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Drought, one of the major abiotic stresses affecting plants, is characterized by a decrease

of water availability, resulting in a decrease of the water potential (9) of the cells. One

of the strategies of plants in resisting to this low 9 and related stresses is regulating

their water-plant relation and the interplay between 9solutes and the turgor pressure

(9p). This regulation avoids the dehydration induced by low 9 and is resulting from the

accumulation of specific molecules which induce higher tolerance to water deficit and

also other mechanisms that prevent or repair cell damages. In plants, fructans, the non-

structural carbohydrates (NSC), have other physiological functions than carbon reserve.

Among these roles, fructans have been implicated in protecting plants against water

deficit caused by drought. As an efficient strategy to survive to this abiotic stress, plants

synthesize fructans in response to osmotic pressure in order to osmoregulate the cellular

flux, therefore, protecting the membrane damage and maintaining 9p. Although different

studies have been conducted to elucidate the mechanisms behind this strategy, still the

concept itself is not well-understood and many points remain unclear and need to be

elucidated in order to understand the causal relation between water deficit and fructans

accumulation during water scarcity. This understanding will be a key tool in developing

strategies to enhance crop tolerance to stressful dry conditions, particularly under the

changing climate prediction. This review aims to give new insights on the roles of fructans

in the response and resistance of plants to water deficit and their fate under this severe

environmental condition.
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INTRODUCTION

Fructans have a history of more than two centuries and some review articles have reported some
historical aspects on fructans research (Meier and Reid, 1982; Pontis and Del Campillo, 1985;
Pollock and Cairns, 1991). Prior to this exciting contemporary science, ancient peoples have
been using fructans-containing plants as food, feed, and medicine. Indeed, the modern history
of fructans began with their discovery by Rose (1804), and this history has known at the turn of
the twentieth century considerable development when Edelman and Jefford proposed for the first
time the mechanism of their metabolism in higher plants (Edelman and Jefford, 1964, 1968). More
recently, fructans research has known a considerable progress particularly with the advancements
of molecular biology moving fructans research from basic to applied science. Briefly and from the
chemical and structural points of view, fructans are polyfructosylsucroses of varying molecular size
build on a sucrose starter unit and are biochemically designated by 1F (1-β-D-fructofuranosyl)n
sucrose oligomers where n may vary depending on their types and degree of polymerization in
different plant species (Figure 1).
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FIGURE 1 | Molecular structures of the different types on fructan polymers found in higher plants.

Fructan polymers are found in c.a. 15% of flowering plants,
and the type and degree of polymerization vary with the
species. In Asteraceae, inulin-type fructans of different degree of
polymerization have been identified (Banguela and Hernández,
2006). For example, in chicory and Jerusalem artichoke low
DP ranging from 10 to 30 units are found (Ernst et al., 1995;
Vergauwen et al., 2003; Monti et al., 2005), while higher DP
up to 200 units have been found in globe artichoke (Frehner
et al., 1984). In contrary, in Monocot plants species such as
Alliaceae, Asparagaceae, and Agavaceae more complex fructans
are synthesized like inulin neo-series, and other branched types
(see Figure 1). For example, in onion and garlic (Alliaceae) and
asparagus (Asparagaceae) species, inulin and inulin neo-series
are found ranging from 9 to 12 units in onion (Shiomi, 1989;
Benkeblia and Shiomi, 2006), from 10 to 30 units in garlic (Das
and Das, 1978; Baumgartner et al., 2000), and from 12 to 22
units in asparagus (Shiomi, 1993). In Agavaceae, another fructan-
containing species, different types of fructan polymers were
reported. Inulin type was found to be the principal fructan in
Agave americana, however, inulin neo-series and other branched
fructan types were identified in Agave vera cruz and Agave
tequilana (Aspinall and Das Gupta, 1959; López et al., 2003).

