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Nanotechnology emerged as a revolutionary technology in various fields of

applied sciences, such as biomedical engineering and food technology. The

pivotal roles of nanocompounds have been explored in various fields, such as

food protection, preservation, and enhancement of shelf life. In this sequence,

metallic nanoparticles (MNPs) are proven to be useful in developing products

with antimicrobial activity and subsequently improve the shelf life of agrifoods.

The major application of MNPs has been observed in the packaging industry

due to the combining ability of biopolymers with MNPs. In recent years,

various metal nanoparticles have been explored to formulate various active

food packaging materials. However, the method of production and the need

for risk evaluation are still a topic of discussion among researchers around

the world. In general, MNPs are synthesized by various chemical and physical

means, which may pose variable health risks. To overcome such issues, the

green synthesis of MNPs using microbial and plant extracts has been proposed

by various researchers. In this review, we aimed at exploring the green synthesis

of MNPs, their properties and characterization, various ways of utilizing MNPs

to extend their shelf life, and, most importantly, the risk associated with these

along with their quality and safety considerations.
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GRAPHICAL ABSTRACT

This figure is representation of nanoparticles synthesis and their application in food sector.

Introduction

In the modern era of industrialization, especially in the food

industry, the emergence of nanomaterials is gaining widespread

interest of researchers in the field of food nanotechnology. This

rapid emergence of nanotechnology in the food sector is due to

improved properties (mechanical resistance, diffusivity, optical

properties, and solubility) of materials formulated through these

nano-techniques, which led to their utilization in all stages of

the food chain, including processing, production, packaging,

storage, and transport (Bang et al., 2019). The estimated role

of nanotechnology in the shelf-life enhancement of agrifoods is

>40% of estimated food losses around the world. Brazil is the

largest producer as well as consumer of NPs (especially Ag NPs),

followed by India (Ijaz et al., 2020).

Although there are several techniques to enhance the shelf

life of agrifoods, such as modification of atmospheric gas

composition, mild heat treatments, combined gas atmosphere

treatments, and cold storage, these treatments are less efficient

and expensive to operate (Saravanakumar et al., 2020). Due to

this, NPs, particularly metallic nanoparticles (MNPs), became

a valuable class of nanoparticles owing to their key role in

preserving, protecting, and extending the shelf stability of foods

(Iderawumi and Yusuff, 2021). MNPs can assist in reducing

postharvest losses using active packing elements with enhanced

mechanical and gas permeation performances, which ultimately

influence the quality of agrifoods (Fadiji et al., 2022). Among

all the major strategies toward shelf-life enhancement of foods,

incorporation of MNPs into food packaging systems is a widely

accepted strategy that improves vital characteristics such as

mechanical properties, permeability (to atmospheric gases), and

antimicrobial activity, which tends tomaintain the freshness and

also enhances the shelf life of foods. On the other hand, MNPs

assist in the development ofmicrofluidic devices or nanosensors,

which are emerging as modern methods of food analysis (Couto

and Almeida, 2022).

Each technology has its pros and cons. Due to the enhanced

utilization of MNPs, various environmental and ecological

issues have originated due to its traditional system of synthesis,

which explores a variety of harmful chemicals. To overcome

these concerns, the synthesis route of metallic nanocomposites

should be altered. As a result, the green synthesis route of

NP production is gaining widespread attention worldwide

(Zhao et al., 2021). Green synthesis excludes toxic chemicals

and organic solvents as reducing agents and only allows

using biological systems (microorganisms and plant extracts)
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to synthesize NPs. Biological systems possess a variety of

biochemicals, including flavonoids, terpenoids, alkaloids, and

polyphenols, which are potent reducing agents and stabilizing

agents (Chi et al., 2019).

From these instances, it is clear that emerging metal

nanotechnology possesses both positive and negative impacts

and a wide range of applications from agriculture to food

processing and packaging. However, various types of safety

concerns may arise, especially regarding human health.

Therefore, complete information about safety and risk

associated with the use of MNPs in food systems is crucial.

Keeping these things in view, this review is designed to assess

the recent developments in the production and utilization

of MNPs, their properties, green synthesis technology, their

major roles in the shelf-life enhancement of agrifoods, and their

toxicity and health concerns.

MNPs: Synthesis, properties, and
characterization

Synthesis of MNPs

As mentioned earlier in this review, there is a remarkable

increase in nanotechnology tools owing to their widely use

in the field of food processing and preservation, etc. (Dikshit

et al., 2021); therefore, studying the mode of its synthesis is

more important. NPs are naturally occurring on earth since

their origin in soil, water, minerals, volcanic dust, etc. (Luzala

et al., 2022). In addition to their natural origin, NPs can

also be synthesized through several methods (chemical and

biological). In this sequence, there are two types of approaches

employed for the formulation of MNPs, that is, bottom-

up and top-down methods, which depends upon the initial

raw material. In the top-down approach, the large particulate

material is converted into nano-sized particles by mechanical

milling (dry/wet), laser ablation, and ion sputtering (Loza

et al., 2020). The aforementioned methods are easy to operate

but inadequate to reduce the particle size to very small.

