr, Chromosome; PVE, proportion of phenotypic variance explained; GY, grain yield; WW, well-watered; WS, water-stressed; Mbp, Mega base pairs. The exact physical position of the SNP 
can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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TABLE 9 Analysis of PH and EH-associated markers under well-watered and water-stressed conditions, allele substitution (α) effects, and the 
phenotypic variance (PVE) of the joint linkage association mapping based on combined three F3 populations.

WW_PH QTL name chr Position (Mbp) α-effect P value PVE (%)

S3_172198924 qPH3_172 3 172.20 −2.10 6.11E-07 1.8

S4_38288565 qPH4_382 4 38.29 −5.36 4.10E-28 9.4

S4_60360208 qPH4_60 4 60.36 5.73 9.81E-13 3.8

S4_202224476 qPH4_202 4 202.22 −2.23 5.27E-07 1.8

S5_4303244 qPH5_04 5 4.30 −2.04 3.12E-05 1.3

S5_29809776 qPH5_30 5 29.81 1.36 7.42E-04 0.8

S5_178925335 qPH5_179 5 178.93 −1.97 1.10E-04 1.1

S8_117747254 qPH8_118 8 117.75 −2.14 1.17E-05 1.4

S8_132202657 qPH8_132 8 132.20 −4.23 6.22E-10 2.8

S9_23759221 qPH9_24 9 23.76 −1.59 8.34E-04 0.8

S9_139761585 qPH9_140 9 139.76 1.77 1.96E-04 1.0

S10_2839563 qPH10_03 10 2.84 −1.64 3.07E-05 1.3

WS_PH

S2_30548333 qPH2_31 2 30.55 2.28 1.90E-05 4.6

S5_200649357 qPH5_201 5 200.65 1.16 1.36E-03 0.8

S6_160675816 qPH6_161 6 160.68 1.60 9.70E-05 1.7

S7_2292978 qPH7_02 7 2.29 2.28 1.84E-05 8.5

S8_21847291 qPH8_22 8 21.85 −2.73 9.31E-06 0.2

S8_107231702 qPH8_107 8 107.23 −1.77 9.49E-05 4.0

S8_124937569 qPH8_125 8 124.94 1.86 5.34E-03 0.7

WW_EH

S2_212803577 qEH2_213 2 212.80 −3.25 1.41E-09 2.9

S2_219293267 qEH2_219 2 219.29 −4.74 2.86E-15 4.9

S3_3204077 qEH3_03 3 3.20 1.23 3.32E-03 0.7

S4_164095194 qEH4_164 4 164.10 6.50 1.93E-18 6.2

S5_33980430 qEH5_34 5 33.98 5.39 9.93E-13 4.0

S7_25812716 qEH7_26 7 25.81 1.41 1.14E-03 0.8

WS_EH

S1_45928305 qEH1_46 1 45.93 −0.83 5.08E-03 0.4

S1_279913054 qEH1_280 1 279.91 −1.74 2.30E-03 0.9

S1_283431481 qEH1_283 1 283.43 −1.78 2.14E-04 0.3

S1_286399533 qEH1_286 1 286.40 −3.01 8.78E-09 3.6

S2_178096547 qEH2_178 2 178.10 −0.89 2.27E-03 0.8

S2_204467855 qEH2_204 2 204.47 0.96 2.28E-03 0.2

S4_232139676 qEH4_232 4 232.14 −1.25 1.24E-04 5.1

S5_200649357 qEH5_201 5 200.65 1.09 2.68E-04 0.8

S6_35061159 qEH6_35 6 35.06 2.78 3.18E-04 1.2

S6_88731794 qEH6_89 6 88.73 −2.53 4.50E-04 5.0

S6_159257304 qEH6_159 6 159.26 1.44 7.69E-06 4.8

S6_167688609 qEH6_168 6 167.69 3.15 2.91E-10 3.3

S7_2292978 qEH7_03 7 2.29 2.29 2.88E-06 6.3

S8_21847291 qEH8_22 8 21.85 −3.35 2.27E-13 1.1

*Chr, Chromosome; PVE, proportion of phenotypic variance explained; GY, grain yield; WW, well-watered; WS, water-stressed; Mbp, Mega base pairs. The exact physical position of the SNP 
can be inferred from the marker’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
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