As storage reserve, fructans are accumulated during the
growth stage of the sink, then are catabolized during the regrowth
and the development. However, fructans were found to have
functions other than carbon storage: they have been implicated
in protecting plants against water deficit or low temperature,
inducing resistance to drought or cold stress/freezing (Hendry,
1993; Hendry and Wallace, 1993; Vijn and Smeekens, 1999) and
as osmoregulators (Hendry, 1993; Livingston and Henson, 1998;
Hincha et al., 2000). Although their metabolism and enzymes
compartmentation have been elucidated (Frehner et al., 1984;
Wagner andWiemken, 1986), the molecular mechanisms behind
their putative physiological roles still remain unclear.

Physiologically, fructans accumulate in plants as long-term or
short-term carbohydrates reserve and are remobilized during the
sprouting or regrowth. They are stored either in underground
organs such as roots and tubers, or in stems, tiller bases and
leaf sheaths (Incoll et al., 1989; Bancal et al., 1992; Morvan-
Bertrand et al., 2001; Ranwala and Miller, 2008; Joaquim et al.,
2014). Beside these roles, some studies have shown that fructan
polymers might also be involved in the regulation of osmosis
during flower opening (Le Roy et al., 2008), and the protection of
plants against abiotic stresses (Hincha et al., 2003). In addition to
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these roles, some studies also investigated the possible alterations
of the fructans pool and the photosynthetic responses of plants.
For example, the depression of the photosynthesis did not affect
the levels and fructans and the high DP pool wasmaintained even
though mono- and disaccharide pools were affected (Marschall
et al., 1998; Thomas and James, 1999; Marschall, 2010). In a
similar study on different varieties of wheat and chicory, the
depression of photosynthesis did not affect the accumulation of
fructans, although hexoses pool was negatively correlated to the
photosynthesis rate (Martínez-Carraseo et al., 1993; Monti et al.,
2005).

As carbohydrate reserve, fructans are remobilized during
regrowth of ryegrass (Chalmers et al., 2005; Trethewey and
Rolston, 2009), cereals (Iannucci et al., 2016), or sprouting of
onion (Pollock and Lloyd, 1994; Shiomi and Benkeblia, 2005;
Yasin and Bufler, 2007), asparagus (Suzuki et al., 2013), and
Jerusalem artichoke (Luo et al., 2018). Unlike in bacteria and
fungi where two fructan hydrolases -one exo- and one endo-
types- are found, different studies have demonstrated that in
plants only the fructan exohydrolases (FEHs) releasing fructose
units have been identified (Edelman and Jefford, 1968). These
enzymes are supposed to not only breakdown fructans, but some
evidences have shown they might play roles in plants signaling
and defense (Van den Ende et al., 2004).

In general, plants are affected by biotic (e.g., resistance to
diseases, parasites, insects, and weeds) or abiotic [e.g., better
adaptation to heat, drought, salinity, acidity, heavy metals,
waterlogging, and nutrient (especially nitrogen and phosphorus)
availability)] stresses (Shao et al., 2008, 2009; Jahangir et al.,
2009). Consequently, biotic and abiotic stresses cause significant
losses in crops and productivity (Dita et al., 2006). Globally, the
recent studies are predicting that water deficit or drought will
increase in severity with the rising temperatures by 2100 (IPCC,
2019a). The effects of climate change will be reflected by either
acute or chronic impacts associated with variable precipitation
events and longer periods of drought. Africa will be among the
most affected regions and yields of major crops will decrease
significantly by more than 50% in 2050 and might reach 90% in
2100 for the major crops (Li et al., 2009; IPCC, 2019b). Therefore,
improving water use efficiency (WUE) of crops is an imperative
and needs to be addressed urgently, as this plant trait is seen
as one of the most important solutions in addressing water
scarcity and drought (Eslick and Hockett, 1974; Hamdy et al.,
2003; Tuberosa and Salvi, 2006). On the other hand, there is a
pressing need to improve WUE of either rain-fed or irrigated
crops and breeding new varieties with optimal WUE by using
either conventional breeding or molecular engineering seems to
be the most environmentally friendly and sustainable solution to
face water shortage and drought caused by climate in the future
(Chaerle et al., 2005). However, prior to develop new crops or
improve WUE of plants, we need to understand and decipher all
the mechanisms developed by plants to face drought and their
strategies to survive during short- and long-term dry periods.
Indeed, plants encounter many unfavorable growth conditions
including drought as one of the major abiotic environmental
stress which limit their growth and development (Krasensky and
Jonak, 2012). From the biological point of view, abiotic stresses

includemultiple ones, however, water deficit constitutes likely the
major abiotic factor affecting plants (Sharma and Lavanya, 2002).