Conversely, in the bottom-up approach, the formation of MNPs

is based on joining atoms and molecules to construct nano-

sized particles. Methods of the bottom-up approach include

electrodeposition, supercritical fluid precipitation, ultrasound,

and microwave-assisted techniques (Zhang et al., 2020). Hence,

physical methods belong to the category of the top-down

approach, while chemical and biological methods follow the

bottom-up approach for the NPs synthesis (Sharma and

Gupta, 2020). Among all, the biological processes of NP

synthesis are considered cheaper, simpler, and ecologically

safer as compared to chemical techniques (Dikshit et al.,

2021). Nevertheless, low production rates, expensive operations,

and high energy consumption are the major limitations of

physical processes. Chemical synthesis methods including

chemical reduction, electrochemical, microemulsion/colloidal,

and thermal decomposition are the traditional and most

widely used methods for the synthesis of MNPs. In the

chemical method, the chemical reduction of respective metal

salt (precursors) is carried out by adding particular reducing

agents to produce NPs. Various reducing agents, such as sodium

borohydride (Banne et al., 2017) and stabilizing agents, such

as dodecyl benzyl sulfate (Akbarzadeh and Dehghani, 2017)

and polyvinyl pyrrolidone (Pandey et al., 2018), are used for

the synthesis of NPs. The stability of NPs is also a major

concern for researchers. The science behind the stabilization

of NPs advocates the adsorption of high-molecular weight

compounds, which form a layer around the particle surface and

prevent aggregation among them (Couto and Almeida, 2022).

According to various researchers, the stability of NPs depends

on competition between weak van der Waals attractive forces

and electrostatic repulsion (Kowsalya et al., 2019). Resorcinol

is an interesting reductant as it can be used as both a reducing

and a stabilizing agent for the synthesis of NPs. The chemical

approaches are economical for large-scale production of NPs;

nevertheless, the use of toxic chemicals and the production of

harmful by-products cause environmental damage (Gupta and

Xie, 2018; Saratale et al., 2018). Due to these major concerns,

biological reductants are gaining widespread interest among

researchers for the fabrication of NPs and the synthesis of NPs

through biological means, which is also termed “green synthesis”

(Chopra et al., 2022).

Green synthesis of NPs

Nowadays, green synthesis of NPs is a widely used

technique as it is an energy-efficient technique for NP synthesis

(Shafiq et al., 2021). In addition, the synthesis of NPs using

microorganisms and plants is considered a cost-effective,

biologically safe, and eco-friendly substitute (Uzair et al., 2020).

It is also considered an important tool to reduce the adverse

side effects of NPs produced by traditional synthesis methods

(Mukherjee et al., 2021). In recent years, green synthesis is

becoming an exciting and upcoming technology possessing

a greater scope in the synthesis of NPs (Khanna et al.,

2019). For the green synthesis of NPs, bacteria, cyanobacteria,

actinomycetes, algae, fungi, and some higher plants are being

utilized (Figure 1) (Ramrakhiani and Ghosh, 2018; Mohamed,

2020). Particularly, the synthesis of NPs from plant extracts

is termed “phytosynthesis” (Ríos-Corripio et al., 2019). Plants

and microorganisms possess the ability to consume and

accumulate inorganic metal ions from their corresponding niche

(Zhang et al., 2020). In addition, these microbes and plants

contain various biochemicals (such as organic acids, alkaloids,

polysaccharides, vitamins, amino acids, terpenoids, flavonoids,

and polyphenols) that play an important role as reductants and

as stabilizers of metal ions (Patil et al., 2018). NPs produced

by biological processes possess a greater catalytic activity and
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FIGURE 1

Green synthesis of NPs using plant parts.

a larger surface area because of the improved contact between

reducing enzymes and the metal ion (Sharma et al., 2020).

However, green production of metal NPs is time-consuming

and requires practical microbiological experience to ensure cell

culture under aseptic conditions (Kumar et al., 2020). Several

studies have been conducted on the use of plants and microbes

for NP synthesis, as mentioned in Table 1.

Properties of NPs

As discussed previously, NPs possess altered physical and

chemical properties in comparison to their larger dimension

counterparts. The following sections explain the important

properties that we persuade at the nanoscale.

Mechanical properties

This section describes the most important properties

concerning the packaging development process. Mechanical

properties of NPs are a function of various other properties, such

as strength, hardness, toughness, plasticity, elasticity, rigidity,

and yield stress (Sun et al., 2000). Mostly, all the inorganic

and nonmetallic materials are brittle and do not possess

the required level of toughness, plasticity, and ductility. NPs

show differential mechanical properties owing to their surface

properties and quantum effects in comparison to bulk materials.

For instance, micro-sized FeAl (size >4µm) is brittle, and on

the other hand, the nano-sized FeAl alloy powder possesses

better strength, ductility, and plasticity (Pithawalla et al., 2001).

