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Highbush blueberry (Vaccinium spp.) is a globally important fruit crop

that depends on insect-mediated pollination to produce quality fruit and

commercially viable yields. Pollination success in blueberry is complex and

impacted by multiple interacting factors including flower density, bee diversity

and abundance, and weather conditions. Other factors, including floral traits,

bee traits, and economics also contribute to pollination success at the

farm level but are less well understood. As blueberry production continues

to expand globally, decision-aid technologies are needed to optimize and

enhance the sustainability of pollination strategies. The objective of this

review is to highlight our current knowledge about blueberry pollination,

where current research e�orts are focused, and where future research

should be directed to successfully implement a comprehensive blueberry

pollination decision-making framework for modern production systems.

Important knowledge gaps remain, including how to integrate wild and

managed pollinators to optimize pollination, and how to provide predictable

and stable crop pollination across variable environmental conditions. In

addition, continued advances in pesticide stewardship are required to

optimize pollinator health and crop outcomes. Integration of on- and

o�-farm data, statistical models, and software tools could distill complex

scientific information into decision-aid systems that support sustainable,

evidence-based pollination decisions at the farm level. Utility of these tools will

require multi-disciplinary research and strategic deployment through e�ective

extension and information-sharing networks of growers, beekeepers, and

extension/crop advisors.
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Introduction

Highbush blueberry is a domesticated fruit crop from

eastern North America that has gained cosmopolitan status

in recent years due to its attractive fruit with human health

benefits (Eck and Childers, 1966; Retamales and Hancock,

2018; Kalt et al., 2020). Global blueberry production has

more than doubled since 2005 and expanded to all continents

except Antarctica (Brazelton et al., 2021). Production systems

of northern highbush blueberry (Vaccinium corymbosum L.)

and southern highbush blueberry (complex hybrids of V.

corymbosum and low-chill Vaccinium species) have rapidly

modernized for efficient production with new cultivars and

research-driven recommendations for irrigation, fertilization,

harvesting, postharvest management, pruning and training,

and pest and disease management. Parallel advances in

pollination management, however, are lagging. There is a need

for investment in research that can support evidence-based

decision support systems to optimize sustainable pollination and

ensure economical production of this globally important and

expanding crop.

Insect-mediated pollination is needed to produce

blueberries of marketable size for commercial production

(MacKenzie, 1997; Retamales and Hancock, 2018; Martin

et al., 2021). Blueberry fields frequently suffer from pollen

limitation across different production regions, indicating

optimal or maximum levels of insect-mediated pollination are

not always achieved (Button and Elle, 2014; De Groot et al.,

2015; Nicholson and Ricketts, 2019; Reilly et al., 2020). Wild

pollinators alone are not sufficient in large and intensive crop

systems where they are less abundant (Isaacs and Kirk, 2010),

causing many growers to rely on renting managed western

honey bee (Apis mellifera L.) and bumble bee (Bombus spp.)

colonies for pollination services (Arrington and DeVetter,

2018a; Bobiwash et al., 2018; Cavigliasso et al., 2020; Mallinger

et al., 2021). The number of honey bee colonies has globally

increased over the last seven decades (Osterman et al., 2021a)

and the supply of this pollinator to blueberry farms in North

America has not experienced the decrease observed in other

crops (Burgett et al., 2004, 2010; Aizen and Harder, 2009;

Breeze et al., 2014). However, reliance only on honey bees

may not be a viable long-term strategy for sustainable crop

pollination in some regions given the increased expansion of

pollinator-dependent crops relative to the supply of honey bees

(Aizen and Harder, 2009; Breeze et al., 2014) and the potential

for honey bee foraging to be inhibited by cool weather. Reported

levels of honey bee colony mortality have been high in North

American (Osterman et al., 2021a), and the health of both wild

and managed bees is affected by individual or synergistic effects

of poor nutrition, pesticide exposure, abiotic stressors, and pests

and diseases that threaten the stability of pollination (Potts

et al., 2010; Goulson et al., 2015), requiring a focus on overall

pollinator health to ensure effective crop pollination.

Given these factors affecting honey bee and wild bee

supply and health, blueberry pollination strategies should

encompass the Integrated Crop Pollination (ICP) concept to

move toward more resilient pollination systems and success

for growers. Introduced by Isaacs et al. (2017), ICP is “the

use of managed pollinator species in combination with farm

management practices that support, augment, and protect

pollinator populations to provide reliable and economical

pollination of crops.” Implementation of ICP for blueberries

will require understanding and addressing knowledge gaps

within the fundamental components of ICP such as the

use of common and alternative managed pollinator species,

wild pollinators, habitat enhancement, pesticide stewardship,

and horticultural practices. Only by understanding these

components can advances be made in evidence-based decision

support systems to optimize pollination and yield. The objective

of this review is to highlight what is known about blueberry

pollination within the context of ICP, where current efforts

are focused, and where future research should be directed to

support sustainable pollination strategies for profitable modern

blueberry production systems (Figure 1). Floral traits of different

cultivars, environmental factors that influence pollination,

economics, and the use of decision-aid technologies will also be

considered as components to blend within the ICP framework

with the aim of better understanding and improving pollination

for this globally expanding crop.

Pollination requirements

Highbush blueberry has the potential to set nearly 100%

of its flowers into fruits when resources are not limiting

(Ehlenfeldt, 2001; Kumarihami et al., 2021), but this may not

be achieved if pollination is inadequate or disrupted. Cultivated

highbush blueberries are highly dependent upon successful

pollination, with individual flowers requiring deposition of

about 30 to 100 pollen tetrads to maximize fruit set and fruit

mass, and to minimize ripening time (Dogterom et al., 2000;

Sun et al., 2021). While some parthenocarpy has been observed

in some highbush blueberry genotypes, it yields generally small

fruits and is insufficient at producing marketable yields for any

cultivar (Harrison et al., 1993; MacKenzie, 1997; Kazokas, 2003;

Ehlenfeldt and Vorsa, 2007; Ehlenfeldt, 2012). Insect pollinators

are necessary due to low auto-fertility (sensu Rodger et al., 2021).

Blueberry flowers excluded from insect pollinators have reduced

fruit set, and any resulting berries are smaller than insect-

pollinated flowers (Tuell and Isaacs, 2010a; Gibbs et al., 2016;

Campbell et al., 2018). Low levels of auto-fertility in blueberry

may be due to various aspects of floral development and

morphology, including poricidal anthers that require sonication

by insects to adequately release pollen (Cardinal et al., 2018;

Cooley and Vallejo-Marín, 2021), and upside-down, urn-shaped

flowers with a style sometimes shorter than the corolla that

Frontiers in Sustainable FoodSystems 02 frontiersin.org

https://doi.org/10.3389/fsufs.2022.1006201
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


DeVetter et al. 10.3389/fsufs.2022.1006201

FIGURE 1

Highbush blueberry yield and quality depends on pollination success, which is a�ected by components within this blended Integrated Crop

Pollination (ICP) framework that includes use of common and alternative managed pollinator species, wild pollinators, habitat enhancement,

pesticide stewardship, and horticultural practices. Floral traits, environmental conditions, on-farm economics, and the potential use of

decision-aid technologies all have the potential for unique impacts on blueberry pollination, thus requiring a deeper understanding of how they

impact pollination success and contribute to economic and e�ective evidenced-based decisions at the farm level.

limits pollen deposition on the stigma either by autonomous

self-pollination or by wind pollination (Sampson et al., 2013).