Under water scarcity, the biological roles of water as solvent,
transporter, electron donor, and evaporative coolant were well-
demonstrated to be impaired by environmental conditions
(Hsiao, 1973; Bohnert et al., 1995). Nevertheless, sensitivity
of plants to water deficit varies with the species and their
responses to this abiotic stress, and therefore, they encoded
different capabilities in their perception, signaling, and response
to drought (Zhu, 2002; Shinozaki and Yamaguchi-Shinozaki,
2007; Shanker et al., 2014). Thus, plants respond to low water
availability by modifying the concentration, composition, and
distribution of the primary and secondary metabolites (Almeida
et al., 2020). Within the context of climate change and the
prediction of higher frequency of drought in many regions
of the world, the challenge of metabolomics is to profile the
widest range of primary and secondary metabolites that are
present within plants during drought, and the comprehensive
analysis shall reflect the exact biological fate of the plant system
at both a defined developmental stage and under drought
stress (Bowne et al., 2012). Experimental research and several
biochemical studies reported that drought stress induce the
accumulation of different metabolites in vascular and non-
vascular plants (Bohnert and Jensen, 1996), and identifying
the mechanisms underlying plant resilience to water deficits
(Chaves and Oliveira, 2004), understanding carbon sequestration
by plants per unit of transpired water (Condon et al., 2004) and
the regulatory networks and specific metabolites involved in crop
drought tolerance (Valliyodan and Nguyen, 2006) need to be
further investigated.

This review aims to give recent and new insights on the roles
of fructans in plants resistance to water deficit and their resilience
to dry conditions. This review will also report recent evidences
on the drought-protecting role of fructans and the mechanisms
triggering these roles at organ and cellular levels.

HOW DO PLANTS RESPOND TO
DROUGHT STRESS?

In response to water scarcity, plants have developed different
but efficient mechanisms to adapt to this abiotic stress by
activating resistance mechanisms at molecular and tissue levels.
These mechanisms are multiple and metabolic adaptation, and
regulation andmolecular responses by triggering the biosynthesis
of specific metabolites, are one of the most important of these
multiple mechanisms (Seki et al., 2007; Nishizawa et al., 2008;
Gargallo-Garriga et al., 2014; Fàbregas and Fernie, 2019).

Water deficit causes a reduction of the photosynthesis rate
in the leaves and a decrease in the diffusion of atmospheric
CO2 to the carboxylation site of RUBISCO (Flexas et al., 2004),
and the decrease in the diffusion of CO2 is resulting from the
stomatal closure (Chaves et al., 2003). The closure of stomata
is likely the first response to water deficit and is mediated
by ABA one the first phytohormones playing major roles in
mediating plants response to stresses and synthesized in response
to drought (Yoshida et al., 2014). ABA is known to trigger first the
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cascade of drought signaling (Urano et al., 2009; Lim et al., 2015;
Shang et al., 2016; Li et al., 2017), and was shown to promote
fructans accumulation by inducing further the expression of
the 1-FFT (Fructan:fructan 1-fructosyltransferase) and 1-SST
(Sucrose:sucrose 1-fructosyltransferase) genes in agave (Suárez-
González et al., 2014). Indeed, drought stress is more complex
that it seems, and plants’ capacity to trigger physiology processes
allowing tolerance to face drought stress are still not well-
elucidated (El-Sayed et al., 2014). Although extensive literature is
readily available on dehydration stress in a wide range of species,
drought resistance still remains a complex mechanism and
metabolomics techniques are one of the most used approaches
to decipher this mechanism. On the other hand, the biosynthesis
of protecting and stress-induced metabolites are induced by
the expression of numerous stress-responsive genes in order to
re-establish homeostasis and slowing down energy consuming
processes which in turn induce tolerance to abiotic stress (Taylor
et al., 2000; Hummel et al., 2010; Skirycz and Inzé, 2010;
Seiler et al., 2011). By reducing energy consumption, carbon
assimilation is redirected to activate protective mechanisms and
stress-protecting metabolites among them fructans (Pilon-Smits
et al., 1995; Van den Ende and Valluru, 2009; Keunen et al., 2013).