This happens due to the diverse interaction forces between NPs

and other surfaces. When the size of any particle decreases, the

surface forces start playing a major role in contact, adhesion,

and deformation.

Thermal properties

Heat transfer primarily depends on energy conduction due

to electrons and photons (Savage and Rao, 2006). Thermal

properties of nanomaterials are the function of thermal
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TABLE 1 Reported plants and microbes responsible for green synthesis of MNPs.

Nanoparticles Plants/Microbes Size (nm) References

Ag Eryngium planum 26–42 Dehghan et al., 2022

Ag Striga angustifolia 6.99 Raja et al., 2022

Ag Cissus quadrangularis 24 Kanimozhi et al., 2022

Au Jatropha integerrima Jacq. 38.8 Suriyakala et al., 2022

Cu Euphorbia falcata NA Motahharifar et al., 2020

Pd Hibiscus tiliaceus NA Nasrollahzadeh et al., 2018

Au Jahnula aquatica 8–60 Mohamed, 2020

Fe3O4 Punica granatum L. 21–23 Bouafia et al., 2022

Ag Letendraea sp.WZ07 33.8 Qiao et al., 2022

Ag Pleurotus sajor-caju 16.8 Musa et al., 2018

Ag Aspergillus sydowii 5–15 Wang et al., 2021

Ag Fusarium oxysporum strain NFW16 32.7 Ilahi et al., 2022

Ag Paenarthrobacter nicotinovorans 13–27 Huq and Akter, 2021

Au Streptomyces spp 78–80 Hassan et al., 2019

Zn Bacillus megaterium (NCIM 2326) 45–96 Saravanan et al., 2018

CO3O4 Red algae >30 Ajarem et al., 2022

Ag Cissus quadrangularis NA Pragathiswaran et al., 2021

Ag Piper nigrum, Ziziphus Spina-Christi and Eucalyptus globulus 8–35 Salih et al., 2020

Ag Brillantaisia patula, Crossopteryx febrifuga and Senna siamea 45–110 Kambale et al., 2020

Au Crassocephalum rubens 10–20 Adewale et al., 2020

Au Simarouba glauca <10 Thangamani and Bhuvaneshwari, 2019

Au Hygrophila spinosa 68 Satpathy et al., 2020

Au Croton Caudatus Geisel 20–25 Vijaya Kumar et al., 2019

Au Acorus calamus 10 Ganesan and Gurumallesh Prabu, 2019

Pd Rosmarinus officinalis 15–90 Rabiee et al., 2020

Pd Anogeissus latifolia 2.3–7.5 Kora and Rastogi, 2018

Pd and Au Daucus carota 20 Joseph Kirubaharan et al., 2020

Pd Camellia sinensis 5–8 Lebaschi et al., 2017

Ag, Cu and Pd Morus alba L. 50–200 Razavi et al., 2020

Cu Crotalaria candicans 30 Lotha et al., 2019

Cu Ziziphus spina-christi 5–20 Khani et al., 2018

Cu Syzygium aromaticum 15–20 Rajesh et al., 2018

Fe Oolong tea 30–100 Lin et al., 2020

Fe Moringa oleifera 2.6–6.2 Katata-Seru et al., 2018

Fe Trigonella foenum-graecum 7–14 Radini et al., 2018

Se Ocimum tenuiflorum 15–20 Liang et al., 2020

Se Murraya koenigii 50–150 Yazhiniprabha and Vaseeharan, 2019

Se Zinziber officinal 100–150 Menon et al., 2019

Ni Calotropis gigantea 60 Din et al., 2018

Ag Bacillus subtilis 3–20 Alsamhary, 2020

Ag Pantoea ananatis 91.31 Monowar et al., 2018

Au Bacillus subtilis 20–25 Srinath et al., 2018

Au Mycobacterium sp. BRS2A-AR2 5–55 Camas et al., 2018

Pt Jeotgalicoccus coquina ZC15 5.74 Eramabadi et al., 2020

Au Pleurotus ostreatus 10–30 El Domany et al., 2018

Ag Rhodotorula sp. strain ATL72 8–21 Soliman et al., 2018

Ag Rhodotorula glutinis and Rhodotorula mucilaginosa 15.5 Cunha et al., 2018

Se Magnusiomyces ingens 70–90 Lian et al., 2019
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conductivity, heat capacity, thermoelectric power, and thermal

stability, and the size of NP directly impacts the thermal and

the electrical conductivity of NPs. As their size decreases, the

ratio of their surface area to their volume increases (Andrievski,

2014). As the conduction of electrons is mainly responsible for

heat transfer, the higher surface-to-volume ratio provides an

increased amount of electrons for heat transfer in comparison

to the bulk (Qiu et al., 2020).

On the other hand, NPs exhibit a huge decrease in the

melting point (MP) of materials because the liquid–vapor

interface energy is lower than that of the solid–vapor interface

energy (Gülseren et al., 1995). As their size decreases, their

surface-to-volume ratio increases, and subsequently, the MP

drops down (Shim et al., 2002). For example, the MP of Au

NPs is lower than that of gold by 300 degrees. In addition, the

composition of NPs plays a paramount role in thermal stability.