Modern highbush blueberry cultivars have a relatively high

degree of self-fertility, i.e., a high ability for flowers to set

fruits when pollinated by self-pollen, including pollen derived

from the same flower, from flowers of the same plant, or

from plants of the same cultivar (Dogterom et al., 2000;

Ehlenfeldt, 2001; Taber and Olmstead, 2016; Kendall et al.,

2020). That is why many fields of northern highbush blueberry

are established as single-cultivar blocks. Southern highbush

blueberry, in contrast, is sometimes planted in mixed-cultivar

configurations with overlapping bloom periods to promote cross

pollination (Mallinger and Phillips, 2022). Contrary to what

many papers state due to a semantic confusion, the whole

Vaccinium genus is self-compatible, meaning self-pollen can

germinate in pollen tubes that can grow through the style and

fertilize ovules to the same degree as cross-pollen (Garvey and

Lyrene, 1987; Krebs and Hancock, 1988; Czesnik et al., 1989;

Hokanson, 1995; Hokanson and Hancock, 2000; Schott, 2000;

Brevis et al., 2006; Miller et al., 2011; Leposavić et al., 2021).

But on the other hand, the Vaccinium genus is partially self-

sterile (terminology proposed by Gibbs, 2014) as it is affected by

an early-acting inbreeding depression (EID) whereby embryos

resulting from self-pollination may be partly aborted due to

genetic load (Krebs and Hancock, 1990, 1991; Guillaume and

Jacquemart, 1999; Rasp et al., 2004; Nuortila et al., 2006).

Consequently, as it is known from the early 20th century

(Coville, 1921), many highbush blueberry genotypes show

improved fertility with cross-pollination compared to self-

pollination. For northern highbush, 70% of evaluated genotypes

tested in the literature showed improved fruit set with hand

cross-pollination, at least under certain conditions, and 86%

showed improved fruit size (Supplementary Table 1). Likewise,

southern highbush genotypes showed 63 and 65% improvement

in fruit set and fruit size with hand cross-pollination,

respectively. The magnitude of fertility gains may depend on

the degree of inbreeding for a given genotype (Hellman and

Moore, 1983; Krebs and Hancock, 1988, 1990) and on the pollen

donor (White and Clark, 1939; Cremins, 1952; Gupton, 1984,

1997; Czesnik et al., 1989; Gupton and Spiers, 1994; Huang

et al., 1997; Ehlenfeldt, 2003; Martin K. et al., 2019; Nagasaka

et al., 2022). Cross-pollination can also result in a decrease

of ripening time (Supplementary Table 1) and an increase of

anthocyanin content (Doi et al., 2021). Insect pollinators vary
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in their efficiency in cross pollination: high pollen loads on

their bodies combined with foraging behavior across rows and

cultivars can facilitate greater cross pollination by bumble bees

(Miñarro and García, 2021), although in some cases honey

bees have been observed to alternate between cultivars more

than bumble bees (Estravis-Barcala et al., 2021b). Northern

and southern highbush blueberry cultivars have similar levels

of heterozygosity (Brevis et al., 2008) and are consequently

similarly prone to EID. Domesticated blueberry cultivars have

become increasingly inbred over time (Hancock and Siefker,

1982; Ehlenfeldt, 1994), which may increase their susceptibility

to EID, indicating that the benefits of cross pollination will

likely increase as new cultivars continue to be developed.

Understanding the breeding history of modern cultivars and

their levels of inbreeding will help to predict how well each

cultivar will perform in single-cultivar plantings and which

cultivars should be co-planted for effective cross-pollination.

Floral visitation

Floral visitation rates, driven by the diversity and abundance

of the pollinator community and by the attractiveness of the

crop flowers, are a major determinant of successful blueberry

pollination. While considerable attention has been given to

understanding the factors that influence pollinator abundance

and diversity within blueberry fields (Isaacs and Kirk, 2010;

Tuell and Isaacs, 2010a; Benjamin et al., 2014; Gibbs et al., 2016;

Vieli et al., 2016; Graham et al., 2021a), neither diversity nor

abundance of pollinators can positively influence pollination

without successful recruitment (Gaines-Day and Gratton, 2016;

Geslin et al., 2017a; Danka et al., 2019; Mallinger et al.,

2021). Enhancing pollinator recruitment to crop flowers not

only improves pollination but may also reduce the density of

managed pollinators required, thereby reducing input costs.

Identifying and manipulating floral traits that maximize

pollinator recruitment is key to optimizing pollination and

tailoring pollination strategies to different blueberry cultivars.

This is a promising avenue for crop breeding and is currently

being explored in blueberry and other cropping systems

(Ritzinger and Lyrene, 1999; Palmer et al., 2009; Bailes

et al., 2015; Prasifka et al., 2018). Variation in floral rewards,

including the quantity and quality of nectar and pollen, and

in flower morphology and visual and olfactory cues can

all influence pollinator attraction and subsequent pollination

success (Prasifka et al., 2018; Cortés-Rivas et al., 2022 and

references therein; Sampson et al., 2013; Vaudo et al., 2020).

For example, honey bees showed greater visitation rates to

blueberry flowers with wider floral tubes, specifically wider

corolla opening diameters (Courcelles et al., 2013). Flower

morphology can also interact with pollinator foraging behaviors:

rates of nectar robbing or side working by carpenter bees

(Xylocopa spp.) differed among blueberry cultivars and was

associated with differences in flower morphology (Sampson

et al., 2004; Courcelles et al., 2013; Tucker et al., 2019). Bees

are more likely to rob nectar from long and narrow blueberry

flowers and more likely to make legitimate visits to shorter and

wider blueberry flowers (Courcelles et al., 2013). In another

example, individual flower size, corolla width, anther and pistil

lengths, stigma-anther separation, and stigma protrusion across

Vaccinium species was positively correlated with percent fruit set

and/or berry weight following visits by the blueberry bee, Osmia

ribifloris Cockerell (Sampson et al., 2013). Blueberry flowers can

also differ in the degree to which petals are fused, but how these

morphological traits affect pollinator recruitment is unknown

(Arrington and DeVetter, 2018b).