More generally, the induction of the production of stress-
protecting metabolites or osmoprotectants is triggered by
a cascade of signals starting by the induction of many
genes expression involved in water scarcity response. Indeed,
metabolites profiling and biology system studies have been good
approaches for understanding the pathways of the molecular
system mediating drought stress (Bowne et al., 2012). Different
metabolomics studies showed that carbohydrates were among the
most increasedmetabolites in response to drought stress (Rolland
et al., 2006; Obata and Fernie, 2012; Ullah et al., 2017), and the
levels of carbohydrates synthesis increases with the drought stress
severity (Todaka et al., 2017).

DROUGHT STRESS AND FRUCTANS
ACCUMULATION

One of the biochemical responses of plants to drought is the
biosynthesis of non-structural carbohydrates (NSC) as osmo-
protectants and adjusting the osmotic pressure by synthesizing
osmo-protectants to avoid cell dehydration (Muller et al., 2011;
Hou et al., 2018). Although not specific to fructans, the roles
of the osmo-protecting molecules consist of stabilizing the cell
membranes and cellular proteins from the denaturating effects
of drought (Yancey, 1994). Additionally, osmo-protectors are
thought to have many other roles like restoring the cellular redox
by scavenging the reactive oxygen species (ROS), and balancing
osmosis in order to preserve turgor, resulting in stabilization of
protein and cellular structures (Pinhero et al., 1997; Zhu et al.,
2003; Li et al., 2013). Among the accumulated metabolites as
osmo-protectors, numerous carbohydrates, including fructose,
sucrose, trehalose, raffinose, and fructans that are of high
solubility, have been shown to accumulate in response to the
increase in the osmotic pressure resulting from the dehydration
(Rook et al., 1998; Nishizawa et al., 2008; Valluru and Van
den Ende, 2008). The causation of fructans accumulation and

drought stress was established by using plants transformed with
bacterial fructosyltransferase genes (Cairns, 2003; Khan et al.,
2015). In the 1990s, Pilon-Smits et al. (1999) used SacB gene
from Bacillus subtilis to produce fructans in tobacco (Ebskamp
et al., 1994; Pilon-Smits et al., 1995), potato (Van der Meer
et al., 1994), and sugar beet (Pilon-Smits et al., 1999) which
accumulated fructans under drought-induced condition and
increased their resistance to water deficit. Studies carried out on
the effects of drought on fructans biosynthesis in fructans non-
accumulating and transformed plants using genes of fructans-
accumulating plant species have also showed similar results.
Wheat-derived genes encoding fructans biosynthesis enzymes
were transferred into tobacco plants which synthesized fructans
under drought-induced stress (Bie et al., 2012). He et al.
(2015) isolated a Psathyrostachys huashanica sucrose:fructan-6-
fructosyltransferase (Ph-6-SFT) and transferred it into tobacco
(Nicotiana tabacum L.). By comparing the wild to the transgenic
tobacco plants, they noted that the transformed plant exhibited
a much higher tolerance of drought and this tolerance was
associated with the accumulation of carbohydrate suggesting this
approach might be applied as a genetic tool for improving stress
tolerance in other crops. Similarly, the isolation of the fructan:
fructan 1-fructosyl-transferase (1-FFT) gene from Jerusalem
artichoke and its overexpression in the leaves of transgenic
tobacco increased their fructans biosynthesis under simulated
drought (Sun et al., 2020). In non-transformed plants, the
response and accumulation of fructans in response to drought
stress was first reported by Virgona and Barlow (1991) who
observed that turgor of wheat stem was maintained with
an increase in NSC. Later, other research reported similar
results on drought-induced fructans biosynthesis in chicory (De
Roover et al., 2000), wheat (Zhang et al., 2015; Hou et al.,
2018), Vernonia herbacea (Garcia et al., 2011), and lettuce
(Blanch et al., 2017).

