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The aim of this study was to show how maltose production residues can be

used to obtain natural pigments by Monascus ruber CCT 3802 in solid and

submerged cultures. The microbial growth and the colour and heat stability

characteristics of the pigments produced in both solid and submerged media,

with di�erent maltose syrup concentrations, were determined. The results

showed that the addition of maltose provided significant increases in the

velocity of microbial growth and production of red pigments. The highest

radial growth velocity ofMonascus ruber (0.1053mm h−1) was obtained when

cultivated in a medium containing 5g L−1 of maltose syrup, corresponding to

a 71.7% increase in growth as compared to the growth velocity in the control

medium. Using submerged fermentation, the culture medium containing 10g

L−1 of maltose syrup provided the greatest concentrations of red pigments

(14.54 AU510nm g−1 dry biomass) with an intense dark red colour, showing

that Monascus ruber CCT 3802 had the capacity to assimilate the substrate

and produce pigments. The red pigments produced in the cultures showed

good heat stability with activation energies of 13.735 Kcal mol−1.

KEYWORDS

microbial pigments, thermal stability, radial growth rate, monascus pigments,

Monascus ruber

Introduction

Colour is one of the first sensory attributes used when choosing food. Although

subjective, it is fundamental, since it influences consumer perception of other sensory

characteristics such as aroma, flavour and texture (Spence, 2019). The transformation,

modification and conservation operations applied during food processing cause changes

in the colour (Paakki et al., 2019; Mehmood and Zeb, 2020), such that the industries

have to intentionally add food additives such as dyestuffs to restore and/or highlight the

sensory characteristics.

The search for foods containing no artificial additives has resulted in an increased

production and application of natural pigments of vegetable, animal and microbial
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origin, to substitute the traditionally used artificial pigments

(Sudhakar et al., 2016; Sen et al., 2019), and production,

extraction and purification techniques have been developed

to increase the productivity and sustainability of the natural

pigments so obtained.

Pigment producing microorganisms can be cultivated

under controlled conditions, independent of the environmental

conditions (Kumar et al., 2015; Chatragadda and Dufossé, 2021).

They show faster cell multiplication, can assimilate various

substrates and nutrients and require little industrial area when

compared to animals and vegetables (Cardoso et al., 2017; Heer

and Sharma, 2017). Microbial pigments show greater light,

temperature and pH stability, and, in general, are easily dissolved

in water, to the contrary of vegetable origin pigments (Boo et al.,

2012; Ramesh et al., 2019).

The genus Monascus stands out amongst the pigment

producing microorganisms, producing yellow, orange and

red pigments amongst other molecules of industrial interest

(Seenivasan et al., 2020; Huang et al., 2021; Xu et al., 2021). These

microorganisms are traditionally used as dyes in fermented

foods, alcoholic beverages, rice, vegetables, meats and cheeses

in countries such as China, Taiwan, Thailand, Japan, Indonesia

and The Philippines (Ning et al., 2017; Sun et al., 2020; Xia et al.,

2021).

Pigment production by Monascus species is usually carried

out in solid media, but more recently the use of submerged

culture has shown promise, with advantages such as a higher

water content and more diluted nature of the culture medium

and ease in controlling the pH and temperature, as well as

guaranteeing nutrient homogeneity and having knowledge of

the microbial kinetics behaviour (Costa et al., 2020; Ramesh

et al., 2022; Liu et al., 2020).

The use of agro-industrial residues from the food industry

is an opportunity to reduce the costs of producing microbial

pigments (Usmani et al., 2020). Such substrates are attracting

more and more attention, aimed at implementing the

sustainability of industrial production (Costa et al., 2020), and

the use of by-products frommaltose production is an alternative

for microbial pigment production. The objective of the work was

the application of maltose residues to produce food pigments by

Monascus ruber CCT 3802 and the determination of the thermal

resistance of the pigments produced.