Quantity and quality of blueberry rewards can also drive

floral visitation rates. Honey bees primarily collect nectar

from blueberry flowers and may respond to differences in

nectar volume and sugar concentration found across cultivars

(Jablonski et al., 1985; Bozek, 2021; Estravis-Barcala et al.,

2021b). Bumble bees more frequently collect blueberry pollen

than honey bees (Bobiwash et al., 2018; Miñarro and García,

2021) and may be affected by pollen traits including pollen

chemistry, which has been found to differ across wild and

cultivated blueberries and to affect bumble bee foraging

preferences in other systems (Vaudo et al., 2016; Egan et al.,

2018). For example, higher nectar volume increased honey

and bumble bee visits to onion (Allium cepa L.) and zucchini

(Cucurbita pepo L.) cultivars, while higher quantities of floral

volatiles increased wild solitary bee visits to strawberry (Fragaria

x ananassaDuch.) cultivars (Prasifka et al., 2018). Floral volatiles

can indicate the age and pollination status of a flower, in

turn signaling reward quantity and quality (Stout and Goulson,

2001). In blueberry, pollinators showed greater attraction to

unvisited flowers that emitted greater amounts of floral volatiles

(Rodriguez-Saona et al., 2011).

A promising new approach to enhance recruitment is

feeding honey bee and bumble bee colonies with caffeine-

or arginine-treated syrup flavored with crop flower scents

just before bloom onset (Farina et al., 2020; Arnold et al.,

2021; Estravis-Barcala et al., 2021a), training them to crop-

specific rewards. Blueberry flower scents have been identified

(Rodriguez-Saona et al., 2011; Forney et al., 2012; Huber,

2016) and could be used to aid bee recruitment. Brood, queen

mandibular, and Nasonov pheromones are produced by honey

bees for communication and manufactured versions of these

pheromones are currently sold to growers to enhance honey bee

recruitment (Free andWilliams, 1970; Pankiw et al., 1994, 1998).

Commercial bee attractants are also available on the market.

The utility of these products when applied to blooming crops

is questionable. Indeed, most studies have shown application

of pheromones and attractants to be unreliable at increasing

pollination and yield outcomes across various crops (Schultheis

et al., 1994; Connell, 2000; Ellis and Delaplane, 2009;Williamson

et al., 2018).
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There are many opportunities to breed or manage the crop

for more attractive flowers including accessible floral tubes to

increase visitation rates and reduce nectar robbing, increased

floral rewards (nectar and pollen) to enhance recruitment,

and increased floral volatile emissions to signal attractive and

rewarding flowers. These floral traits can be determined by

genetic factors influenced by crop domestication (Egan et al.,

2018) but recruitment can also be affected by environmental

factors including temperature, water and nutrient availability,

and interactions with herbivores and soil microorganisms

(Lyrene, 1994; Cardel and Koptur, 2010; Halpern et al., 2010;

Bruinsma et al., 2014; Brody et al., 2019; Rering et al., 2020).

More studies are needed on the interaction of floral traits,

rewards, and management to optimize floral visitation.

Horticultural factors

Horticultural factors such as field age, planting designs that

include pollinizers, use of mulch, effective weed management,

and conventional field management influence the probability of

achieving higher yields (Retamales et al., 2015). Like most crops,

soil conditions including plant nutrition and water availability

directly affect blueberry productivity and need to be within

an optimum range (Cameron et al., 1988; Bryla and Strik,

2015). Furthermore, soil conditions and pest and pathogen

management may adjust allocation of resources to fruit and

seed development independent of pollination so that pollination

benefits may not be realized if soil conditions and pest and

pathogen management are sub-optimal (Tamburini et al., 2019).

Not only do these horticultural factors directly determine

blueberry yield, but they also interact with pollination in

complex ways that complicate our ability to quantify the benefits

of insect-mediated pollination (Bos et al., 2007; Seppelt et al.,

2011). For example, lack of pest control reduced yield of lowbush

blueberry (V. angustifoliumAit.) independent of pollination and

the highest yields were achieved when full, manual pollination

was combined with the full input of recommended pesticides

(Melathopoulos et al., 2014). Studies that attempt to disentangle

the interaction between pollination and soil and pest and

pathogenmanagement in blueberry are lacking but needed given

what has been shown in other cropping systems (Tamburini

et al., 2019). Accounting for these other factors that contribute to

yield will lend greater insight into the value of insect pollinators

and build toward a more effective application of ICP.

Protected culture such as photo-selective nets and

polytunnels can provide protection against environmental

hazards such as hail, extremes in solar radiation, and vertebrate

and arthropod pests (Wittwer and Castilla, 1995). Protected

culture manipulates light quantity and quality, temperature,

humidity, and airflow (Wittwer and Castilla, 1995; Shahak et al.,

2008; Lobos et al., 2013) and can increase yields and advance

harvest timing compared to open-field production (Retamal-

Salgado et al., 2015). However, these protective methods can

negatively impact pollination and pollinator health (Kendall

et al., 2021). Modifications in light intensity and wavelength

can negatively impact the ability of some pollinating insects to

forage and return to their nests given that they rely on polarized

light from the sun for navigation (Evangelista et al., 2014).

Hall et al. (2020) showed honey bee pollination deficits in the

middle of 100-m long polytunnels can reduce blueberry fruit

weight and yield compared to the edges. High temperatures

in polytunnel middles can have lethal or sublethal effects on

honey bees and greater humidity may have an additive effect

by reducing honey bee capability to thermoregulate (Free and

Spencer-Booth, 1962). Bumble bees, leafcutter bees (Megachile

spp.), and mason bees (Osmia spp.) are reported to forage more

efficiently in polytunnels compared to honey bees (Goodwin,

2012; as reviewed by Kendall et al., 2021). Because the use

of protected culture has increased as the blueberry industry

expands into new production regions and tries to capitalize

on lucrative market windows, it is important to have a better

understanding of how protected culture affects pollinators,

so that these methods can be modified to optimize both crop

protection and pollination.

Plant growth regulators are also sometimes used to

overcome poor pollination. Gibberellic acid (GA3) has received

the most attention due to its role in increasing fruit set

after a freeze event or physical injury (NeSmith et al., 1995).

Controlled-environment studies have shownGA3 increases fruit

set in non-pollinated rabbiteye blueberry (V. virgatum Ait.)

flowers with a trade off in delayed fruit development and weight

(Williamson et al., 1996). In northern highbush blueberry, effects

of GA3 are subtle and inconsistent; its use may not always result

in a yield response, and response to GA3 depends on cultivar,

application timing, pollination, and weather conditions (Hanson

and Kelsey, 2019).

