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The multifactorial process of aging predisposes humans to infections and inflammatory

disorders, thus affecting their quality of life and longevity. Given this reality, the need to

increase the consumption of bioactive compounds, like dietary polyphenols emerges in

our daily basis mostly due to their health related effects in slowing-down the incidence

of chronic and degenerative diseases and even food allergy, which has been growing

rapidly in prevalence currently affecting 5% of adults and 8% of children. Polyphenols

embrace a large family of secondary metabolites from plant-derived foods and food

wastes and are considerable of interest since they have attracted special attention over

the years because of their reported anti-inflammatory and antimicrobial properties along

with their high antioxidant capacity. These compounds are claimed as nutraceuticals

with protective effect in offsetting oxidant species over-genesis in normal cells, and with

the potential ability to stop or reverse oxidative stress-related diseases. Plant-derived

foods represent a substantive portion of human diet containing a significant amount

of structurally diverse polyphenols. There is a need to understand the polyphenolic

composition of plant-derived foods mainly because of its chemistry, which discloses the

bioactivity of a plant extract. However, the lack of standardized methods for analysis and

other difficulties associated to the nature and distribution of plant polyphenols leads to a

high variability of available data. Furthermore, there is still a gap in the understanding of

polyphenols bioavailability and pharmacokinetics, which clearly difficult the settlement

of the intake needed to observe health outcomes. Many efforts have been made to

provide highly sensitive and selective analytical methods for the extraction (liquid-liquid;

solid-liquid; supercritical-fluid), separation (spectrophotometric methods) and structural

identification (chromatographic techniques, NMR spectroscopy, MS spectrometry) of

phenolic and polyphenolic compounds present in these extracts. Liquid chromatography

coupled to mass spectrometry (LC-MS) has been a fundamental technique in this area

of research, not only for the determination of this family of compounds in food matrices,

but also for the characterization and identification of new polyphenols classified with

nutraceutical interest. This review summarizes the nature, distribution and main sources

of polyphenols, analytical methods from extraction to characterization to further evaluate

the health effects toward immune reactions to food.
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PAST, PRESENT AND FUTURE IN
POLYPHENOLS UPCYCLE

In the last years, the agricultural and food sector has been
challenged with a continuous growing demand for nutritious
foods, owing to the dramatic increase of world’s population
and changes in human dietary habits (Mathys et al., 2018). At
present, it is estimated that more than 800 million people around
the globe are still suffering from hunger, even though recent
numbers indicate that almost one third of the food destined for
human feeding is lost or wasted (Garcia-herrero et al., 2019).
The agricultural sector generates, by now, ∼140 billion tons of
organic wastes per year (Dedousi et al., 2017; Zuin and Ramin,
2018; Gullón et al., 2020). In an attempt to control such trend,
the agri-food sector is now starting to implement cleaner, and
sustainable, production strategies that seek to combine process
efficiency to food quality and safety (Esparza et al., 2020). As a
result, agro-industrial wastes such as stalks, leaves, bark, roots,
straw residues, bagasse, wood and seeds that were once seen
as unimportant materials and, as a consequence, discarded, are
revealing themselves to be an outstanding source of bioactive
and health-promoting compounds (Dedousi et al., 2017; Panzella
et al., 2020).

The consumption of plant-based foods, including not only
fruits and vegetables, seeds or cereals but also derived foodstuffs
and beverages, has been claimed to be beneficial for human
health by the scientific community and general public (Atta
ur and Iqbal Choudhary, 2015). Consumers are progressively
interested in foods that not only meets nutritional requirements
but also improves physical performance and promote health
and well-being while reducing environmental stress (Tresserra-
rimbau et al., 2014; Gowd et al., 2019; Serino and Salazar, 2019;
de Araújo et al., 2020). This challenge has led the agri-food
sector to develop novel processes capable of recovering waste by-
products generated during collection, processing, and storage of
food items (Zhu et al., 2020). Regarding this, a growing interest
has emerged in the valorization of these agri-food by-products
in order to improve the sustainability of the food industry and
reduce environmental problems involved in the management
of these residues (Barba et al., 2017; Zuin and Ramin, 2018).
Apart from their functionality as a source of energy, agri-food
by-products should also be considered as value-added residues
due to their chemical heterogeneity and content of bioactive
compounds for subsequent applications in pharmaceutical, food
and cosmetic sectors (Piccolella et al., 2019). These applications
may range from functional food ingredients to nutraceuticals
or even for obtaining other valuable bio-products, contributing
not only for a sustainable and circular economy but also for
the implementation of zero waste politics (Mirabella et al., 2014;
Esparza et al., 2020).

Among all bioactive compounds found in agro-industrial
wastes, polyphenols have become an emerging field of interest
and research in several areas, not only for nutritionists but
also for food scientists (Perez-Gregorio and Simal-Gandara,
2017; Santhakumar et al., 2018; Dias et al., 2020). Polyphenols,
organic bioactive compounds known as secondary metabolites
of plants are of considerable physiological and morphological