For example, the thermal stability of gold NPs is higher than that

of pure gold (Mottet et al., 2005).

Catalytic properties

NPs also termed nano-catalysis as it induces enhanced

catalytic properties i.e., reactivity and selectivity as compared to

their normal analogous material. This property of NPs highly

depends on their shape, size, composition, oxidation state,

interparticle spacing, and support of the NPs. As the size of NPs

decreases, their catalytic activity becomes more prominent. On

the other hand, the shape of NP also affects its reactivity and

selectivity. The hemispherical shape of NPs was found more

functional than the spherical shape for the oxidation of CO by

Au NPs (Xu et al., 2006). The main reason for these alterations

in properties is the increase or decrease in catalytically active

surface facets (Henry, 2005). It has also been reported that the

use of alloys in NPs can improve their catalytic activity as alloys

can alter their electronic properties, decrease the poisoning

effect, and provide distinct selectivity (Cuenya, 2010).

Characterization of NPs

The MNPs possess improved characteristics such as high

plasmon excitation efficiencies, high surface energies, and

exceptional optical properties, and their physicochemical

properties mainly depend on free surface electrons (Couto

and Almeida, 2022). To monitor the proper synthesis and

incorporation of MNPs in the target matrix, several modern

techniques are deployed. The techniques employed to study

the properties and characteristics of NPs include dynamic

light scattering (DLS), the Brunauer–Emmett–Teller (BET)

method, atomic force microscopy (AFM), infrared and

UV-Vis spectrophotometry, X-ray diffraction (XRD), X-

ray photoelectron spectroscopy (XPS), scanning electron

microscopy (SEM), transmission electron microscopy (TEM),

energy-dispersive X-ray analysis (EDAX), zeta potential (ZP),

Raman spectroscopy (R), field emission scanning electron

microscopy (FESEM), and high-resolution transmission

electron microscopy (HRTEM) (Shifa et al., 2019). A

detailed description of these techniques has been given in

the following section.

Zeta potential and particle size

These parameters are used to evaluate the stability of NPs

utilizing a zeta potentiometer. It assesses the stability of NPs

corresponding to their pH. Zeta potential increases with an

increase in pH. It has been observed that synthesized Ag NPs

are stable within a pH range of 6–12. However, at pH 12,

Ag NPs are observed as more stable (Shifa et al., 2019). The

high negative zeta potential values of Ag NPs indicate their

excellent stability in an aqueous solution (Shankar et al., 2021).

On the other hand, dynamic light scattering (DLS) or photon

correlation spectroscopy (PCS) is the most common method

for determining particle size and distribution. The particle size

and size distribution of the sample are also investigated for a

size range of 0.1–1,000 nm by laser diffractometry (Wang et al.,

2020).

Fourier transfer infrared (FTIR) spectroscopy

It is the most commonly used technique that provides

information regarding the functional groups as well as structural

variation and also identifies the interactions among them

(Jayakumar et al., 2022). It provides an overview of the

absorption band corresponding to different molecules and the

bonds between them. Furthermore, it gives information about

the responsible biomolecule for capping and stabilization (Wang

et al., 2020). Different NPs exhibit different types of absorption

peak, which are considered the characteristic peaks of that

particular NP. ZnO–SiO2 imparts its peak at an absorption band

of 3,291.56 cm−1, which represents –NH and –OH vibration

stretch, confirming the formation of ZnO—SiO2 NPs (Al-Tayyar

et al., 2020). In the case of ZnO NPs, the peak found at 460

cm−1 is attributed to the formation of ZnO NPs, and the peak

at 796 cm−1 indicates the formation of SiO2 NPs. Similarly,

the peaks at 600 and 1,630 cm−1 correspond to the Cu–O

vibration and stretching, confirming the formation of CuO

NPs (Francis et al., 2022). Raman spectroscopy is an advanced

tool of NP characterization, which is carried out to obtain

information about the biocomponent precursors being used for

the biosynthesis of NPs, that is, the interaction of polyphenols

with S+ ions during NP formation (Shifa et al., 2019).

UV–visible spectroscopy

UV-Vis spectroscopy is mainly used to characterize NPs just

after their synthesis in the wavelength range of 300–800 nm as
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most of the MNPs present their specific peak in the UV or