Materials and methods

Substrate

The maltose syrup used was donated by the Institute

of Biological Phosphates (IFB) (Goiânia, Goiás, Brazil), and

characterised according to Association of Official Analytical

Chemists (2012). The moisture content was determined in

an incubator (Tecnal TE-395, Piracicaba, Brazil) at 105◦C to

constant weight; the fixed mineral residue or ash content was

determined in a muffler (EDG Forno Economic, São Carlos,

Brazil) at 550 ◦C; the pH value using a potentiometer (Mettler

Toledo, Brasília, Brazil); the total protein content quantified

by the micro-Kjeldahl method with a conversion factor of 5.75

(Micro Kjeldahl Apparatus, Piracicaba, Brazil); the lipid content

using the Soxhlet method (Nalgon, Brasília, Brazil); and the

water activity (Aw) by direct reading in an Aqua Lab apparatus

(Decagon Aqua Lab 3TE, São Paulo, Brazil). The reducing

sugar content was determined using the 3,5-dinitrosalicylic acid

method according to Miller (1959). All determinations were

carried out in triplicate.

Microorganism

Monascus ruber CCT 3802 was obtained from the Tropical

Culture Collection of the André Tosello Foundation (Campinas,

São Paulo, Brazil) and maintained in malt extract agar (Nuclear,

Brazil). Both test-tube slopes and Roux jars were inoculated,

incubated at 30◦C for 7 days and then maintained at 4◦C.

Solid state cultivation

Radial growth

The radial growth velocity of Monascus ruber CCT 3802

colonies in MEA was determined in media containing different

maltose syrup concentrations (g L−1) (1.0; 2.5; 5.0; 10.0;

20.0 and 40.0). The culture media were autoclaved at 121◦C

for 15min, poured into 100mm diameter Petri dishes and

allowed to solidify before inoculation. The inoculum was

prepared by transferring three loopfuls of Monascus ruber

CCT 3802, cultivated in MEA slopes and then transferred to

Duran tubes containing 1mL of 0.2% (w/v) bacteriological agar

previously autoclaved at 121 ◦C for 15min, thus forming a

spore suspension. The solidified agar in the Petri dishes was

inoculated with the spore suspension with the aid of 1.4mm

sterile micropipette tips. The tips were immersed in the spore

suspension and then allowed to gently touch the centre of

the plate.

After inoculation, three streaks were drawn on the bottom

of the plate passing through the inoculation point. The plates

were incubated at 30 ◦C and the diameters of the Monascus

ruber CCT 3802 colonies measured every 24 h using a digital

calliper (Universal, SP, Brazil). The radial growth velocity of the

colonies cultivated in differentmaltose syrup concentrations was

determined from the slope of the linear regression presented in

Equation 1.

r(t) = a+ VRG×t

where, r(t) is the radius of the colony (mm); a is the linear

regression constant; VRG is the radial growth velocity (mm
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h−1) and t is the cultivation time (h). Each trial was repeated

five times.

Pigment extraction and quantification

At the end of cultivation, the Monascus ruber CCT 3802

colonies were scraped from the MEA surface, placed in 100mL

conical flasks containing 30mL of 95% ethyl alcohol, and

incubated in a water bath (Spencer, São Paulo, Brazil) at 40
◦C with shaking at 100 rpm, for 2 h. The pigments were

obtained by filtration through Whatman no. 1 filtre paper

(Madiston, England) and submitted to scanning between 350

and 550 nm in a spectrophotometer. The yellow, orange and red

pigments were quantified at the wavelengths of 400, 470, and

510 nm, respectively.

Biomass quantification

TheMonascus ruber CCT 3802 colonies retained on the filtre

paper were placed in 250mL conical flasks containing 50mL

distilled water and autoclaved at 121◦C for 5min to completely

dissolve the malt extract agar. The biomass was obtained by

filtering through previously dried and weighed Whatman no.

1 filtre paper (Madiston, England), drying at 85◦C for 24 h,

cooling in a desiccator and weighing on an analytical balance.

All determinations were carried out in quintuplet.

Submerged cultivation

Culture medium and preparation of inoculum

The culture medium was composed of (g L−1): 5.0 glycine;

5.0 K2HPO4; 5.0 KH2PO4; 0.1 CaCl2; 0.5 MgSO4.7H2O; 0.01

FeSO4.7H2O; 0.01 ZnSO4.7H2O and 0.03 MnSO4.H2O. The

malt extract was added at concentrations of 10.0 to 50.0 g L−1.