However, these numerous studies did not elucidate the
mechanisms of how fructans contribute to enhancing
drought stress tolerance either in the transformed plants
which accumulate low level of fructans or non-transformed
plants which accumulate significant levels of these osmo-
regulators. On the hand, the mechanism by which these
osmolytes provide protection is still unclear and not
completely understood (Ramanjulu and Bartels, 2002;
Du et al., 2004; Reddy et al., 2004; Arbona et al., 2013;
Fedotova, 2019), although it is hypothesized that fructan
polymers might act by regulating water potential, signaling
molecules and/or ROS scavengers, therefore, affecting the
metabolism of plants under drought conditions (Bolouri-
Moghaddam et al., 2010; Van den Ende, 2013; Ahmad et al.,
2020).

FRUCTANS METABOLISM AS DROUGHT
PROTECTIVE MECHANISMS

Demel et al. (1998) first suggested an interesting in-vitro
model on the protective role of fructans during drought. From
the results of their experiment, the authors suggested that
fructans cause a very large increase in surface pressure of lipid
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monolayers, hence hypothesizing that lipid condensation and
phase transitions might be prevented by membrane-fructan
interaction, thus inducing the drought protective effect. Later, a
similar model of the protective effect of fructans on liposomes by
assessing their stability during either air draying or drying and
rehydration was suggested (Hincha et al., 2002, 2007). Results
showed that low DP 3, DP 4, and DP 5 fructans exhibited
higher protective action by preventing leakage of a soluble
marker from liposomes and liposome fusion. The same study
is however suggesting that this protective action of fructans
depends on their size and origin, and their compartmented
protective properties might differ significantly compared to
the purified fractions (Hincha et al., 2007). Getting a deeper
insight into the mechanism of this protective effect on the
cellular membrane during dehydration, different fructans have
been tested on phosphatidylcholine-basedmodel systems. Results
clearly showed that inulin-type fructans protected the membrane
barrier and inhibited vesicle fusion by their presence between the
lipid bilayers during drying, thus, confirming their membrane-
protecting role during dehydration (Vereyken et al., 2003).
Indeed, the protective action of fructans was attributed to their
capacity to insert between the lipids of the membrane. The
hypothesis of the membrane stabilization by fructans during
drought is based on their capacity of binding lipid molecules
forming a glass, therefore, reducing the movement of the
membrane molecules and this pseudo-rigidity is behind their
protective effects (Hinrichs et al., 2001; Vereyken et al., 2003).

Another inevitable consequence of drought response in plants
is the production of reactive oxygen species (ROS) and this
production is linked to ABA signaling (Cruz de Carvalho,
2008; Hasanuzzaman et al., 2014; Kaur and Asthir, 2015;
Hussain et al., 2019). This excess production of ROS known
as oxidative burst, is one of the responses of plants to drought
triggering defense reaction in plants. Under drought stress,
the induction of ROS-generating systems or attenuated ROS
scavenging is associated with the damaging oxidative effect and
the modifications of cell biomolecules leading the disruption of
cellular homeostasis, causing damages to cell and even its death
(Mittler, 2017; Janku et al., 2019). Consequently, plants developed
two main strategies to control excessive ROS production and
reducing cell damages. The first detoxification strategy is
achieved by a complex enzymatic system including numerous
enzymes such as superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), and glutathione reductase (GR;
Noctor and Foyer, 1998). The second detoxification strategy is
achieved by some primary and secondary metabolites possessing
antioxidant and scavenging properties such as ascorbic acid,
glutathione, carotenoids, tocopherols, and phenolic compounds
(Noctor and Foyer, 1998; Isah, 2019). Therefore, this capacity
to maintain an antioxidant activity by scavenging ROS has
been associated to tolerance of plants to drought and other
abiotic stresses as well (Sharma et al., 2012; Noctor et al.,
2014). From the biochemical point of view, the metabolic
compartmentation of ROS are the chloroplasts, mitochondria,
and peroxisomes under light condition, while under darkness,
the mitochondria are the main compartment of ROS production
(Choudhury et al., 2014). Consequently, during environmental

