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The physical environment provides resources and specific types of environmental

services relevant to the maintenance of human livelihoods globally and with specific

reference to sub-Saharan Africa, including soils, food, and water systems. Previous

studies on the shared nexus of such resources commonly view these as self-contained

systems operating independent of their physical contexts provided by landscape-scale

geomorphology and its related processes. This study critically examines the viewpoints

adopted by such nexus studies with specific reference to sub-Saharan Africa, arguing

that these studies are reductive, considering only the shared disciplinary overlap (nexus)

and not their wider contexts, and are based on only a limited understanding of the

workings of physical systems. This study argues that considering the attributes of

the physical landscape and its provision of environmental services provides a broader

and scientifically-informed context for understanding of interlinked issues such as

relationships between soil–food–water systems. Framing such “nexus” studies in this

wider context can derive a better understanding of the connections between different

elements such as soil, food, and water, amongst others, and with respect to the United

Nations’ Sustainable Development Goals. The concept of environmental services is

therefore a more powerful tool to examine both the connections between physical and

human environmental processes and properties in sub-Saharan Africa, and to address

overarching environmental issues such as land degradation, soil erosion loss, water

scarcity, and impacts of climate change.

Keywords: environmental resources, sustainable development goals, ecosystem services, nexus, landscape

development, sustainability, Sub-Saharan Africa

INTRODUCTION

The physical landscape is the basis for the provision of different types of environmental
resources (O’Farrell et al., 2010; Thondhlana and Muchapondwa, 2014; Falayi et al.,
2019; Ragie et al., 2020). Environmental resources can be defined as any properties
or attributes of the physical environment, including its climate, that provide direct or
indirect services of different types to local communities. Environmental resources can
therefore be considered as related to, but broader than, ideas of ecosystem services (van
Jaarsveld et al., 2005; King-Okumu, 2018). For this reason, the concept of environmental
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resources and the services that they provide (termed
environmental services) is a more useful and integrated approach
that is founded on ideas of Earth System Science that describe
the interlinkage of changes that take place in the physical
environment (Clifford and Richards, 2005). Consideration
of environmental services, through the provision of different
types of environmental resources, is of relevance to studies of
physical–human relations in sub-Saharan Africa where issues of
environmental sustainability are important (e.g., Hoffman et al.,
2007; O’Farrell et al., 2010; Vogel et al., 2016), as are expressed
in the United Nations’ Sustainable Development Goals (SDGs)
(Millennium Ecosystems Assessment, 2005). Several studies
have examined how communities make use of environmental
resources in their immediate localities, illustrating the local-scale
relationships of people to their surrounding environments
(e.g., Hoffman et al., 2007; Casale et al., 2010; Thondhlana and
Muchapondwa, 2014; Cole et al., 2017; Omisore, 2018; Falayi
et al., 2019; Ragie et al., 2020). These relationships have often
been examined in the context of resource sustainability, by
which the use of certain environmental resources is evaluated
over time with respect to changes in resource properties and
their availability (e.g., Hallowes et al., 2008; Swemmer et al.,
2019; Wolff et al., 2019). However, this analysis of relationships
between different communities and environmental resources
is usually based on localized and individual case studies.
What is critically lacking is an evidence-based theoretical
context in which to link different case studies together, to
aid their interpretation, and as an overarching framework for
evidence-based decision-making.

FIGURE 1 | Illustration of the interconnections between soil, food, and water systems and the particular elements that link these systems together (listed around the

outside of the triangle). The soil–food–water nexus represents some poorly-defined region in the middle of this triangle (shaded).

Many previous studies have described the relations between
different elements in physical and human environments with
respect to their shared nexus (Figure 1). This term, which is not
well-described although commonly used in the literature, refers
the thematic interconnection or area of overlap between two
or more elements of the human and/or physical environments.
As such, the shared nexus between these different elements
is a qualitative and poorly defined space that is dependent
on the capacity of individual researchers to make intellectual
links between these elements. Thus, nexus studies do not
always provide an adequate intellectual foundation for either
designing or interpreting field-based studies, or in applying
an understanding of these co-relationships to solve a practical
problems, such as soil erosion or declining agricultural yields.
This means that many nexus studies, while purporting to be
integrative and based on ideas in sustainability, cannot be readily
applied to address SDGs.