visible range. It also assesses the concentration of NPs that are

formed during synthesis (Kavakebi et al., 2021). In addition,

it offers instant qualitative information regarding the size of

NPs (Fierascu et al., 2019). It also provides information on

monitoring the changes in the properties of NPs with time. The

absorption peaks in the spectrophotometer vary with different

NPs. The difference in absorption peaks mainly depends on

particle size, chemical surroundings, and the dielectric medium

of the NPs. Furthermore, if the size of NPs is increased due

to the aggregation of particles, then there will be a broadening

of the plasmonic band toward larger wavelengths in a sensible

way (Sharifan et al., 2022). For example, a change of color to

brownish-yellow due to the formation of Ag NPs is confirmed

when a broad surface plasmon resonance band is observed

around 450–470 nm, the peak absorption band for Cu NPs is

obtained in the range of 550–600 nm, and the peak absorption

band for ZnO NPs can be noticed between a range of 348

and 380 nm (Soniya et al., 2015; Lomate et al., 2018). This

change in coloration is observed due to the surface plasmon

vibrations in MNPs (Kowsalya et al., 2019). However, changing

the composition of MNPs by adding them to another matrix

may bring changes to its peak due to the surface plasmon

resonance of MNPs. Ag NPs impart a peak at 420 nm when

incorporated in the gel matrix of films (Bang et al., 2019). Due

to the high concentration of NPs, it can show a secondary peak

due to quadrupole resonance. Therefore, the peak width, peak

wavelength, and secondary resonances form a unique spectral

fingerprint for a particular NP. Hence, the peak intensity profile

is considered an important characteristic of NPs, which is, in

general, calculated using Scherer’s formula (Shifa et al., 2019).

X-ray di�raction

This technique is used to assess the crystal structure and

recognize coatings, stresses, lattice parameters, and crystallinity

of NPs (Jayakumar et al., 2022). It works on the principle

of Bragg’s equation, which is a description of the reflection

of the collided X-ray beam on a crystal plane of the target

sample. It is based on wide-angle elastic scattering and is

widely used in case of ordered crystalline materials. In this

technique, a beam of X-ray is passed through the sample, which

is simultaneously scattered/diffracted by the atoms/molecules

present in the sample. This interference is observed by applying

Bragg’s law and a corresponding detector (Raval et al., 2018).

Strong and distinctive diffraction couriers can be observed at

different angles of the material sample, which corresponds to

respective crystalline levels and gives the exact information

about the formation and purity of the formed NPs. For example,

strong couriers are observed at the 2θ angles of 38, 44, 64,

and 77 degrees corresponding to the crystalline levels of 111,

200, 220, and 311, respectively, which confirms the presence of

silver and also provides the information about the shape and

structure of formed NP (Azari et al., 2020). Out of all peaks,

the 2θ value at 38◦, which corresponds to the 111 lattice plane,

particularly, represents the formation of crystalline Ag NPs

(Bang et al., 2019). In the case of CuNPs, the characteristic peaks

are observed at 43◦, 50◦, and 73◦, which correspond to 111, 200,

and 220 planes of the crystal structure of Cu NPs (Lomate et al.,

2018; Sooch and Mann, 2021). A variety of peaks are observed

owing to the difference in their crystallinity (Singh, 2022). For

example, the ZnO–SiO2 nanocomposite possessing sharp and

narrow peaks shows good crystallinity and also indicates the

effects of different parameters on the nucleation (Al-Tayyar et al.,

2020).

Scanning electron microscopy and
transmission electron microscopy

These are widely used techniques to assess the shape, size,

microstructures, and overall morphology of prepared NPs, and

spherical and well-shaped particles are identified as good NPs in

most instances. However, MgO NPs impart cubic morphology,

which is an important characteristic of MgO NPs. Based on size

and morphology, the level of agglomeration within NPs can be

assessed (Al-Tayyar et al., 2020). Prepared NPs impart different

colors and textures in the SEM image in the total matrix. For

example, Ag NPs are seen as white dots in SEM images (Azari

et al., 2020). The surface morphology of CuO and ZnO NPs

is, in general, observed as roughly spherical in SEM images,

while CuS NPs are observed as granular protrusions due to

the aggregation of CuS NPs (Rasul et al., 2022). On the other

hand, TEM is a more effective technique than SEM in terms of

assessing morphology, size, composition, shape, crystal defects,

surface structures, and electronic states of NPs. It assesses the

shape and particle distribution of MNPs with a better resolution

than SEM (Azari et al., 2020).

Electron paramagnetic resonance,
energy-dispersive X-ray spectroscopy, and
atomic force microscopy

Electron paramagnetic resonance is another type of

spectroscopy that is used to confirm the superoxide generation

during the formation of the NPs. Various reports concluded

that during the formation of NPs, phenolic groups transfer

electrons to O2, which carries out the reduction of NPs. It

creates different peaks for different types of treatments, provides

different peaks, and detects photogeneration of MNPs (Azari

et al., 2020). Energy-dispersive X-ray spectroscopy assesses the

presence and purity of formed NPs in packaging and films. It is

used to investigate the dispersion of NPs in the nanocomposite,

which demonstrates that MNPs are well distributed in the

starch film matrix with no agglomeration (Peighambardoust

et al., 2019). Atomic force microscopy is a powerful tool

applied in investigating the fine structure information of food
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materials and molecular interaction at the nanoscale. AFM

images of the sample reveal a distribution of extended chain-

like molecules, directly visualizing a small number of branched

macromolecules. AFM can be applied for nanorheological and

nanotribological measurements of biopolymers (Rasul et al.,

2022).