stresses an overproduction of ROS in plants due to disruption
of cellular homeostasis, triggers undesirable processes such as
lipids peroxidation, proteins oxidation, damage to nucleic acids,
enzymes inhibition, and even programmed cell death (PCD)
activation ultimately leading to death of the cells [Sharma et al.,
2012; see Hasanuzzaman et al. (2020)]. Enhanced production
of ROS has also been shown to increase the production
of malondialdehyde (MDA) considered as an indicator of
oxidative damage and a marker-metabolite of membrane lipid
peroxidation (Moller et al., 2007; Ayala et al., 2014; Morales and
Munné-Bosch, 2019).

Interestingly, numerous studies have reported the antioxidant
(AOA) power of sugars (Faraji and Lindsay, 2004; Couée et al.,
2006; Cherkas et al., 2020) by quenching ROS and contributing
to stress tolerance (Bolouri-Moghaddam et al., 2010), and this
AOA activity seems to be enhanced when sugars interact with
phenolic compounds (Faraji and Lindsay, 2004; Lončarić et al.,
2018). More interestingly, fructans were also reported to possess
antioxidant properties in vitro (Stoyanova et al., 2011; Peshev
et al., 2013; Pasqualetti et al., 2014).

Fructans, and other sugars as well, have been shown to
be better ◦OH radical scavengers in comparison with O◦

2 −

(Stoyanova et al., 2011). Since plants do not possess an enzymatic
◦OH scavenging mechanisms, high concentrations of non-
enzymatic antioxidants mechanism are used to neutralize ROS
(Gechev et al., 2006). Furthermore, in-vitro studies demonstrated
good ROS scavenging properties of fructans (Peshev et al., 2013),
and similar reactions are thought to occur in planta, especially
at higher concentrations (Uemura and Steponkus, 2003). This
capacity of fructans for capturing ROS in a wide range of stresses
was also highlighted by the study of Nemati et al. (2018) who
noted an increase of fructans accumulation accompanied by
increased OH radical scavenging activity in 4-day-old seedlings
of wheat during drought stress.

Although numerus studies have demonstrated themembrane-
protecting roles of the antioxidant activities of fructans, two
questions remain yet to be fully answered. Since fructans are
synthesized and stored in the vacuolar compartment (Darwen
and John, 1989), the first question is how fructans polymers are
transported from the vacuole to reach the plasma membrane?

The first clue to explain the solutes flux out of the
vacuole is the primary functions of many cells of roots,
tubers, and rhizomes to mobilize vacuolar components during
the regrowth because as a storage compartment, vacuole is
intimately involved in the export of the stored metabolites to
their final destination either cytosol or apoplast (Etxeberria
et al., 2012). Indeed, fructans are supposed to be transported
out of the vacuole similarly to sugars. Because of their
high concentration in the vacuole, solutes do not require
active transporters. Functional analyses of monosaccharide
transporters (Schulz et al., 2011) and sucrose-symporters
(Schneider et al., 2011; Schulz et al., 2011) showed the ability
of these transporters to efflux from the vacuolar compartment
under appropriate conditions and this efflux is controlled by their
concentration gradients. Therefore, it could be hypothesized that
fructans might be transported and channeled by their specific
transporter or passively through anion channels like other solutes

Frontiers in Sustainable Food Systems | www.frontiersin.org 5 March 2022 | Volume 6 | Article 827758

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Benkeblia Fructans and Drought Resistance

(Blumwald and Poole, 1985; van der Leij et al., 1998; Kataoka
et al., 2004; Poschet et al., 2011). However, this hypothesis
raises another question on the mode of action of these specific
transporters, although the evidence of glucose transporter
was reported in Arabidopsis (Poschet et al., 2011), further
investigation is needed to elucidate the mode of actions of
the potential transporters of fructans and this hypothetical
transport pathway.