Several different examples of nexus studies in sub-Saharan
Africa have been reported in the literature (Table 1). Energy,
water, and food are the most common elements considered
in these studies, either together or in combination with other
elements. The majority of nexus studies provide local examples
of physical–human relationships; only few studies have examined
the links between physical–human nexuses to broader aspects of
sustainability and the SDGs. For example, Ramutsindela (2003),
Wolff et al. (2019) and Musakwa et al. (2020a) described land-
use management implications of the physical–human nexus
with specific reference to urbanization, land reform and tenure,
and their relationships to nature and biodiversity conservation.
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TABLE 1 | Examples of nexus studies in South Africa.

Nexus type Examples described in the literature

(source)

Agriculture–population Alola and Alola, 2019

Energy–climate Bazilian et al., 2011

Urban–rural Constant and Taylor, 2020

Urbanization–food security Jonah and May, 2020

Energy–water Hoseini et al., 2016; Ololade, 2018

Land–water Marcatelli, 2018; Rosa et al., 2019

Environment–trade Udeagha and Ngepah, 2019

Growth–poverty–inequality Akanbi, 2016

Energy–climate–economic growth Cowan et al., 2014; Akadiri et al., 2019;

Azam, 2019; Bekun et al., 2019; Khan

et al., 2020

Biodiversity–poverty–inequality Graham and Ernstson, 2012

Energy–pollution–growth Magazzino et al., 2020

Energy–water–CO2 Madolo et al., 2018

Energy–water–waste Wang et al., 2018

Food–energy–water Ozturk, 2017; Zaman et al., 2017;

Mabhaudhi et al., 2018, 2019; Mpandeli

et al., 2018; Zhang et al., 2018; Sahle

et al., 2019; Simpson et al., 2019; Nhamo

et al., 2020a,b; Bellezoni et al., 2021;

Yuan et al., 2021

Water–energy–food–climate King and Jaafar, 2015

Items of these nexuses that are specifically mentioned in the United Nations’ Sustainable

Development Goals are listed in italics.

Several studies have also considered the relationship of
water management to sustainable development (Jonker, 2007;
Mabhaudhi et al., 2018, 2019; Nhemachena et al., 2020) but this
is viewed mainly as a water budget (supply/demand) issue rather
than as a system that links synergistically to other systems (soil,
ecosystems, agriculture, health, pollution).

Despite the fact that most nexus studies have a clear—
albeit unstated—application to SDGs (marked in Table 1), and
can be applied to a range of cross-cutting physical–human
environmental issues, these studies are rarely framed in a
context of either sustainable development (e.g., Walmsley, 2002;
Hoffman et al., 2007; Nhemachena et al., 2020) or Earth System
Science that informs on co-relationships to physical processes
in the landscape (Knight, 2015; Verburg et al., 2015). This is a
key limitation of nexus studies because it means they are not
informed by the physical and human environmental processes
that impact on issues in sustainability and the SDGs. Nexus
studies, by definition, are reductive because they consider co-
relationships of different elements (food, water, energy, etc)
through a very narrow and exclusionary lens. They consider these
different elements as distinct and mutually exclusive with respect
to their properties or dynamics or controls, except for some
specific areas of thematic overlap (their nexus).

This paper tackles this systemic weakness of nexus studies
by proposing a new, holistic and integrated framework that
examines the application of environmental services and their
associated environmental resources to address the aspirations

of the SDGs. These related elements are explored through the
commonly-examined “nexus” of soil–food–water systems as has
been widely discussed in the literature in sub-Saharan Africa
(Figure 1). This paper (1) examines the nature of this nexus,
drawing from previous studies in the literature; (2) reframes this
nexus using ideas of environmental systems, their resources and
services; (3) discusses the nexus of soil–food–water systems using
a specific example of smallholder farmer practices in Limpopo
Province, South Africa; and (4) provides a new way of examining
co-relationships between soil, food, and water through the
concept of cascading environmental systems. A critical outcome
of this study is an evidence-based theoretical context of physical
and human systems relevant to SDGs, and issues of sustainability
and sustainable development more generally, and especially in a
sub-Saharan Africa context.