Antimicrobial activity of MNPs

Microbial contamination not only causes economic

loss but also imparts a risk to human health. Therefore,

there is an urge to develop safer antimicrobials to control

foodborne microorganisms (Zhao et al., 2021). In recent

years, nanomaterials have been developed and explored

as promising antimicrobial agents to target drug-resistant

microorganisms (Chaubey et al., 2017). The antimicrobial

property of NPs depends on various factors, and they

possess an efficient mechanism in microbial inactivation.

NPs attach to the microbial cell wall and can easily pass

through it. As a result, there could be possible damage to

the cell membranes, and the cytoplasmic content may leak

(Qiu et al., 2022). In addition, NPs can interact with other

cellular structures and biomolecules (DNA) and subsequently

affect the ATP synthesis machinery, which can result in cell

apoptosis owing to DNA damage and lipid peroxidation

(Tirado-Kulieva et al., 2022; Akyüz et al., 2023). NPs can

also interact with biomolecules such as amino and carboxyl

groups of peptidoglycan in the cell wall and generate oxidative

stress, which hinders DNA replication and subsequently

collapses the proton motive force across the cell membrane

(Figure 2) (Lazić et al., 2020). The rate of inhibition of the

growth of microbes by NPs is highly dependent on the particle

size and the concentration of NPs (Videira-Quintela et al.,

2021).

Among various types of metallic and metallic oxide NPs, Ag

NPs are observed as the most potent antimicrobial agent due

to their extremely small particle size, which result in efficient

cell penetration; however, their application is limited due to

a risk of potential toxicity to humans, particularly at high

concentrations (Dehghani et al., 2021). On the other hand,

Cu NPs also possess a good status as an antimicrobial as it

possesses the ability to bind electrons; hence, it is capable of

catalyzing oxidation and reduction reactions. An oxidized form

of copper can interfere with the active site of enzymes, nucleic

acids, and cell wall components, which causes cell death. Cu

NPs are highly deteriorative against both Gram positive and

Gram negative bacteria and also possess antifungal activity. Zn

NPs have antimicrobial properties similar to Ag NPs and have

advantages such as white appearance, low cost, and resistance

to UV radiation in comparison to silver (Ebrahimi et al., 2019).

Furthermore, TiO2 MNPs are used as a photocatalytic agent,

which decays the microorganisms and certain organic molecules

(Mesgari et al., 2021). These MNPs can generate reactive oxygen

species in the presence of ultraviolet light, water, and oxygen

molecules. As a result, the oxidation of the cellular plasma of

microorganisms gets oxidized, causing cell death (Madhusha

et al., 2021).

Applications of NPs in food and food
products

Food demand is at its peak, which also induces food

safety concerns. Nanotechnology is emerging as an innovative

technology in the field of food and agriculture. Nanomaterials

can be used in agrifood in several ways, such as crop

improvement, protection against diseases, nanodevices in

genetic engineering, plant disease diagnosis, etc. (Prasad et al.,

2017). MNPs have broad applications in food systems, including

food processing, preservation, and packaging (Singh et al., 2017)

(Table 2). In preservation, nanopreservatives, nanoencapsulated

food additives, and toxin detectors are involved. On the other

hand, nanosensor preparation, nanocoating, edible coating of

NPs, and nanocomposites are studied under food packaging

applications (Dikshit et al., 2021). The application of MNPs in

polymers, which are applied on the surface of food products,

extends the shelf life of foods by slowing down the enzymatic

processes concerning postharvest ripening and restricting the

development of many physiological diseases (Rodino et al.,

2019). For the preservation and enhancing the shelf life of soft

fruits, the application of NPs in the food sector can be mainly

divided into two groups, one is food nanosensing and the other

is food nanostructuring. In food processing, food nanostructures

can be used as food additives that carry anticaking agents,

antimicrobial agents, and nutrient delivery systems, and used for

the durability of the packagingmaterials; on the other hand, food

nanosensing is used for better food quality and safety evaluation

of foods (Singh et al., 2017). Foodborne pathogens can cause

fatalities, and this further increases the resistance of microbial

strains (Ahmed and Al-Zubaidy, 2020). In this concern, MNPs

play an important role in detection and control. The MNPs are

also reported to develop semiconductors cheaply and efficiently,

which can be useful to enhance the conductivity of sensors

(dos Santos et al., 2020). These sensors can also monitor

the temperature and pH of agrifoods to prevent microbial

contamination (Powell and Kanarek, 2006).

The major application of MNPs is to improve the

functionality of packaging material, especially biodegradable

films. MNPs including silver, copper oxide, and zinc oxide

significantly improve the performance of biodegradable films

due to their large surface area and antimicrobial activity against

a range of microbes (e.g., fungi, bacteria, and molds) (Ahari

et al., 2021). However, MNPs are an expensive affair, and their

injudicious use may cause toxicity, which limits their application

in food packaging systems (Rai et al., 2019). Second, MNPs are
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FIGURE 2

Action of MNPs on microbial cell.

used at lower concentrations, and none of the antimicrobial

agents is effective against all pathogens at lower concentrations

(Kumar et al., 2021). Hence, a combined treatment of multiple

MNPs is recommended to obtain effective results against

microbes (Zhai et al., 2022). Another aspect of MNPs in

food packaging is to improve the mechanical properties of

packaging films. For instance, starch-based materials are better

at degradation properties but worst at mechanical properties and

water-holding characteristics (Zare et al., 2019). MNPs impart

good mechanical properties even at very lower levels (< 5%).