Managed honey bees

Honey bees have long been used for highbush blueberry

pollination because their large population sizes and ease of

transport facilitate the high densities needed to meet pollination

requirements (Tuell and Isaacs, 2010a; Estravis-Barcala et al.,

2021b; Mallinger et al., 2021). Stocking recommendations

and practices are highly variable: earlier guides recommended

stocking rates ranging from 1.2 to 25 honey bee colonies per

hectare (Delaplane et al., 2000; Rucker et al., 2012), while current

practices can range from 0 to 40 colonies per hectare (Gibbs

et al., 2016; Mallinger et al., 2021). Colony stocking rate is poorly

correlated with honey bee visitation and thus with blueberry

yield, although honey bee visitation rates have been positively

correlated with yield (Supplementary Table 2). Honey bees can

become diluted in the landscape when there are natural habitats
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or other blooming entomophilous crops, and they can also

be attracted to some cultivars more than others, resulting in

poor correlation between stocking rate and managed bee density

in the field (Díaz et al., 2013; Gaines-Day and Gratton, 2016;

Quinet et al., 2016; Estravis-Barcala et al., 2021b; Osterman et al.,

2021b). Furthermore, there may be interactive effects between

honey bees and wild bee densities that could affect pollination

outcomes (Eaton and Nams, 2012).

Colony size and effective forager population can also vary

considerably, ranging from 5,000 to 65,000 workers (Farrar,

1937; Schmickl and Crailsheim, 2007; Chabert et al., 2021).

Larger honey bee colonies have higher foraging activity,

increasing pollination within the same colony stocking rate

(Geslin et al., 2017a; Cavigliasso et al., 2021). Farrar’s (1937)

study suggests that large colonies allocate an even higher

proportion of their workers to the task of foraging, implying

that large colonies would have a higher pollination performance

than small colonies for the same number of workers provided in

total. For some crops such as almond [Prunus amygdalus L., syn.

P. dulcis (Mill.) DA Webb] or oilseed rape (Brassica napus L.)

in hybrid seed production, growers request honey bee colonies

with a minimum population size in their pollination contract,

with increasing fees when colonies exceed the minimum

request (Ovinge and Hoover, 2018; Goodrich, 2019; Goodrich

and Goodhue, 2020). However, with the aim of promoting

sustainable beekeeping for crop pollination, instead of absolutely

meeting a standardized colony size that can be harmful for

colonies (Durant, 2019), beekeepers could offset a low colony

size by providing more colonies as long as the colonies are

healthy with a laying queen alongside brood and enough empty

combs (Sagili and Burgett, 2011). Combined, these functional

differences based on colony size and forager population further

complicate the utility of stocking density recommendations on

a per colony basis. Assessing honey bee colony size can be done

using the cluster size method (Nasr et al., 1990; Chabert et al.,

2021) implemented with a beekeeper and/or an intermediary

such as a bee broker (Goodrich, 2017), with thermographic

imaging (Shaw et al., 2011; López-Fernández et al., 2018), or

by assessing activity at hive entrances (Rodet and Henry, 2014;

Ovinge and Hoover, 2018; Grant et al., 2021). When assessing

honey bee colony sizes, it should be noted that the relationship

between colony size and cluster size is exponential and not linear

(Chabert et al., 2021).

In addition to colony stocking rates, Garibaldi et al. (2020)

suggested identifying target pollinator densities to reach per

flower in crops so that pollination is not limiting. These target

densities can be assessed either empirically (Reilly et al., 2020;

Chabert et al., 2022), or with a modular approach (Ne’eman

et al., 2010; Garibaldi et al., 2020). With the modular approach,

pistil receptivity lasts at least 4 days in highbush blueberry

(Moore, 1964; Young and Sherman, 1978; Krebs and Hancock,

1990; Kirk and Isaacs, 2012), flowers require 5 to 15 bee visits to

maximize fruit weight (Danka et al., 1993; Rogers et al., 2013;

Kendall et al., 2020), and honey bees visit about 5 blueberry

flowers per minute (Shaw et al., 1939; Estravis-Barcala et al.,

2021b; Sun et al., 2021). Based on the assumption of 6 hours

of daily foraging activity, one blueberry field would require

about 0.07 to 0.2 honey bees per 100 flowers (i.e., 0.2 to 0.6

honey bee visits per flower per hour). Empirically, Reilly et al.

(2020) found that “Bluecrop” fields would require 16.7–26.3

bees per 100m row to maximize fruit weight. Pollinator

density estimates should always be associated with a flower

count in pollination empirical studies (Chabert et al., 2022),

highlighting the importance of developing simple and fast

flower monitoring approaches with new methods such as image

analysis with deep learning (Farjon et al., 2020; Hicks et al.,

2021). Flower monitoring approaches could also be used by

growers and crop advisors to assess pollination and inform

pollination management.

Current recommendations indicate hive placement should

begin when blueberry flowers are between 5 and 25% bloom

(Howell et al., 1972) because honey bees may disperse onto

alternative resources and forage less in the crop when placed

before the onset of bloom (Jay, 1986). Some also advocate

for the sequential introduction of colonies to crops resulting

in higher bee densities in the crop and more bee movement

between cultivars (Mayer, 1994; Shafir, 2011 and references

therein). Sequential introduction or colony rotation could be

applied in blueberry, especially in fields with mixed cultivars

benefitting from cross-pollination, but it is unclear if any

increase in pollination would offset the increased labor and

transport costs. Many authors recommend placing colonies as

close as possible to the crop and distributed as evenly as possible

along the field to ensure effective and even pollination (Jay, 1986;

Cunningham et al., 2016; Cavigliasso et al., 2021; Li et al., 2022),

though these practices result in increased labor and transport

costs for beekeepers and increased risk of pesticide drift. More

investigations are required for creating recommendations on

hive placement and density, so that target bee densities for

maximum pollination and yields are achieved.

Alternative managed bees

Supplementing honey bees with other bee species can

result in higher crop pollination (Rogers et al., 2013, 2014;

Mallinger et al., 2021). Several researchers have investigated

alternative managed pollinators for blueberry pollination

(Table 1; Supplementary Table 3). Among the 16 species

investigated other than the honey bee, 14 can be used

in open field production, including 10 that are already

commercially available, and four which have potential but

require further investigation.

Bumble bees are the most widely used alternative managed

pollinators of blueberry due to their ability to sonicate (King and

Buchmann, 2003; Cardinal et al., 2018), frequency of collecting
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TABLE 1 Alternative managed pollinator species other than the western honey bee (Apis mellifera L.) for highbush blueberry (Vaccinium spp.)

pollination.