The cultures were prepared in 500mL conical flasks containing

200mL culture media, and inoculated with 10% (v/v) of spore

solution (∼ 4 x 106 spores mL−1). The initial pH value was

adjusted to 6.5 using NaOH solutions and the flasks incubated in

an orbital shaker (NI 1714 Shaker, São Paulo, Brazil) at 30 ◦C and

120 rpm. The cultivations took a mean time of 192 h, and 15mL

aliquots were removed every 24 h to determine the quantities

of biomass, pigments and reducing sugars, and determine the

CIELAB parameters.

Pigment quantification

Fifteen millilitre aliquots of culture media were filtered

through Whatman no. 1 filtre paper (Madiston, England) and

the filtrate scanned from 350 to 550 nm in a spectrophotometer

(Cirrus 80, Piracicaba, Brazil). The yellow, orange and red

pigments were quantified at 400, 470, and 510 nm, respectively.

TABLE 1 Proximal composition of maltose syrup.

Component Composition

Moisture (%) 26.11± 0.23

Ash (g) 0.49± 0.12

Protein (g) 0.27± 0.31

Fat (g) 0.12± 0.01

Reducing sugars (g L−1) 70.10± 0.02

Results expressed on a dry basis.

FIGURE 1

Radial growth curves of the colonies of Monascus ruber CCT

3802 grown in di�erent concentrations of maltose.

Biomass quantification

Fifteen millilitre aliquots of culture media were filtered

through Whatman no. 1 filtre paper (Madiston, England). The

biomass retained was dried at 85◦C for 24 h, cooled in a

desiccator and weighed on an analytical balance.

Reducing sugar quantification

The reducing sugars were quantified in a spectrophotometer

(Moltox, São Paulo, Brazil) using the 3,5-dinitrosalicylic acid

method according to Miller (1959).

Determination of the colour parameters

The colour parameters L∗, a∗ and b∗ were determined by

a direct reading of the total transmittance in a colorimeter

(ColorQuest
R©

XE, HunterLab, Virginia, USA) using the

CIELAB colour system. The saturation index or Chroma (C∗)

and the hue angle (hab) were determined from equations 2 and

3, respectively:

C∗ = [(a∗)2 + (b∗)2]1/2

hab =tan−1(b∗/a∗)
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FIGURE 2

Visual aspect of the colonies of Monascus ruber CCT 3802 grown in di�erent concentrations of maltose syrup. (A) MEA; (B) 1.0 g L−1 of maltose

syrup; (C) 2.5 g L−1 of maltose syrup; (D) 5.0 g L−1 maltose syrup; (E) 10.0 g L−1 of maltose syrup; (F) 20.0 g L−1 of maltose syrup and (G) 40.0 g

L−1 of maltose syrup.

TABLE 2 Radial growth rate (VRG), equation of the colonies radius as a function of cultivation time, coe�cient of determination (R2), water activity

(Aw) and visual colour aspect of the colonies of Monascus ruber CCT 3802 grown in di�erent concentrations of maltose syrup.

Maltose syrup (g L−1) VRG (mm h−1) Equation R
2 Aw Visual aspect

MEA 0.0754± 0.0009c r = 0.0754× t + 1.4 0.9788 0.987± 0.032a Red

1.0 0.1004± 0.0086ab r = 0.1004× t + 1.4 0.9898 0.976± 0.023b Red

2.5 0.1006± 0.0059ab r = 0.1006× t + 1.4 0.9799 0.974± 0.123b Red

5.0 0.1053± 0.0017a r = 0.1053× t + 1.4 0.9857 0.976± 0.023b Red

10.0 0.0928±0.0090b r = 0.0928× t + 1.4 0.9842 0.969± 0.001c Red

20.0 0.0944±0.0027ab r = 0.0944× t + 1.4 0.9962 0.968± 0.021c Red

40.0 0.0947±0.0077ab r = 0.0947× t + 1.4 0.9882 0.965± 0.134c Red

VRG : Radial growth rate; r: colony radius (mm); t: time (h).
a,b,cMeans followed by the same letter in the column does not differ statistically from each other, by the Tukey test, at the (p ≤ 0.05) level of significance.