Improvement in these film properties is owing to their high

surface ratio and uniform distribution of MNPs (Abdolsattari

et al., 2020). In some reports, SiO2 and ZnO NPs are proven

to provide better mechanical strength and warm dependability

to plastic films (Sothornvit, 2019). Especially, SiO2 NPs are

supposed to be more suitable for this particular purpose due to

their higher surfacemovements, which enable them to assimilate

different atoms. These two are also approved by the FDA under

recommended limited proportions (Al-Tayyar et al., 2020). In

addition, these MNPs enhance the gas barrier properties of

polymers, which ultimately aims at enhancing the shelf life of

food (Chadha et al., 2022).

Nanomaterials are also highly promising in plant protection

induced by the mechanism of genetic modification of plants

to induce disease resistance (Nair et al., 2010). On the other

hand, nanoencapsulation is considered more efficient and

safer concerning the handling of fertilizers, pesticides, and

vaccines (Yaktine and Pray, 2009). Macro- and micronutrients

possess very low bioavailability; therefore, we can enhance their

bioavailability by decreasing their particle size and increasing

their surface area, which increases their absorption rates in the

digestive system (Sonkaria et al., 2012). For example, nano drops

are used in canola oil, which encapsulates minerals, vitamins,

and phytochemicals and passes them through the digestive

system (Chu et al., 2019). Iron deficiency is the most common

deficiency, which causes anemia (Tkaczyszyn et al., 2018).

A major possibility to combat this situation is fortification;

however, it seriously alters the sensorial characteristics of food.
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TABLE 2 Potential applications of metallic nanoparticles in shelf-life extension of foods.

Food products Application Matrix/NPs Size

(nm)

Inferences Reference

Pork Antimicrobial packaging Chitosan coated film

with AgNPs

200 Good antioxidant properties

AgNPs possess a good antimicrobial activity

7 days increase in the shelf life

Wu et al., 2019

Strawberries Active nanocomposite

packaging film

Nano-Ag particles were

added to polylactic acid

NA Preserved ascorbic acid

Decreed the reduction rate of polyphenols

Zhang et al., 2018

Chicken Sausages Antimicrobial packaging Nanocomposite blend

films with ginger extract

and AgNPs

NA 30 to 110 days extension of life of packaging

film

Possess antibacterial activity against S.

Typhimurium and S. aureus

Mathew et al., 2019

Fruits and vegetables Active food packaging

with antioxidants

Cellulose acetate AgNP

Ag

7–40 Antimicrobial activities against Escherichia

coli

Dairi et al., 2019

Fruits Antimicrobial food

packaging

Chitosan-based Ag

nano-composite films

8 Significant antibacterial activity

Promising material for packaging of food

Kadam et al., 2019

Rice Antimicrobial food

packaging

Antimicrobial

nano-silver packaging

>3 Enhanced the quality concerning their

texture and pasting properties

Li et al., 2017

Milk Determination of

Melamine

AgNPs-based sensors 14.0 Highly sensitive determination of melamine

in milk and products

Bittar et al., 2017

Banana Detection of

post-harvest spoilage

AgNPs-based sensors 50 AgNPs can detect 1,2-Benzenedicarboxylic

acid, bis (2-methyl propyl) ester which are

released during the deterioration ofMusa

acuminate

Omole et al., 2018

Minced Meat Food packaging Chitosan-silver

nanoparticles

61.57 Antibacterial activity against E. coli and S.

typhimurium

Badawy et al., 2019

Milk Detection of milk

spoilage

Silver-cysteine nano

sensor

62 Amino helps in binding of NPS and lactic

acid resulting in the aggregation

Increase in the lactic acid concentration

depicts the color change.

Madhavan et al., 2019

Cabbage Detection of

organophosphates

Cu-electrochemical

biosensors

20–70 Successfully detected fenthion, chlorpyrifos,

and methyl parathion with high signal

sensitivity

Tunesi et al., 2018

Cherry tomato Detection of malathion Cu-electrochemical

biosensors

NA Highly sensitive

Recommended in production systems

Al’Abri et al., 2019

Meat Meat freshness

evaluation

Ti-based amperometric

hypoxanthine sensor

10–20 Excellent electrocatalytic and sensitivity Albelda et al., 2017

On the other hand, nanoiron was found not to alter the sensorial

properties of food (Zimmermann et al., 2007).