The second question is related to the ability of fructans
to scavenge ROS. Although the question remains yet unclear
and the scavenging mechanisms of ROS by sugars not clearly
established. Nevertheless, from the chemical and biochemical
points of view different studies established the association
between soluble sugars accumulation and ROS induced by the
high photosynthetic rate in the source leaves (Scarpeci and Valle,
2008; Van den Ende and Valluru, 2009), and similarly sugars
starvation also induced ROS accumulation (Couée et al., 2006).
On the other hand, sugars have also been found to interact
with secondary metabolites known for their strong scavenging
power and antioxidants capacities (Bolouri-Moghaddam et al.,
2010; Peshev et al., 2013). A study conducted in vitro showed
that sugars might act jointly with the phenolic compounds in
ROS detoxification and the cytosolic antioxidant mechanisms
(Van den Ende and El-Esawe, 2013). However, many studies
suggest that sugars have direct role in ROS scavenging, but
they also act indirectly by triggering other pathways such as the
oxidative-pentose phosphate pathway (OPP) which in turnmight
trigger ROS scavenging (Debnam et al., 2004). Nevertheless,
direct or indirect ROS-detoxification roles of sugars including
fructans make a strong consensus, and a synergetic interaction
between sugars and phenolics form a valuable part of the
redox system contributing significantly to abiotic stress tolerance.
Nevertheless, the chemical and biochemical mechanisms behind
these actions remain still unclear and not clearly elucidated,
therefore, requiring further investigation.

FRUCTANS METABOLISM AS CELLULAR
MECHANISM OF DROUGHT ADJUSTMENT

Under drought conditions, higher plants were reported to
decrease their photosynthetic rate consequently to the decrease
of leaf water potential and relative water content (Lawlor
and Cornic, 2002), however, there is still a controversy on
whether drought limits photosynthetic CO2 assimilation through
stomatal closure or by metabolic impairment in C3 plants
(Bunce, 1988; Flexas and Medrano, 2002; Lawson et al., 2003).
The different studies are suggesting that the decrease in the
photosynthesis rate is caused by stomatal closure in the earliest
response of plants at mild to moderate drought, while the
downregulation or inhibition of metabolic processes leading to
a drastic decrease of RUBISCO is the response of plants to sever
drought (Flexas and Medrano, 2002).

On the other hand, it is well-established that sugar
metabolism is controlled by phytohormones, specifically abscisic
acid (ABA) which is the principal regulator of enzymes and
transcript involved in the synthesis pathways and accumulation
of carbohydrates including fructans (Van Den Ende et al.,
2002; Trouverie et al., 2003; Yang et al., 2004). Indeed, the

hormonal regulation of fructans-metabolizing enzymes was first
suggested by Bausewein et al. (2012), ABA appears to positively
affect reserve of carbon storage in plants and promoting the
accumulation of fructans by increasing gene expressions of 1-
FFT and 1-SST (Suárez-González et al., 2014; Gasperl et al.,
2016). For example, application of exogenous ABA induced an
increase of fructans in chicory (Wei et al., 2016), however, in a
recent study Mohammadi et al. (2021) reported on the hormonal
interaction mechanisms for fructan content and their degree of
polymerization (DP). Interestingly, the authors noted that inulin
DP increased by an application of exogenous ABA which also
interacted by changing and adjusting the effect of auxin (AUX)
and ethylene (ETH) hormones. Using chicory as plant model,
Michiels et al. (2004) have also demonstrated the response of 1-
FEH to ABA and other plant growth regulators, highlighting the
complexity of fructans metabolism and it’s the regulation.

For the stomatal point of view, the regulation of stomata is
complex, and its regulation varies with species and their response
to water potential and ABA signal, thus, the mechanisms of the
photosynthetic responses to drought is blurry (Liang et al., 1997;
Reddy et al., 2004). It was admitted that low water potential in
the soil triggers a root-to-leaf chemical (ABA) signal inducing
a decrease of water potential and relative water content (RWC)
in leaves (Epstein and Grant, 1973; Jones and Turner, 1978;
Siddique et al., 2000), triggering therefore stomatal closure, and
decrease in the photosynthesis rate (Downton et al., 1988; Cornic,
2000; Escalona et al., 2000).