THE SOIL–FOOD–WATER NEXUS

The flow of energy and matter through landscapes is controlled
by topography and is driven by biophysical processes and water
flow. Soil, food, and water systems thus have very different
relationships to the physical environment: water relates strongly
to climate, soil to geology, and “food” merely represents the
acquisition and commodifying of biological resources by human
activity. “Food” is therefore a value-laden concept, being a subset
of ecosystem services, and is mediated by socioeconomic and
cultural attributes of different regions, people, and contexts.
This means that soil, food, and water are not of equal or
comparable status within a single “nexus,” even though studies
that address these elements within a single nexus assume that
they are. Soil (land surface), food, and water systems in sub-
Saharan Africa have been examined in several nexus studies and
with respect to the nature of the relationships between these
elements as viewed from different perspectives (e.g., decision-
making, climate change adaptation, land degradation, regional
economic development, sustainable water management, etc)
(Mpandeli et al., 2018; Nhamo et al., 2020a,b). This means that
such nexus studies take different disciplinary viewpoints, and in
emphasizing certain of these elements, can result in only a partial
understanding of these interrelationships. Figure 1 outlines the
detailed nature of interactions between soil, food, and water
systems. Each axis describes the relationships between these
different elements. It is notable that no nexus study, presented in
the literature, has examined these elements in detail or described
the theoretical basis of these relationships. The co-relationships
between soil, food, and water (shown in Figure 1), however, are
now examined in detail.

Soil and water systems focus on how the physical and
chemical properties of soil influence water retention and
throughflow properties and processes. Specific controls on soil
and water system properties include aspects of climate (rainfall
patterns, runoff, soil erosion), geology (rock type, grain size,
porosity, permeability, groundwater position, and dynamics),
soil properties (grain size, organic content, soil structure,
soil moisture capacity), vegetation (land use, agriculture type,
humus/nutrient content), and management structures (field
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bunds, tillage practice). Relationships between these different
elements have been discussed in several studies. For example, soil
properties such as carbon content have been explicitly linked to
minimal tillage conservation agriculture methods (e.g., Willcocks
and Twomlow, 1993; Bationo et al., 2007; Mchunu et al., 2011;
Simwaka et al., 2020). Here, conservation agriculture techniques
give rise to changes in soil and water properties, with an increase
in porosity resulting in an increased capacity for soil moisture
storage, increase in soil carbon stock, and changes in particle
size distributions within soils. Water processes within the soil
are associated with chemical translocation, which is of particular
relevance for nutrients and soil fertility (Smaling et al., 1993;
Mabuza and van Huyssteen, 2019; Teffera et al., 2019). Studies
have also been concerned with rainwater harvesting and its
effects on soil moisture retention (van Rensburg et al., 2012).
Soil and food systems describe ecosystem type and productivity
that relates to soil nutrient status and the agronomy practices
that affect soil properties. Soil and food systems therefore
include aspects of soil management (fertilizers, nutrient status,
plow depth), crop type, and agricultural practices (agronomy
practices, intercropping, harvesting, and land management
practices), and agricultural ecosystem management (invasive
species, pests/diseases). Balancing soil nutrient status and plant
growth requirements is a key component of integrated soil and
food systems. Studies that consider these systems therefore focus
on how different cropping systems or stock density affect soil
properties. Examples include the role of beans and other staple
crops in soil nitrogen fixation (Mthembu et al., 2018; Muoni
et al., 2019; Namatsheve et al., 2020), micronutrient provision
within soils as a result of specific crop types and practices
(Nziguheba et al., 2016; Kihara et al., 2020a), relationships
between agricultural yield and soil fertility (Tan et al., 2005;
Lal, 2009; Soropa et al., 2019), the role of additions of fertilizer
and manure in food production (Vlek, 1990; Mafongoya et al.,
2006), the relationship of soils to ecosystems and biodiversity
in agricultural systems (Agegnehu and Amede, 2017; Kamau
et al., 2019; Kihara et al., 2020b), and the role of different
agronomy practices such as intercropping and livestock/arable
combinations on soil fertility and agricultural yield (Gowing
et al., 2020; Hoffmann et al., 2020; Reetsch et al., 2020). These
studies on soil and food systems highlight the critical role
of human activity in changing the nature of the land surface
(vegetation, soil A-horizon, input of water/fertilizer) that then
has impacts on soil properties. Further, maintenance of soil
properties (structure, thickness, organic and moisture content,
nutrient status) is the basis for sustainable food production
(Vlek, 1990; Lal, 2009; Bindraban et al., 2012; Graef et al.,
2015; Solomon et al., 2016). Interrelationships of food and
water systems are based on the different water requirements
for different crops or agricultural systems, managing water for
irrigation during dry periods, and managing the effects of excess
and wastewater during wet periods. Water use efficiency with
respect to food production are explicitly linked to sustainability
and with reference to SDG 2 (food security) (Wallace and
Gregory, 2002; Cook et al., 2009; Nyam et al., 2020). Studies
on food and water systems have focused on water use efficiency
with respect to specific crops (Makurira et al., 2011; Nyakudya