Toxicity and health concerns of MNPs

Currently, advanced nanomaterial innovations in food

applications are adding new possibilities for improving food

quality. However, a major drawback of these NPs is toxicity,

which can be caused by their injudicious use. These can pose

danger to both environments and human health (Mathew and

Radhakrishnan, 2022). Both inorganic and organic MNPs are

applied in nanofood and packaging systems, with the main aim

to enhance the shelf life by providing antimicrobial protection

against food pathogens; however, there is a chance of migration

of these MNPs into food and subsequently to the human body,

which later on tend to accumulate (Chadha et al., 2022; Mallia

et al., 2022). The potential toxicologic effects of MNPs on human

health have been widely studied by researchers using in vitro

and in vivo approaches (Couto and Almeida, 2022). The effect

certainly depends on the type or nature of the packaging matrix,

degree of migration, toxicity of the used nanomaterial, and

uptake rate of the particular food. Higher amounts of such

compounds absorbed through the skin pose a major risk to
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TABLE 3 Nanoparticles and their health risks related to humans and other organisms.

Nanoparticles Size (nm) Health risks References

Ag 18–23 Reduction in cell viability Dutra-Correa et al., 2018

Ag 38.4–186.7 Highest cytotoxicity with positively charged coating due to electrostatic

interaction with negatively charged cell surface

Pongrac et al., 2018

Ag 3.9 Silver nanoparticles exhibit significant cytotoxicity at antibacterial

concentrations

Rolim et al., 2019

Ag 24–45 Decrease in cell viability Verkhovskii et al., 2019

Ag 10.72 Composite shows a significant reduction of cells Yu et al., 2019

Ag 10–30 Increase cytotoxicity Jiang et al., 2018

TiO2 NA Reduced immune homeostasis and induced carcinogenesis and genotoxic

effects

Enescu et al., 2020;

Musial et al., 2020

Ag NA Membrane damage, reactive protein oxidation and denaturation, oxygen

species (ROS) generation, DNA damage, mitochondrial dysfunction, and

inhibition of cell proliferation

Liao et al., 2019

Au 10–60 DNA damage Lopez-Chaves et al., 2018

Au 8–58 Significant decrease in cell viability and intracellular production of reactive

oxygen species

Chaicherd et al., 2019

CdSe 20 Decrease of cells viability Ajdary et al., 2018

human health, particularly in terms of long-term toxicity (Sahoo

et al., 2022). These NPs are reported to build up in several

organs, including the stomach, small intestine, kidneys, liver,

and spleen (McClements and Xiao, 2017). Several reports are

available on the toxicity of NPs (Table 3) to humans, such as

kidney damage, lung damage, and hepatic injury, which could

occur due to the intake of NPs (Mathew and Radhakrishnan,

2022).

Currently, researchers are more focused on the fast

development and applications of nanotechnology due to its

attractive impact without concerning its toxicology (Mathew

and Radhakrishnan, 2022). Nevertheless, there is a requirement

for validated proof regarding the interaction between NPs

and cells or tissues, particularly concerning possible threats

to human health. Most importantly, NP synthesis by various

chemical approaches has negative consequences and produces

harmful by-products, which cause severe environmental

pollution (Khalil et al., 2021). In addition, regulatory policies,

risk assessment programs, and biosafety concerns must be

taken into consideration during the processing, packaging,

and consumption of nano-based food products (Bajpai et al.,

2018).

Many regulatory agencies, including the FDA, USEPA,

and IFAS, have initiated protocols to deal with the potential

risks related to the use of NPs and nano-based products.

Since 2006, the FDA has been working to identify sources

of nanomaterials, estimating the environmental impact of

nanomaterials and their risks on human, animal, and plant

health (Jeevanandam et al., 2018). The FDA constituted

a Nanotechnology Task Force in 2006, which is charged

with developing supervisory approaches to nano-based

products that will ensure safety and efficacy and also help in

beneficial technological innovation (Zabihzadeh Khajavi et al.,

2019). The FDA, the EU, and other international regulatory

authorities provide detailed guidance and information

to evaluate the safety of NPs applied in food packaging,

and also on the development of standardized procedures

to analyze the risk of NPs on human health and on the

environment (Kumar et al., 2022).

Conclusion

In the present review, we have studied that MNPs

have a wider range of applications in food processing and

preservation, such as targeted delivery of nutrients, increased

absorption, packaging to extend shelf life, sensors to improve

food safety, and antimicrobials to inactivate microorganisms.

These materials can also improve product texture, flavor,

and composition. Among aforesaid applications, they are

vitally used in the food packaging matrix due to their

efficient interaction with packaging materials. They impart

antimicrobial and enhanced functional properties of packaging

films. We have also used modern tools to monitor the

synthesis and stability of nanoparticles, which, in turn, are very

important to assess the information about the formation and

properties of MNPs. In addition to their major applications,

they possess potential risks to human health owing to their
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toxicity and their absorption in the human body. Researchers

are developing these materials without evaluating the risk

associated with these NPs. Innovation without precaution

is not beneficial to society; also, it is deleterious to the

human race. Future trends in NP development should be

in line with the toxicological evaluation and risk assessment

of NPs.
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