Part of the world Species Affinity for

Vaccinium

spp. pollen

Management

status

Pollination

performance

compared to

A. mellifera

Native range area

Northeast America Bombus impatiens Low to high Currently managed Improved Northeastern America

Colletes validus High Potentially manageable Unknown Northeastern America

Habropoda laboriosa High Potentially manageable Improved Southeastern USA

Osmia lignaria lignaria Low to high Currently managed No improvement Northeastern America

Northwest America Bombus huntii High Currently managed Unknown Northwestern America, excluding

extreme West

Bombus vosnesenskii Low Currently managed Unknown Extreme West of North America

Osmia lignaria

propinqua

Low to high Currently managed No improvement Northwestern America

Osmia ribifloris High Potentially manageable No improvement Northwestern USA

South America Bombus pauloensis Unknown Currently managed Improved South America

East Asia Apis cerana Unknown Currently managed Improved East Asia

Anthophora villosula Unknown Potentially manageable Unknown Eurasia

Megachile rotundata Low to high Currently managed Improved Eurasia

Osmia cornifrons Low Currently managed Improved East Asia

Europe Bombus terrestris Unknown Currently managed Improved Europe

Anthophora villosula Unknown Potentially manageable Unknown Eurasia

Megachile rotundata Low to high Currently managed Improved Eurasia

Australia Tetragonula carbonaria Unknown Currently managed Unclear Eastern Australia

See references listed in Supplementary Table 3.

blueberry pollen (Supplementary Table 3), ability to carry pollen

on their bodies and deposit higher pollen loads on stigmas

than honey bees (Dogterom, 1999; Rogers et al., 2013; Estravis-

Barcala et al., 2021b; Sun et al., 2021), and ability to forage

at lower air temperatures (Stubbs and Drummond, 2001; Tuell

and Isaacs, 2010a). Usual stocking rates for bumble bee colonies

range from 0.5 to 10 colonies per hectare (Tuell and Isaacs,

2010a; Estravis-Barcala et al., 2021b; Mallinger et al., 2021).

While both bumble bees and the southeastern blueberry bee

(Habropoda laboriosa Fabricius) can sonicate flowers (King

and Buchmann, 2003; Cardinal et al., 2018), European leaf-

cutting bees (M. rotundata Fabricius), orchard mason bees (O.

lignaria Say), blueberry bees, and other bees are also able to

collect pollen, deposit pollen on stigmas, and induce fertilization

(Table 1; Supplementary Table 3). All the species also visit

blueberry flowers for nectar (Stubbs et al., 1994; Dogterom, 1999;

Javorek et al., 2002; Tuell and Isaacs, 2010a; Rogers et al., 2013;

Estravis-Barcala et al., 2021b). Although nectar foragers are less

efficient than pollen foragers for pollination (Javorek et al., 2002;

Estravis-Barcala et al., 2021b), they can nevertheless carry pollen

on their body (Dogterom and Winston, 1999; Hoffman et al.,

2018; Estravis-Barcala et al., 2021b), contribute to blueberry

pollination, and broaden the potential of alternative managed

species that can augment blueberry pollination. While the nest

design for managed bumble bee colonies has been optimized

for some species to make them commercially available, recent

studies have also identified the preferred nesting material, nest

hole diameter and attractant sprays to increase mason bee

nesting success (Eeraerts et al., 2022; Pinilla-Gallego et al.,

2022). Further studies are required to optimizemanagement and

targeted application of solitary bees, especially ground nesting

species (Cane, 1997; Mader et al., 2010; Leonard and Harmon-

Threatt, 2019; Nelson et al., 2022), for blueberry pollination.

Precautions must be taken when considering honey bees

and alternative managed bees outside of their native ranges,

as they can become invasive and detrimental to native flora

and/or entomofauna, or even for crop pollination (Goulson,

2003; Russo, 2016; Geslin et al., 2017b; Morales et al., 2017;

Aizen et al., 2019, 2020; LeCroy et al., 2020; Russo et al.,

2021). Managing bees within their native range can also be

detrimental to wild entomofauna by competing for floral

resources or nesting habitats, spreading pests and pathogens,

eroding genetic diversity, and disrupting local adaptations by

hybridization between native and commercial lines (Fürst et al.,

2014; Lindström et al., 2016; Mallinger et al., 2017; Seabra et al.,

2019; Bartomeus et al., 2020; Russo et al., 2021).
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Wild pollinators and habitat
enhancement

The contribution of wild bees and non-Apis insect

pollinators depends on their pollination performance and

abundance (Ne’eman et al., 2010). More specifically, this

contribution can vary considerable from field to field, ranging

from 12 to 82% (Isaacs and Kirk, 2010; see also Benjamin and

Winfree, 2014; De Groot et al., 2015). A great diversity of wild

bees has been found to visit blueberry flowers worldwide (De

Groot et al., 2015; Martins et al., 2018; Graham et al., 2021a;

Cortés-Rivas et al., 2022), and the pollination efficiency has

been found to vary widely among bee species (Rogers et al.,

2013, 2014; Sun et al., 2021; Cortés-Rivas et al., 2022) and

blueberry cultivars (Cortés-Rivas et al., 2022). Differences in

foraging behavior across pollinator taxa have been found in

highbush blueberry cultivars as well (Courcelles et al., 2013;

Estravis-Barcala et al., 2021b). Bumble bees and some solitary

bees can sonicate and hence can release more pollen than

honey bees and other insect pollinators who cannot sonicate

(Buchmann, 1983; King and Buchmann, 2003; Cardinal et al.,

2018; Cortés-Rivas et al., 2022). On the other hand, bumble bees

and carpenter bees can sometimes steal nectar from blueberry

flowers by using their mandibles to make a hole in the corolla

and this foraging behavior reduces these species’ pollination

contribution (Sampson et al., 2004; Rogers et al., 2013), and

can induce other bees to rob nectar (Dedej and Delaplane,

2004). Differences in pollination efficiency, foraging behavior,

and abundance across different pollinator taxa can provide

functional complementarity and stability for crop pollination

when different taxa are present during the blueberry boom

period (Blüthgen and Klein, 2011).

Although wild pollinators can contribute substantially to

blueberry pollination, their abundance is often too low to fulfill

commercial demands for pollination, especially in large fields

(Isaacs and Kirk, 2010; Benjamin and Winfree, 2014; Gibbs

et al., 2016). Variation in the abundance of wild bees visiting

highbush blueberry flowers depends on many factors including

production region (Gibbs et al., 2016), farm size (Isaacs andKirk,

2010), farming practices (Nicholson et al., 2017; Mallinger et al.,

2021), and the amount of semi-natural habitat (SNH) in the

landscape around the farm (Gibbs et al., 2016; Nicholson et al.,

2017). Increasing cover of intensive agriculture has a negative

effect on wild bee visitation in blueberry fields (Benjamin et al.,

2014; Nicholson et al., 2017), as agricultural intensification

reduces species richness of pollinator assemblages and wild

insect visitation (Klein et al., 2007; Garibaldi et al., 2011).