and Stroosnijder, 2011; Olivier and Singels, 2015), rainwater
harvesting (Botha et al., 2012; Baiyegunhi, 2015; Mo et al., 2018),
and rainfed agricultural systems (Mutiro et al., 2006; Biazin
et al., 2012; Haarhoff et al., 2020). These studies show the key
role of water availability and management in influencing food
production systems. Water management is also influenced by
crop type and mulch cover, which can reduce evaporation and
increase soil moisture retention by up to 30% (Biazin et al., 2012;
Olivier and Singels, 2015). Studies have also shown that effective
water management can lead to increased yields and higher gross
margins (Makurira et al., 2011; Sime et al., 2015).

Apart from individual shared elements that link up individual
soil, food, and water systems (Figure 1), several studies have
also examined this soil–food–water nexus in the context of
sustainable development. For example, Love et al. (2006) and
Kadyampakeni (2014) argued that SDG 2 (food security) can
be addressed through increased access to fertilizers, technology
transfer and training, soil-water conservation methods, mixed
livestock and arable agriculture, and farm diversification. It is
notable that each of these proposed interventions involves co-
relationships between different elements of physical and human
systems, and that these relationships are not straightforward or
without impact. As an example, increased access to fertilizer
as a simple action point requires input from or influence by a
range of actors, processes and properties, and in turn fertilizer
input impacts upon a range of issues related to the physical
environment, farm properties, and wider socioeconomic systems
(Figure 2). Thus, addressing this action point requires a fuller
consideration of systems’ properties, which is not usually done in
nexus studies. Further, this highlights the problems of enacting
seemingly-simple management decisions when also set against
such naïve and poorly-defined statements as “end hunger, achieve
food security” of SDG 2, for example. This means that many
nexus studies only describe broad and generalized relationships
with respect to SDGs (Ololade, 2018; Zhang et al., 2018; Simpson
et al., 2019), and lack specific and evidence-based scientific
detail that is set in a theoretical context (Graham and Ernstson,
2012). To address this, the theoretical context of environmental
services is now proposed as a way to better understand the
co-relationships of different physical and human elements, as
described in nexus studies.

ENVIRONMENTAL SERVICES AS A BASIS
FOR UNDERSTANDING OF SOIL, FOOD,
AND WATER SYSTEMS

The Nature of Ecological Environmental
Services
Ecosystem services are well-known and documented especially
in a southern African context (van Jaarsveld et al., 2005;
Egoh et al., 2008; Fenta et al., 2020; Mowat and Rhodes,
2020) and these are linked directly to human–environment
(socio-ecological) relationships and aspects of sustainable
development (Bailey and Buck, 2016; Sigwela et al., 2017;
Cerretelli et al., 2018; Bengochea Paz et al., 2020). Many
local case studies worldwide have described different ecosystem
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FIGURE 2 | Example of how a simple intervention such as access to fertilizer (Love et al., 2006) links to wider aspects of nexus intersections in the physical and

human environments.

services and their uses by communities in different, mainly
agricultural, contexts (e.g., Mensah et al., 2017; Swemmer
et al., 2019; Herd-Hoare and Shackleton, 2020; Lhoest et al.,
2020). The conceptual basis for understanding these ecosystem
services is well-founded because it is based on ecological
processes set in a landscape context, and studies of ecosystem
services are framed by well-defined theoretical approaches,
which include:

• Socio-ecological approaches that consider human use and
ecological resources as part of a continuum (e.g., Temesgen
and Wu, 2018; Bengochea Paz et al., 2020);

• Monitoring and modeling of variations in aboveground
productivity using remote sensing tools such as normalized
difference vegetation index (NDVI) values (e.g., Lindeskog
et al., 2013; Ayanlade and Proske, 2016; Cho and Ramoelo,
2019);

• Valorizing ecosystem services based on calculations of
ecosystem use and areal coverage of different ecosystem types
(e.g., Costanza et al., 2011; Anderson et al., 2017; Turpie et al.,
2017; Niquisse and Cabral, 2018);

• Interpreting different service types and provision through
ideas of natural capital (e.g., Costanza andDaly, 1992; Blignaut
and van der Elst, 2014); and

• Payment for ecosystem services (PES) (e.g., Jackson and
Palmer, 2015; Haile et al., 2019).