Thermal stability

The thermal stability of the red pigments was determined

in a 500mL jacketed glass flask containing 200mL of pigment

solution with the absorbance adjusted to 1 AU510nm. The

thermal degradation constant (DC) was determined using the

first order kinetic model expressed by equation 4.

dA/dt = −DC×t

where A is the absorbance (AU510nm), t the time (h) and DC

the thermal degradation constant (h−1). Equation 4 can be

linearized using the contour conditions: A=A0 when t=0 and

A=A when t=t; resulting in equation 5.

ln(A/A0) = −DC

where A is the absorbance at time t (AU510nm) and A0 is

the initial absorbance (AU510nm). The half-life time (t1/2) was

determined using equation 6, where A/A0 is equal to 2.

t1/2 = (ln2/Dc)

The activation energy (Ea) was determined using the Arrhenius

model as shown in equation 7.

Dc = D0×e−
(Ea/R×Te)

where Ea is the activation energy (Kcal mol−1), D0 the pre-

exponential factor (h−1),R the universal gas constant (cal mol−1

K−1) and Te the temperature (K). Equation 8 was obtained by

linearizing the Arrhenius model.

lnDc = −(Ea/RT)+ lnD0
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FIGURE 3

Scanning spectrum of pigments produced by the colonies of Monascus ruber CCT 3802 grown in di�erent concentrations of maltose syrup.

TABLE 3 Mean and standard deviation of the colour parameters of the pigments produced byMonascus ruber CCT 3802 grown in di�erent

concentrations of maltose syrup.

Maltose syrup (g L−1) Cielab

L* a* b* C* hab

MEA 48.675± 0.4596a 58.625± 0.55a 48.725± 0.50c 74.64±0.75b 38.33±0.04b

1.0 45.745± 0.3182a 60.38± 0.01a 50.49± 0.33bc 78.71± 0.20ab 39.90± 0.19b

2.5 49.65± 0.2545a 59.88± 4.65a 56.66± 4.42ab 82.44± 6.42ab 43.41± 0.00a

5.0 40.005± 0.4596b 68.06± 0.92b 59.38± 0.62a 86.62± 1.10a 44.27± 0.12a

10.0 39.41± 0.0141b 63.02± 0.02a 57.37± 0.02a 85.22± 0.03a 42.31± 0.00a

20.0 38.175± 0.007b 63.52± 0.01a 57.49± 0.05a 85.67± 0.04a 42.14± 0.02a

40.0 38.825± 3.640b 61.345± 1.97a 55.27± 0.72ab 82.58± 0.97ab 42.02± 1.29a

L* : luminosity (pure white to pure black); a* : intensity of green (-) and red (+); b* : intensity of blue (-) and yellow (+); C* : chromaticity; hab : hue angle.
a,b,cMeans followed by the same letter in the column does not differ statistically from each other, by the Tukey test, at the (p ≤ 0.05) level of significance.

The angular coefficient of the linear regression of the natural

logarithm of DC as a function of the inverse of the absolute

temperature (in Kelvin degrees) multiplied by the ideal natural

gas constant (1.987 cal mol−1 K−1), represents the value of the

activation energy.

Statistical analysis

The analysis of variance (ANOVA) was used to analyse the

data and the minimal significant differences determined using

Tukey’s test at a significance level of 5% (p<0.05) using the

software STATISTICA 7.1. The Microsoft Excel R© 2010 software

was used to elaborate the graphs.

Results and discussion

Table 1 shows the composition of the substrate used in the

experiments, characterised as high maltose content syrup (30 to

70 g L−1 of maltose). Figure 1 shows the radial growth curves

of the M. ruber colonies cultivated in solid media containing

different maltose syrup concentrations, and the visual aspect

of these colonies can be seen in Figure 2. There was a gradual
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FIGURE 4

Evolution of the cultivation of Monascus ruber CCT 3802 grown in di�erent concentrations of maltose syrup: (A) Biomass, (B) Reducing sugar

and (C) Absorbance units.
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TABLE 4 CIELAB colour parameters of the pigments produced byMonascus ruber CCT 3802 grown in di�erent concentrations of maltose syrup.