In general, the amount of SNH enhances floral visitation by

wild bees (Gibbs et al., 2016; Nicholson et al., 2017; Mallinger

et al., 2021), but the landscape scale by which wild bees benefit

from SNH depends on their body size. Smaller bees respond

over shorter distances to local field conditions than those with

larger body sizes that can utilize resources across the larger

landscape-scale (Benjamin et al., 2014). Conservation of SNH

and implementing habitat enhancements near blueberry fields

is therefore advised to provide nutritional and nesting resources

for wild bees and boosting their local populations.

It has been recommended that agricultural landscapes

should have at least 20% SNH to support agricultural

productivity by improving pollination and other ecosystem

services (e.g., as well as enhancing soil nutrition, pest control,

and/or preventing floods and regulating climate; Garibaldi

et al., 2021). Beyond conservation of SNH, pollinators and

pollination also benefit from increasing landscape diversity

(Martin E. A. et al., 2019), which has been found to support wild

bee communities and their corresponding pollination services

in blueberry. Reducing blueberry field size (Isaacs and Kirk,

2010), providing mass-flowering crops with complementary

phenologies (Martins et al., 2018; Eeraerts, 2022), and reducing

agricultural management intensity (e.g., organic management;

Nicholson et al., 2017; Mallinger et al., 2021) are additional ways

to promote landscape diversity and pollination by wild bees.

Honey bee health will also benefit from the alternative forage

provided by SNH and habitat enhancement efforts (Couvillon

et al., 2014; Danner et al., 2017).

Creating SNH at larger scales may not be a plausible

option for a single farmer given a lack of space as well as

financial and logistical constraints (Osterman et al., 2021c).

Decreasing agricultural intensity for pollination may also

not be a realistic option for commercial blueberry growers.

However, incorporation of small-scale habitat elements is one

promising way to encourage wild bees. For example, hedgerows

composed of linearly shaped plantings with flowering woody

and herbaceous plants as well as flower strips of herbaceous

plants placed at field margins do not take much land area

and can be of high value to native pollinators, particularly if

plant species are locally adapted (Garibaldi et al., 2014; Albrecht

et al., 2020). The contribution of flower strips to blueberry

pollination and yield has been investigated, with Blaauw and

Isaacs (2014) concluding that these plantings can support higher

crop yields 3 years after seeding, and are economical, even

when considering the costs of establishment and maintenance.

Careful selection of plant species is essential and should be

done to support key pollinators of blueberry (Eeraerts et al.,

2021; Windsor et al., 2021) while minimizing their potential

to serve as alternative hosts to blueberry pests and diseases.

An evaluation of hedgerows has not been carried out to

date for blueberry systems and is challenging experimentally

because it takes a considerable time for establishment and

to observe the effects on pollinators and pollination (e.g.,

Morandin and Kremen, 2013). Nevertheless, the impacts

of hedgerows and other perennial plantings on pollinators

and pollination in blueberry should be studied as these

elements can provide floral resources throughout the year

(Timberlake et al., 2019), nesting habitat for wild bees (Eeraerts

et al., 2021), and have great potential to enhance pollination
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without requiring significant land area and changes to in-field

production practices.

Wild bees, as well as alternative managed bees, are an

important component of ICP and can complement honey bees

as some of these non-Apis bees forage in suboptimal weather

conditions, or early morning and late afternoon, when honey

bees are less likely to forage (Tuell and Isaacs, 2010a; Rogers

et al., 2013, 2014). Furthermore, wild bees may forage in

different parts of the plant canopy and may also improve the

foraging behavior and pollination efficiency of honey bees in

some crop systems requiring cross-pollination (Tuell and Isaacs,

2009; Brittain et al., 2013; Eeraerts et al., 2020). A mechanistic

explanation regarding the positive interactive effect of non-Apis

bees on honey bees is not entirely clear, but likely includes

direct interactions between different kinds of bees during

flower visitation (Greenleaf and Kremen, 2006; Carvalheiro

et al., 2011) and indirect interactions between bees due to

scent marks deposited on flowers after they have been visited

(Stout and Goulson, 2001). This functional complementary

of foraging behavior contributes to the benefits of combining

honey bees and non-Apis bees and their corresponding

pollination contribution (Blüthgen and Klein, 2011). So far,

these interactions between honey bees and non-Apis bees have

not been investigated in blueberry but are expected to be similar.

Environmental factors

Temperature is a key driver of plant processes related

to pollination such as bloom timing, bloom duration,

pollen germination, pollen tube growth, ovule viability,

flower longevity, and duration of flower receptivity. Studies

investigating the effects of temperature on blueberry physiology

are limited, especially as it relates to flower biology and

reproduction, but are needed to inform adaptation strategies as

the climate changes. Kirk and Isaacs (2012) compared blueberry

bloom phenology in field-planted and greenhouse-potted

bushes and found that flowering of potted bushes was delayed

by∼100 growth degree days (GDD), which was likely attributed

to potted bushes receiving a lower number of chilling hours

than those assessed in the field. As climate change intensifies,

the number of chilling hours experienced by blueberry plants

will decrease in many key production regions and will likely

impact bloom timing and characteristics. Variation in blueberry

bloom timing may lead to complications with pollination such

as phenological mismatch with the emergence of wild spring

pollinators, and difficulties in predicting timing of honey bee

hive placement.

Among the stages of plant reproductive development,

sensitivity to heat extremes has been observed during pollen

development, pollen germination, and pollen tube elongation

for various crop plants (Mesihovic et al., 2016). However,

pollen performance in blueberry is not well characterized

(Yang et al., 2019; Gan et al., 2020). Gan et al. (2020)

explored pollen germination and pollen tube length for four

commercially relevant northern highbush blueberry cultivars

at 2, 7, 13, 18, and 24◦C and found that germination

generally increased from 2 to 24◦C across all cultivars (besides

“Liberty”, which peaked at 13 and 18◦C). Pollen tube growth

increased linearly across all cultivars from 2 to 24◦C. Yang

et al. (2019) assessed pollen germination and tube growth of

“Gardenblue” rabbiteye blueberry in “Brightwell” pistils in situ

and found that after 24 h over 90% of pollen on styles had

germinated at 15, 20 and 25◦C, while at 10, 30, and 35◦C

the percentage of the style with germinating pollen was 72,

63, and 57%, respectively. This study also reported that pollen

failed to fully transverse the style at 35◦C. Further limiting

fertilization success, the same study reported that hot conditions

at 30 and 35◦C accelerated “Brightwell” ovule degradation

after only 4 h and 74–100% after 120 h of exposure to these

temperatures. Cooler temperatures (0 and 5◦C) had less impact

on “Brightwell” ovule degradation. Further investigations

should explore thermotolerance capacities of blueberry pollen

and ovaries for commercially important cultivars and develop

an understanding of how environmental conditions can be

incorporated into ICP programs for this crop.