However, these different approaches adopted in studies of
ecosystem services do not explicitly consider how ecosystems
influence environmental variables such as geomorphology, soils,
water availability (rivers, groundwater) and climate, or how local
communities may use or value these properties and services.
Despite this importance, only a few studies on ecosystem services
are set in a broader environmental context (e.g., Egoh et al.,
2009; Pettinotti et al., 2018; Balbi et al., 2019). This omission
is surprising given the wide literature on the relationship of
ecosystem service provision to land degradation (e.g., Smiraglia
et al., 2016; Sutton et al., 2016; Tarrasón et al., 2016; Turner et al.,
2016; Cerretelli et al., 2018). In addition, environmental services,
provided by or contingent upon the physical landscape, have not
been explicitly considered as part of sustainable development
strategies in developing world contexts, or as key elements of
SDGs, despite the plethora of “nexus” approaches that are linked
to examination of the SDGs (Cumming et al., 2017; Nhamo, 2017;
Omisore, 2018; Dawson et al., 2019; Jiménez-Aceituno et al.,
2020; Nhemachena et al., 2020).

Based on this discussion, it is evident that there are limitations
of ecosystem services alone to apply to the wide range of
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FIGURE 3 | Illustration of different types of environmental resources [informed by Gray (2004), Millennium Ecosystems Assessment (2005)]. Note that ecosystem

resources and services are a subset of broader environmental resources and services.

environmental factors that give rise to changes in the physical
or human environments, or to describe their interconnections.
This does not mean that ecosystem service approaches are
not useful either on their own merit or in addressing the
SDGs, but merely that they do not explicitly consider wider
environmental factors as contributors to ecosystem processes
and therefore service provision. For this reason, landscape-scale
environmental factors (e.g., geology, geomorphology, soils, water,
climate) can be considered as environmental resources that are
potentially available for use by other Earth systems and by human
activity (Figure 3). In so doing, these environmental resources
then provide a range of environmental services. This approach
therefore views human activity and human intervention in
Earth systems as a key component in the provision and use
of environmental resources on a global scale (e.g., Knight and
Harrison, 2014; Knight, 2015), therefore that environmental
resources and human activity are intimately related (Figure 4).
This contrasts with many studies that view ecosystem services
as some fixed, pre-existing and inherent entity of the physical
environment that is separate from human activity and the
human world, and that human activity seeks only to draw from
ecosystem services rather than interact with it (e.g., Chaigneau
et al., 2019; Lhoest et al., 2020). In the Anthropocene, several
studies show that environmental resources (sensu lato) are
vulnerable as a result of human activity and climate change in
combination (Knight, 2015; Bradshaw et al., 2021), which sets
the scene for their more careful examination with respect to
achieving future developmental benchmarks such as the SDGs.
Environmental resources can be classified into biophysical,
geomorphic, climatic, anthropogenic, and cultural resources
types (Figure 3). Relationships between these take place along
a continuum between those resources that are wholly related
to the physical environment, and those that are wholly related
to the human environment (Figure 4). The applicability of an
environmental resources and services approach to examining

FIGURE 4 | Illustration of how environmental resources and services link

together aspects of the physical environment and human activity, in contrast to

many studies of ecosystem services.

soil, food, and water systems is now presented. The purpose of
this more detailed analysis is to highlight how an environmental
service approach is more useful and integrative, compared to a
reductive nexus approach.

Environmental Services and Soil, Food,
and Water Systems
Soil, food, and water systems can not only be conceptually related
to each other (cf. nexus studies; Figure 1) but also to other
environmental systems. As such, a reductive nexus approach
does not describe the interrelations between individual elements
and their wider environmental contexts. Figure 5 builds from
Figure 1 by taking all the integrated factors that link soil, food,
and water systems together and grouping them according to
their major controls. These different factors are color coded
according to whether they broadly correspond to soil, food, or
water systems. This shows that environmental services provided
by soil, food, or water systems are influenced by a range of
different factors (Figure 5). Further, individual elements can
also be considered as providing environmental services to
other elements, which highlights the intersectionality between
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FIGURE 5 | Grouping of different factors that link soil, food, and water systems together (Figure 1) according to their major controls. The different factors are color

coded according to whether they correspond to soil (brown), food (green), or water (blue, following Figure 1).