Maltose syrup (g L−1) CIELAB colour

L* a* b* C* hab

10.0 20.47± 0.12f 55.41± 0.33d 34.72± 0.25e 63.03± 0.13f 43.40± 0.82e

20.0 24.49± 0.09d 57.28± 0.07c 41.36± 0.24c 70.65± 0.20d 50.47± 0.34c

30.0 34.35± 0.44c 61.56± 0.46b 50.75± 0.14b 79.78± 0.45c 61.96± 0.47b

40.0 37.61± 0.36b 62.38± 0.09b 51.33± 0.14b 80.78± 0.01b 61.75± 0.43b

50.0 39.47± 0.19a 65.60± 0.21a 64.15± 0.08a 91.75± 0.21a 85.02± 0.36a

L* : luminosity (pure white to pure black); a* : intensity of green (-) and red (+); b* : intensity of blue (-) and yellow (+); C* : chromaticity; hab : hue angle.
a,b,cMeans followed by the same letter in the column does not differ statistically from each other, by the Tukey test, at the (p ≤ 0.05) level of significance.

FIGURE 5

Pigment production in shaken flasks in 192h of cultivation from Monascus ruber CCT 3802 cultures in shaken flasks in di�erent concentrations

of maltose syrup. (A) 20g L−1 of glucose; (B) 10g L−1 maltose syrup; (C) 20g L−1 maltose syrup; (D) 30g L−1 maltose syrup; (E) 40g L−1 maltose

syrup and (F) 50g L−1 maltose syrup.

increase in growth of the Monascus ruber CCT 3802 colonies

in the culture media containing maltose syrup as compared

to the control (p ≤ 0.05). The addition of 5 g L−1 of maltose

syrup resulted in higher radial growth velocities (0.1053 ±

0.0017mm h−1), representing an increase of 71.7% as compared

to the control trial (Table 2). The radial growth velocities of the

colonies cultivated in culture media containing 10 to 40 g L−1

of maltose syrup showed a slight reduction as compared to the

culture medium containing 5 g L−1, but still higher than that of

the control experiment. This behaviour can be explained by the

reduction in the water activity caused by the addition of more

maltose syrup.

The radial growth velocity of the colonies is an indication of

their capacity to assimilate and metabolise the nutrients present

in the culture medium. The Monascus species used by Oliveira

et al. (2016) presented radial growth velocities of 0.1383mmh−1

when cultivated in a medium containing malt bagasse, and the

species used by Carvalho et al. (2005) presented radial growth

velocities between 0.095 and 0.129mm h−1 when cultivated in

culture media containing rice and cassava.

The pigments produced by the Monascus ruber colonies

were extracted and quantified using a spectrophotometer and

the cells used to quantify the biomass. The scans showed

absorbance peaks in the regions of 400 and 510 nm, indicating

the presence of yellow and red pigments (Figure 3), results

corroborated by the results of the colour analysis shown in

Table 3. It can be seen that the pigments produced byMonascus

ruber cultivated in culture media containing maltose presented

smaller values for L∗ and larger values for a∗, b∗,C and hab when

compared to the control, showing that the addition of syrup, in

addition to increasing the pigment concentration, intensified the

red colour of the pigments.

Since the addition of maltose to the solid culture media

presented positive effects on the growth and red pigment

production, it was decided to study the behaviour of Monascus

ruber in submerged cultures. The cultures showed a 24-h lag

phase and pigment production was intensified between 48 and

120 h of cultivation, a behaviour justified by the fungus using the

carbon and nitrogen sources in the initial growth phase, whereas

the secondary metabolites were produced in the exponential and

stationary phases. The culture media containing 40 and 50 g L−1

of maltose showed higher biomass concentrations of 8.29 and

9.32 g L−1, respectively (Figures 4A,B), and higher absorbance

values were observed for the cultures developed in media
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FIGURE 6

ln(A/A0) of the red pigments produced in the submerged cultivation from Monascus ruber CCT 3802 as a function of the heat treatment time

under di�erent temperatures.

containing 10 and 20 g L−1 of maltose syrup, reaching values

of 14.54 and 12.47 AU510nm, respectively (Figure 4C). These

results demonstrate that the addition of maltose syrup presented

a significant effect on cell growth and pigment production, also

showing that concentrations of up to 20 g L−1 intensified the

production of pigments, even with smaller cell concentrations,

demonstrating greater pigment production specific velocities.