Pesticide stewardship

During bloom, blueberry plants are susceptible

to various fungal diseases such as mummy berry

[Monilinia vaccinii-corymbosi (Reade) Honey], anthracnose

(Colletotrichum spp.), and botrytis (Botrytis cinerea Pers.), and

they can also become infected by viruses (Polashock et al.,

2017). Blueberry fields may also need protection from insects

including aphids that transmit viruses, fruitworm larvae that

bore into developing berries, and various moth larvae that

can defoliate bushes at this time of the season. Integrated pest

management programs that incorporate monitoring, predictive

models, resistant cultivars, and cultural controls have been

developed to reduce the risk of economic injury from these

pests (Rodriguez-Saona et al., 2019), but pesticide applications

remain a common and frequent input in most blueberry

production regions.

Bees can be exposed to pesticides via direct exposure

during application, from landing on treated surfaces, through

contaminated nectar and guttation fluid, and by residues

collected in pollen and nectar. Pesticide residues are common

in commercial honey bee colonies used for pollination (Mullin

et al., 2010). In a recent study in Michigan blueberry farms, 22

pesticides were detected on average in pollen samples collected

from bumble bee and honey bee colonies during bloom, even

at sites that were not being sprayed (Graham et al., 2021b). As

expected, the highest concentrations detected were pesticides

applied during bloom, but the 80 identified active ingredients
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also included various other pesticides likely collected from

outside of blueberry farms. The chemical residues and their high

concentrations highlight the need for development and adoption

of practices that minimize the need for pesticide applications

during crop flowering, combined with widespread awareness of

exposure from neighboring lands.

Given their direct toxicity (Johnson et al., 2010) and

potential to contribute to the stresses experienced by wild and

managed bees (Goulson et al., 2015; Sánchez-Bayo et al., 2016),

application of the most toxic insecticides is restricted during

bloom. These limits, however, do not completely prevent risk of

harm to bees and other pollinators. First, many wild pollinators

have flight periods that extend before and after blueberry bloom,

so they may not be protected by restrictions limited to bloom

time. Label restrictions are also only for the few pesticides

known to be acutely toxic, and not for the multiple other

agrichemicals that can cause sublethal effects. Finally, pesticides

applied elsewhere provide additional exposure routes for bees

foraging outside the blueberry farms.

While it has been shown that wild bee communities in

blueberry fields are less diverse in farms with higher pesticide

toxicity (Tuell and Isaacs, 2010b), more research is needed

to understand the effects of pesticide use on pollination

outcomes. Many aspects of pesticide risk are profoundly

understudied (Cullen et al., 2019), including combination

exposures, synergistic effects (Siviter et al., 2021), effects of

adjuvants and inactive ingredients (Straw et al., 2022; Wernecke

et al., 2022), effects on developing bees (Claus et al., 2021),

and effects on wild bees. Pollinator health risks from fungicides

should be especially examined because exposure rates are so

high (Graham et al., 2021b), and new research shows harm from

fungicides to both bumble bees (for example Bernauer et al.,

2015) and honey bees (Fisher et al., 2021). The Integrated Pest

and Pollinator Management framework (Biddinger and Rajotte,

2015) can help balance the economic implications of spending

money on pest control inputs vs. conserving wild pollinators

and protecting honey bees. This approach can be tailored to

blueberry settings using the regionally relevant community

of insect and disease pests combined with the economics of

pesticide and pollinator inputs (Egan et al., 2020).

Economic value of Integrated Crop
Pollination

Successful application of integrated blueberry pollination

strategies at the farm level will need to encompass economics

to ensure farms remain profitable. The benefits of pollination

in agricultural settings are typically measured in terms of crop

yield and quality. For example, Rollin and Garibaldi (2019)

conducted a meta-analysis of 22 studies, involving various crops

grown in different countries, to examine the impact of honey

bee densities on crop productivity variables such as fruit set,

seed set, fruit weight, and yield. They found that increased

colony density and visitation rates augmented all productivity

variables to a certain optimum, after which more honey bees

do not increase pollination and yield any further. Several other

studies documented positive linkages of pollination and crop

productivity (see previous sections above). However, there are

costs associated with implementing any pollination strategy

and it is critical that benefits exceed costs to ensure a return

on investment.

In the U.S., Hellerstein et al. (2017) conducted a national

survey in 2015 and showed blueberry ranked third in terms of

highest demand for honey bee pollination with rankings based

on the total pollination fees paid for each crop determined by

the total number of colonies used, price per colony, and total

acreage pollinated. Only almond and apple (Malus domestica

Borkh.) preceded blueberry, highlighting the significance of

blueberry pollination. The insect pollination economic value

(IPEV) of honey bee is known to be high (Morse and Calderone,

2000; Reilly et al., 2020; Jordan et al., 2021). Reilly et al.

(2020) estimated the IPEV of seven crops [almond, apple,

blueberry, pumpkin (C. pepo L.), sweet cherry (Prunus avium

L.), tart cherry (P. cerasus L.), and watermelon (Citrullus lanatus

(Thunb.) Matsum. & Nakai)] in major producing areas in the

U.S. and placed it at ∼$6.4 billion by managed honey bees and

$1.5 billion by wild bees, with wild bees contributing $50 million

in blueberry. Jordan et al. (2021) considered all insect pollinators

and estimated an average IPEV of $34 billion for 75 crops across

the U.S.

Insect pollination economic value estimates pertain to direct

benefits of pollination services. However, there are limitations

to the IPEV, such as the assumption of static pollination

densities and constant dependency coefficients despite the crops

being planted in different fields, production regions, and years

(Melathopoulos et al., 2015). Also, there are indirect benefits

to the environment (spillover pollination from surrounding

landscapes), consumers (nutrition), and downstream industry

sectors (e.g., livestock feed, food processing, consumer products)

that must be considered to capture a full accounting of the

economic benefits of crop pollination. Hence, values provided

by the above studies can be considered conservative estimates

but are useful to start framing the economic importance of

pollinators. More holistic economic assessments that implement

all components of ICP are also lacking. Consequently,

comparing the costs of implementing an ICP framework to the

contribution of improved pollination on the productivity of the

cropping system are needed to determine its value for farmers.

Despite the economic value of wild bees in blueberry

systems (Reilly et al., 2020), pollinator habitat establishment

costs are perceived to be high and this in turn can be a

barrier to implementing habitat elements that would benefit wild

pollinators on farms (Garbach and Morgan, 2017). However,

a multi-year study showed yield and profitability of blueberry

fields adjacent to native wildflower plantings were greater than
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fields without wildflowers and wildflower establishment costs

could be recovered within 3–4 years (Blaauw and Isaacs, 2014).