FIGURE 6 | The nature of cascading systems as applied to soil-food-water systems examined in this study.

environmental resources, their services, and commodification
of these elements by local communities. Here it is argued
that a useful conceptual framework for understanding the
interconnections between these different elements is that of a
cascading system, in which there are active feedbacks between
different elements that are driven by flows of energy and
matter. These cascading systems and their applications to the
environment are now examined.

Cascading Environmental Systems
The concept of cascading systems refers to how information and
energy is dispersed (cascaded) amongst the constituent elements
of a network, within and between each system and subsystem
(Figure 6). A key property of cascading systems is that, through

feedback processes, dynamic equilibrium of the system as a whole
can be maintained (Pratt and Eslinger, 1997). This conforms
with the workings of feedbacks in Earth Systems (Clifford
and Richards, 2005). Cascading systems are best considered as
“bottom-up” systems subject to self-organization, in which the
nature of their network relations (network topology) emerge
over time as energy and matter flow through the system (Pratt
and Eslinger, 1997; Gleeson and Durrett, 2017). These are non-
dimensional systems and thus do not correspond to any specific
spatial or temporal scales (Gleeson and Durrett, 2017) but are
subject to system perturbations that have impacts on system
dynamics, including non-linear and lagged forcing–response
relations (Young et al., 2017). These properties of cascading
systems match well with the ways in which physical processes
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of weathering, erosion and ecosystem changes are experienced
in the landscape, which can also be considered to operate under
non-dimensional boundary conditions (e.g., Molden and Bos,
2005).

The cascading nature of integrated soil–food–water systems is
now examined, and this takes place in the wider context of Earth
Systems in which there are feedbacks within and between each of
these different elements (Figure 6), and where both physical and
human environmental factors are involved (Figure 1). Climate
forcing of weathering and erosion processes at a landscape
scale (Dixon et al., 2009) gives rise to the generation of loose
surface materials that transform into soil by development of
surface vegetation. By processes of negative feedback, bedrock
weathering rates decrease over time and this is accompanied by a
decrease in slope angle as progressive soil creep driven by gravity
takes place (Phillips, 2005). This gives rise to enhanced slope
sediment yield and therefore the net transfer of soil volume from
upper/midslope locations to mid/footslope locations (Figure 7).
Likewise, there are also feedbacks between soil properties,
runoff and surface ecosystems, and these include hydrological
(interception, root system uptake, surface desiccation) and
mechanical processes (anchoring processes that increase soil
strength and reduce erosivity) (Marston, 2010). Soil erosion
is enhanced under agricultural land uses where the natural
vegetation cover is replaced by sown crops of different types that
leave the soil surface bare after harvest, and where changes in soil
structure and chemistry take place by deep tillage and addition
of fertilizer (Vanwalleghem et al., 2017). Geological background
erosion rates on soil-mantled slopes is on the order of 0.001–
1mm yr−1 whereas under agriculture of different types this is
increased to 0.1–80mm yr−1 (Montgomery, 2007). Enhanced
soil erosion is therefore associated with a decrease in agricultural
yield (Montgomery, 2007; Vanwalleghem et al., 2017). However,
this is set against the concept of soil loss tolerance, in which
soil erosion operates until such a time as when agricultural
yields are negatively affected, prompting a management response
(Li et al., 2009). Thus, the relationship between soil and food
systems is influenced by feedbacks that also includes the human
environment, set within the context of Earth systems (Figure 6).