Jiefeng et al. (2010) obtained maximum biomass production

of 4.4 g L−1 and 1.6 AU of red pigments in flasks containing

glucose as the substrate, shaken at 120 rpm. Meinicke

et al. (2012) evaluated the potential of glycerol for the

production of red pigments by Monascus ruber in submerged

fermentation and obtained a maximum production of 7.38AU

with 8.34 g L−1 of biomass. Thus it was concluded that the

biotechnological production of molecules with greater value,

such as red pigments, is possible using agro-industrial residues

as the substrates.

Table 4 shows the CIELAB colour parameters of the

pigments produced by Monascus ruber CCT 3802 with

different maltose syrup concentrations, and Figure 5 shows

some images of the cultures. It can be seen that all the responses

increased with increase in maltose concentration, indicating a

positive effect on the pigment colour intensity. Smaller maltose

concentrations favoured the production of larger amounts of

pigments, but with less colour intensity.

The pigments produced in submerged culture were

submitted to a determination of their thermal stability by

TABLE 5 DC, t1/2 and Ea of the red pigments produced in cultivation

submerged byMonascus ruber CCT 3802 under di�erent heat

treatments.

Temperature (◦C) DC (h−1) t1/2 (h) Ea (Kcal mol−1)

50 0.0008± 0.022 14.440± 0.131 13.735

60 0.0018± 0.011 6.418± 0.210

70 0.0033± 0.032 3.500± 0.122

80 0.0058± 0.025 1.991± 0.023

90 0.0084± 0.121 1.375± 0.162

*Mean± standard deviation.

obtaining the thermal degradation constant (DC), half-life time

(t1/2) and activation energy (Ea). Figure 6 shows the behaviour

of ln (A/A0) as a function of the thermal treatment time at

each temperature applied, and Table 5 shows the responses

obtained for DC and t1/2. As expected, the exposure time

and increase in temperature showed an effect on the colour

degradation of the pigments according to a first order model,

with a linear coefficient between 0.97 and 0.99. The thermal

degradation constant of the pigments increased from 0.0008

h−1 at 50 ◦C to 0.0084 h−1 at 90 ◦C, showing an approximately

10-times increase. The experimental data were shown to adjust

to the Arrhenius model with an R2 of 0.9901 (Figure 7), and

an Ea of 13.7355 Kcal mol was obtained by multiplying the

angular coefficient of the linear regression by the ideal gas
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FIGURE 7

Activation energy (Ea) stimation of the pigments produced by Monascus ruber CCT 3802 in submerged culture by Arrhenius model.

constant of 1.987 cal mol−1 K−1. Levenspiel (1986) pointed

out that reactions with high activation energies are much more

temperature sensitive and that the Arrhenius model is the first

adequate approximation to determine the effect of temperature

on the kinetic equation, as well as adjusting the experimental

data well in a wide temperature range, a behaviour verified in

the present study.

The temperature, pH, presence of oxygen and other factors

interfere directly in the stability of natural pigments. Knowledge

and quantification concerning the action mode and intensity

of these factors would contribute to obtaining information

about the production conditions, extraction, conservation and

application of this molecule in a way that would maintain its

properties. Vendruscolo et al. (2013) developed stability studies

concerning the red pigments produced by Monascus sp. and

reported values for DC and t1/2 of 0.171 h−1 and 4.104 h,

respectively, when determined at 90 ◦C and pH 6.5, whereas

when determined at pH 4.5 the values were 0.947 h−1 and

0.739 h, indicating a reduction in the stability. This shows that

the pigments obtained in the present study were less susceptible

to thermal degradation. Similar behaviour was observed by Jung

et al. (2005) for red pigments and by Ou et al. (2009) for

monacolin k, both studies being developed withMonascus sp.

Conclusion

The addition of maltose syrup as a substrate exerted a

significant influence on the microbial growth and red pigment

production in both solid and submerged cultures, showing

that this substrate could be used to obtain pigments produced

by Monascus species. The results indicated that Monascus

assimilated the nutrients from the culture medium with the

production of red pigments in the two cultivation methods used.

The red pigments produced showed good thermal stability and

could therefore be applied in processes involving heating. The

red pigments produced in this study were less susceptible to

degradation at 90 ◦C than others reported in the literature.
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