Landscape and management can influence the costs and benefits

of maintaining or converting land into natural habitat that

could benefit wild pollinators and their services (Magrach et al.,

2019), underscoring the need for a robust understanding of these

systems to develop accurate estimates for economic valuation.

Of note is that blueberry is a perennial crop managed intensively

for pest control. Pollinator habitat is typically located in non-

arable land outside the crop fields. In some instances the extent

of non-arable land can be considerable, but elsewhere, it may

be limited. In these situations there may be direct and indirect

opportunity costs that provide only small, private benefits to

the grower making the investment (Lonsdorf et al., 2020). Few

studies, in fact, have calculated the opportunity costs associated

with converting land to other valuable uses. Some scenarios

show the opportunity costs may outweigh the benefits accrued

from additional wild pollination services (Magrach et al., 2019).

More research should be dedicated to estimate opportunity

costs against wild pollination benefits across different blueberry

growing regions.

Decision aid systems

Effective implementation of improved blueberry pollination

strategies that maximize profit may be aided by advances in

and implementation of technologies like Big Data, Remote

Sensing, Artificial Intelligence, and Cloud Computing which

support “Agriculture 4.0.” This is poised to enable growers to

be more efficient and economical in their production of quality

crops while minimizing potential harms to agroecosystems

through informed decisions when it comes to implementation of

various agricultural practices. Decision aid or decision support

systems (DAS or DSS, respectively) are tools that encompass

quantitative models inside interactive software applications and

can assist growers in making complex, evidence-based, and

precise decisions (Jones et al., 1998). Effective utilization of

DAS depends on upstream efforts to formulate models that

provide predictions with sufficient accuracy and deliver resultant

information in user-friendly platforms. The careful selection

of model inputs, both decision variables and predictors, is an

essential component of constructing a DAS that can effectively

compare different courses of action. Model inputs may include

historically collected data, routinely updated data streams, user

input, and should be chosen to balance model accuracy with the

cost efficiency and reliability of inputs (Zhai et al., 2020).

For optimization of pollination and yield in blueberry,

a DAS should predict changes in crop pollination and yield

components based on changes in managed and wild bee

populations. In its simplest form, this model might be

characterized by estimating the effect of pollinator density on

pollinator visits, the effect of pollinator visits on fruit set, seed

set, and berry size, and the impact of these three quantities

on yield. The impact of the number of honey bee hives on

blueberry yield can depend on the densities of other bees in

the surrounding area (Eaton and Nams, 2012). Thus, a DAS

would likely benefit from including user inputs or data that

characterizes wild pollinator populations in the surrounding

area and components of ICP.

If a DAS is to be used to time the placement of honey

bee colonies, it may be advantageous to model the timing of

blueberry anthesis (Kirk and Isaacs, 2012). Phenology timing

may be modeled based in part on temperature and heat

accumulation to capture phenological effects on pollinator

behavior as well as limit pollinator effects to the bloom window.

Furthermore, as pollination is heavily weather dependent, the

effect of meteorological variables on pollinator foraging activity

and crop reproduction can be integrated too (Tuell and Isaacs,

2010a). Cultivar effects should also be accounted for given floral

morphological traits and subsequent visitation rates by bees

varies by cultivar (Courcelles et al., 2013).

The DAS approach has been developed in some cropping

systems for pest management and irrigation to improve

water use efficiency (Samietz et al., 2007; Jones et al., 2010;

Bonfante et al., 2019). DAS is starting to be used to inform

pollination-related decisions and could be a valuable tool for

ICP. BEE-STEWARD is one research and decision-support

software tool that can show how different environmental

variables impact wild bumble bees in the landscape (Twiston-

Davies et al., 2021). Climate-induced declines in fruit set in bog

blueberry (Vaccinium uliginosum L.) has also been predicted

to be mitigated with increases in honey bee and bumble bee

densities using predictive modeling approaches based on the

transfer learning concept to solve for data deficiency problems

(Qu et al., 2021). More recently, an agent-based model was used

in kiwi [Actinidia chinensis var. deliciosa (A. Chev)] to track

and predict pollination outcomes in a dioecious crop under a

range of management scenarios (Broussard et al., 2022). Similar

approaches and platforms may be used to aid growers in making

decisions integral to successful pollination. However, issues

of interoperability, scalability, accessibility, and usability need

to be addressed (Zhai et al., 2020). Other relevant challenges

identified by Zhai et al. (2020) include adapting to uncertainty

and dynamic factors to provide accurate decision support,

incorporating knowledge from experts, enabling prediction

and forecasts to enhance farm planning, and using historical

information. Furthermore, release of DAS tools to growers

needs to be synergized with extension education programs and

training to ensure successful utilization.

Conclusion

Development of an integrated approach to sustainable

blueberry pollination will require a thorough understanding of

cultivar-specific pollination requirements within traditional and

new production regions. Coordinated use of managed honey
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bees, wild pollinators, and alternative managed bees where

their use provides a return on investment will ensure resilience

in blueberry pollination systems. However, this coordination

should be integrated with an awareness of how horticultural

factors, habitat enhancement, and pesticide stewardship also

influence pollination and yield. At the same time, adoption of

improved blueberry production systems will be most likely if

their profitability can be documented, so there is a need to

measure the costs of inputs and the value of returns to determine

the economic viability of ICP approaches. Multidisciplinary

research that includes the perspectives and experiences shared by

growers, beekeepers, and extension/crop advisors will be needed

to address knowledge gaps and translate information gained into

practice at the farm level. Key gaps requiring research focus in

honey bee dominated systems are the integration of wild and

alternative managed pollinators to benefit from their pollination

contribution, particularly when weather is suboptimal for honey

bees. At the same time, honey bees are integral pollinators and

research on efficacious honey bee deployment as a function

of colony size, hive density, crop demand, and landscape

structure are needed while encouraging pollinator recruitment

and minimizing the potential negative effects on native insect

populations. Research on habitat enhancement and landscape

modification will also be needed to support all pollinators and

attention should particularly be focused on how to realistically

and economically achieve this at commercial scales. While

pesticide stewardship is a relatively well-defined component

of ICP, the role of horticultural practices remains ambiguous

and will be an important area of future research. Many

plant and soil factors seemingly independent of pollination

may influence yield and crop quality outcomes in blueberry.

Understanding and optimizing these factors within the ICP

framework is expected to promote long-term crop yield and

quality while enhancing growers’ returns on their investments.

With increasing availability of on- and off-farm data, statistical

models, and software tools, there is also potential that the

complexity of applying ICP on commercial blueberry farms

could be simplified and made more accessible to growers and

consultants. This could be accomplished through effective use of

DAS that leverages existing and emerging information, adding

new layers, and improved function as new research is completed.

This must be blended with education and extension programs

that encourage adoption, make adjustments when needed, and

foster implementation to provide for more evidence-based

blueberry pollination systems.
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