There is a positive relationship (r = 0.592) between soil
erosion loss and 30-min breakpoint rain intensity (EI30) (Kinnell,
2010), and this relationship has been used for predicting
spatial patterns of soil erosion loss in Africa under climate
change (Diodato et al., 2013). Studies have also identified
that ecological responses to climate change lead to changes in
agricultural productivity (Higgins et al., 2002). These reflect
temperature and precipitation changes as forcing factors for
phenological and primary productivity responses (e.g., Anderson
et al., 2015; Porkka et al., 2016) but these factors also
affect soil chemistry, nutrients, and carbon storage (Quinton
et al., 2010), and it is this that eventually affects outcomes
of food security (Kang et al., 2009; Sonwa et al., 2017).
Jägermeyr et al. (2016) suggested that more efficient water
use can increase kcal-equivalent production by 26% globally,
corresponding to increased volumetric global food production
by 41%. This highlights the co-relations between soil, food,
and water systems (Figure 6) and that this understanding can

FIGURE 7 | Example of soil erosion on an agricultural field, showing midslope

erosional gullies and soil deposition at the footslope (bottom of the image).

be applied to SDGs (Charlton, 2016; Nhemachena et al., 2018;
Newell et al., 2019).

Case Study: the Example of
Soil–Food–Water Systems in Limpopo,
South Africa
Limpopo Province in northeast South Africa is a rural and
semiarid region (mean annual rainfall of 598mm) where
there are more than 4 million smallholder and subsistence
farmers (Aliber and Hart, 2009). Farming is therefore a
key livelihood strategy and important for food security and
nutrition (van Averbeke and Khosa, 2007; Aliber and Hart,
2009; Musakwa et al., 2020b). Products include both staple
crops for consumption (maize, butternut, cabbage, beans) and
vegetable market crops for sale (spinach, lettuce, tomatoes,
carrots, onions) (Bharwani et al., 2005; Mahlangu et al., 2020;
Musakwa et al., 2020b) (Figure 8). Soil types in the region,
within the Limpopo River catchment, are mainly sandy loam
luvisols that are favorable for agriculture but which require
additional fertilizer (Molepo et al., 2017). Techniques used
include the application of manure and compost, crop rotation
and intercropping, and farmers are explicitly aware of the ability
of these methods to increase soil nutrients and reduce erosion
loss (Rusere et al., 2020). Water management is also a key
issue in this area and experimental studies have shown that
agricultural yields on sandy loam soils can be increased by up
to 20% with effective water management (Magombeyi et al.,
2018), and this can also increase vitamin availability at the
household level (van Averbeke and Khosa, 2007). Most (60%)
of surveyed smallholder farmers in central Limpopo report
challenges in accessing water, mainly through groundwater
boreholes (Chikozho et al., 2020). There may also be inadequate
rainwater storage facilities (e.g., Figure 8D), competition for
water between users, loss of water by infiltration, damage to

Frontiers in Sustainable Food Systems | www.frontiersin.org 8 July 2021 | Volume 5 | Article 687863

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Knight Environmental Services and Sustainable Development

FIGURE 8 | Examples of agricultural activities in Limpopo Province, South Africa. (A) Agricultural fields at Mamotintane, where the total farm size is 9 ha with

scattered rectangular farm plots for individual smallholder farmers. (B) A community-shared field (1 ha) at Segoptje. (C) A field 4 ha in size at Sickline with rectangular

farm plots. (D) Irrigation system used for watering crops during the dry season (photos: Rirhandu Chauke).

canals and furrows, and general increased aridity (Kativhu et al.,
2020).

Analysis of the challenges faced by smallholder farmers in
Limpopo shows that aspects of both soil, food, and water
systems are important, and that these are linked together in
several different ways (Radosavljevic et al., 2020; Rusere et al.,
2020). For example, food insecurity arises as a combination
of lack of education, job opportunities, mobility, health,
demographic factors, and other socioeconomic factors (Oni
et al., 2010; Ramos-Mejía et al., 2018). Smallholder farming
is therefore a life support strategy for more than just the
provision of food resources, being linked explicitly to SDGs
1, 2, 3, 11, 12, 13, 15 (see https://sdgs.un.org/goals) (e.g.,
Dawson et al., 2019; Newell et al., 2019). The success of
smallholder farmer activity in Limpopo has also been critically
linked to the presence and nature of government support
mechanisms, including social grants, training, and agricultural
extension (Kativhu et al., 2020). Some smallholder farmers
may also be part of cooperatives and this can help in
marketing of products, sharing of seeds and expertise, and
can increase resilience (Bharwani et al., 2005; Aliber and Hart,
2009; Mahlangu et al., 2020). This example from Limpopo
Province shows the interconnected nature of environmental
systems and services, and the important strategic role of
governance and management institutions in contributing toward
the success of soil, food, and water systems in the context of
sustainable development.