Morphologically, drought was reported to decrease the rate
of leaf expansion by reducing the expansion of the existing cells
when root water potential decreases sharply (Munns and Sharp,
1993; Nelissen et al., 2018; Koch et al., 2019), while cell division
rate is slowed down under mild drought (Schuppler et al., 1998;
Tardieu et al., 2000).

From the metabolic point of view, the biosynthesis of solutes,
namely osmoprotectors, is one of the strategies of plants to
response and cope with osmotic stress resulting from drought.
In order to prevent water loss and maintain cell turgor, plants
accumulate numerous solutes, and fructans are one of these
major compounds which play a role in osmotic adjustment,
membrane protection and ROS scavenging (Pinhero et al.,
1997; Hare et al., 1998). Different studies reported the high
demand of osmolytes biosynthesis during drought with changes
in carbohydrate metabolism and fructans accumulation (Hare
et al., 1998; Xue et al., 2008; Ozturk et al., 2021), and interestingly
this accumulation even though accompanied by a decrease
in the photosynthesis rate, might increase yields of crops
(Serraj and Sinclair, 2002). However, the mechanisms of solutes
accumulation and osmotic adjustment are not fully understood,
one of the hypotheses is that since drought reduces cell division
and expansion, fructans accumulate because there are not
consumed in growth although no evidence of ‘competition’
between growth and osmotic adjustment for metabolites was
noted (Thomas, 1990). This observation agrees with the findings
of Garcia et al. (2011) who reported an increase of fructans
synthesizing enzymes (1-SST and 1-FFT) and a decrease in
the fructans hydrolyzing enzymes (1-FEH) at the onset of
the reduction in soil water and leaf water potential. These
findings show well that fructan metabolism is undoubtedly
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thought to be involved in osmotic adjustment, and fructans are
indirectly contributing to this adjustment (Spollen and Nelson,
1994).

CONCLUSION AND FUTURE PROSPECTS

Water scarcity is one of the most important abiotic stresses
and might be a consequence of many events such as rainfall
deficit or high temperatures. This multidimensional stress is
associated to many physiological, biochemical, and molecular
changes and responses to drought stress. Indeed, plants depict a
wide range of responses drought stress and ability to withstand
water scarcity which differs from species to species. Thus, many
plants developed different mechanisms to better resist, cope
and even resile to or from drought, and fructans biosynthesis
is one of these developed biochemical mechanisms in order
to maintain cell homeostasis under water-scarcity conditions.
It is also well-established that occurrence of drought causes
the osmotic disturbance and oxidative stress, and fructans
have been demonstrated to play a role in counter-balancing
these adversities.

Beside the significant advances made on fructans and their
osmoprotective roles, and the various experimental approaches
tested to understand the biochemical and molecular mechanisms
behind these roles, yet numerous questions remain not answered.

For proper understanding of the physiological, biochemical
and molecular mechanisms of plants responses to drought
and the roles and fate of fructans during and after drought,
further investigations are needed. Among the major questions
we need to elucidate (i) why fructans content increase during
drought while photosynthesis decreases, (ii) how fructans are de-
compartmentalized from the vacuoles to protect the membrane,
(iii) what the mechanism of ROS scavenging by fructans
is, and (iv) last but not least how fructans interact with
phenolics to scavenge ROS. Indeed, different hypotheses have
been suggested to clearly answer these questions, but more
scientific evidences are need in order to clarify the blurry
picture we have. Obviously, modern technologies including
genomics, transcriptomics, proteomics and metabolomics might
be very useful in elucidating these mechanisms and pathways.
Consequently, with these techniques, it is likely possible
to develop a sophisticated and efficient network in crops
response to drought stresses and subsequently help significantly
in the improvement of drought-tolerance and productivity
of crops.
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