DISCUSSION

Understanding the relationships between soil, food, and water
systems is fundamental to addressing the SDGs in the context

of ensuring food and water security in the developing world.
Most previous studies, in particular those that take a nexus
approach, have a limited and reductive focus because they only
consider the narrow interconnections between soil, food, and
water, and not the wider environmental contexts that help frame
these interconnections (Figure 1). These interconnections are
well-demonstrated in Limpopo Province where the activities of
smallholder farmers are taken in response to the nature of soil,
water, and nutrient requirements for their crops, but which are
also affected by wider socioeconomic factors of the marketplace
and by certain government interventions. Consideration of
environmental services (e.g., Jonker, 2007; Pettinotti et al.,
2018) is a useful approach toward addressing the multiple
stressors that lead to societal vulnerabilities in sub-Saharan Africa
(Casale et al., 2010; Vogel et al., 2016; Falayi et al., 2019).
Several studies have identified the correspondence between
SDGs and aspects of the environment (sensu lato), including
climate and ecosystems (e.g., Walmsley, 2002; Cumming et al.,
2017; Nhamo, 2017; Omisore, 2018; Dawson et al., 2019) but
this recognition has not followed through into meaningful
developmental strategies that use environmental measures as
performance indicators (Nhemachena et al., 2018; Le Roux
and Pretorius, 2019; Jiménez-Aceituno et al., 2020). There is
therefore a disconnection between the driving factors behind
sustainable development, and the performance indicators used
for monitoring achievement of SDGs (e.g., Patole, 2018; Schipper
et al., 2021). This is clearly an issue for correctly identifying,
enacting and monitoring the success of sustainable development
strategies (Knight, 2015).

Management of environmental resources (Figure 3) is
commonly framed in terms of sustainable development
(Hallowes et al., 2008; Cumming et al., 2017; Falayi et al.,
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2019; Wolff et al., 2019), but an alternative viewpoint is
where socioecological processes between people and the
environment are also considered (e.g., Bowd et al., 2015;
Ramos-Mejía et al., 2018; Fedele et al., 2020; Herrfahrdt-
Pähle et al., 2020). Here, human activity can be viewed
as either an integrated element of the Earth system and
synergistically influencing ecological processes and ecosystem
services through feedback processes (Swemmer et al., 2019;
Musakwa et al., 2020a; Ragie et al., 2020), or as an external
driver of irreversible environmental change and degradation
(D’Alessandro and Zulu, 2017; Schmiedel et al., 2017; Ashukem,
2020). Balancing these different perspectives is necessary for a
more scientifically-grounded and evidence-supported basis for
(1) understanding of environmental issues (sensu lato) and their
contexts in the developing world and specifically sub-Saharan
Africa; (2) developing appropriate tools for engaging with
communities and other stakeholders on environmental and
sociocultural issues; (3) developing long-term strategies that
converge on achieving both specific SDGs and recognizing
the intersectionality of all SDGs with respect to the natural
environment and human communities; and (4) identifying
appropriate and multidimensional performance indicators
that can be used consistently and objectively to describe the
nature of environmental change, changes in environmental
resources and their services, and considering the functionality
of Earth and environmental systems that deliver these resources
and services in different ways. The concept of cascading
environmental systems, in which there are feedbacks between
and within different components within systems, provides a
more useful framework for describing and interpreting their
co-relationships (Figure 6). These relationships can also better
describe interconnections to the human environment and how
environmental resources and services are commodified and used
by individuals and communities.

CONCLUSIONS AND FUTURE RESEARCH
OUTLOOKS

Environmental resources and services provide the means to
fulfill the SDGs but the nature and dynamics of these resources
and services are still not well-known, in particular in sub-
Saharan Africa where food and water insecurity are significant
developmental issues (Casale et al., 2010; Omisore, 2018; Dawson
et al., 2019). It is notable that previous studies taking a nexus
approach to different issues including food, water, energy, waste,
climate, land, and economic growth do not explore the detailed
interconnections between these elements, or use the powerful
interpretive framework of Earth Systems (Table 1). This is a
key limitation of such studies. It also means that the data
required to inform on the success of SDGs have to consider the
nature and feedbacks of different variables that operate within
environmental and Earth systems. Examining these evidence-
based relationships from specific case studies is an important
future research priority.
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