importance in plants. In the last century, several clinical and
epidemiological studies revealed that they possess a strong
antioxidant capacity and anti-inflammatory properties that could
have preventive or/and therapeutic effects for degenerative
diseases, cardiovascular diseases, neurodegenerative disorders,
cancer, obesity and food allergy (Kobernick and Burks, 2016;
Mrduljaš et al., 2017; Cory et al., 2018; Gullón et al., 2020). Given
these health benefits, the determination and characterization
of polyphenols in foods to evaluate their bioavailability and
bioactivity is becoming one of the most important research
areas in food analysis (Lucci et al., 2017; Perez-Gregorio and
Simal-Gandara, 2017). Conducting and adequate polyphenols
extraction and characterization is crucial to further correlate
the health outcomes. Indeed, significant efforts have been made
in recent years to develop extraction methods for polyphenol
recovery either directly from food products or from agri-food
wastes (Domínguez-Rodríguez et al., 2017; Pinela et al., 2017;
Panja, 2018; Routray and Orsat, 2019; Altinok et al., 2020;
Esposito et al., 2020; Gómez-mejía et al., 2020). However, these
techniques present several issues related to polyphenol stability
during extraction process and to solvent toxicity, raising concerns
about environmental damage and human health (Kelly et al.,
2019; Yu et al., 2020). Regarding this, in the last decade, a
demand for new extraction techniques has increased searching
for higher extraction efficiency while reducing the extraction
time, but also considering the ecological footprint of extraction
procedures (Maroun et al., 2018; Panja, 2018; Piccolella et al.,
2018; Kelly et al., 2019; Ballesteros-Vivas et al., 2020; Pimentel-
Moral et al., 2020). Moreover, the analysis and characterization
of polyphenols in food samples is quite complex not only due to
their high diversity in plant based-foods and beverages but also
because of the high complexity of food matrices (Manach et al.,
2004; Lucci et al., 2017; Vuolo et al., 2018). Given the relevance
of the subject, this review summarizes the main extraction
methods as well as the main analytical techniques employed in
the polyphenols characterization to further use these polyphenols
as modulators of immune reactions to food. The biological
mechanisms as well as application to use polyphenols to prevent
food allergies was adopted through a nutritional point of view in
a circular economy approach.

POLYPHENOLS IN AGRICULTURAL
BYPRODUCTS AND FOOD WASTE:
CHEMISTRY AND OCCURRENCE

Valorization of agri-food wastes has become a major priority
to improve the sustainability of the food chain, minimizing
environmental impacts and contributing to a circular economy
based on zero waste policies (Rodriguez et al., 2020). In order
to obtain potentially marketable polyphenols from agri-food
wastes, sustainable, environmentally friendly and feasible low-
cost processes need to be developed (Papaioannou et al., 2020).
Understanding the chemistry and nature of polyphenols is the
key for these purposes. They are present in almost all foods
from plant origin such as fruits, vegetables and beverages, and
include more than 8,000 structural variants (Belščak-Cvitanović
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et al., 2018). Polyphenols are plant secondary metabolites,
synthesized through different pathways such as the shikimate
or phenylpropanoid as well as pentose phosphate one. They
are generally involved in plant defense and protection (Vuolo
et al., 2019), contribute to the growth and reproduction of plants
and have an important role in the organoleptic properties of
vegetables and fruits (de Araújo et al., 2020). Polyphenols are
classified into two main groups depending on their structural
features such as the number of phenol rings and structural
elements that links these rings to one another: non-flavonoids
(phenolic acids, stilbenes and lignans) and flavonoids (flavones,
flavonols, flavanols, flavanones, isoflavones, and anthocyanins)
(Libro et al., 2016). Polyphenols classification is summarized in
Table 1 and the chemistry and nature of each group are described
as follows:

Non-flavonoids
Phenolic Acids
Phenolic acids are broadly found all over the plant kingdom and
can be divided into benzoic and cinnamic acids (Stalikas, 2007).
These non-flavonoid compounds represent almost 30% of total
dietary polyphenols (Belščak-Cvitanović et al., 2018). Benzoic
acid derivatives are characterized by one carboxylic group
(COOH). The most common ones are gallic, protocatechuic,
vanillic and ρ-hydroxybenzoic acids. Usually, the amount of
benzoic acids found in edible plants is not high, but in certain red
fruits and onions they can reach several tens of milligrams per
kilogram of fresh weight (Lucci et al., 2017). The most common
cinnamic acid derivatives are ρ-coumaric (the most abundant
isomer), ρ-hydroxycinnamic, sinapic, caffeic and ferulic acids.
Despite their occurrence in nature as both cis and trans isomers,
in plants, cinnamic acids appears mainly as trans isomers
(Manach et al., 2004; de Araújo et al., 2020). Furthermore,
phenolic acids should appear in nature free or conjugated to
sugars and low-molecular-mass components.

Stilbenes
Stilbenes are produced by plants in response to injury and
infections, but very low quantities are found in the human
diet (Manach et al., 2004; Belščak-Cvitanović et al., 2018). Only
resveratrol is considered important to human health, being grape
skins, red wine, peanuts, blueberries and cranberries the main
sources of this compound. Pterostilbene, a compound chemically
related to resveratrol, is also found in grapes and blueberries; due
to high antioxidant capacity, it is also considered important to
human health (Mrduljaš et al., 2017).

Lignans
Lignans are composed by two phenylpropane units. This
small class of compounds are mainly found in linseed,
which predominantly encloses secoisolariciresinol. Lower
concentrations of lignans can also be found in grains and
cereals such as oat, wheat, rye and barley; some fruits such
as strawberries or apricots and certain vegetables from the
Brassica genera like cabbage or broccoli (Calderón-Oliver and
Ponce-Alquicira, 2018). Despite being a small family, it should be
noticed that the intake of food containing lignans has been linked

to prevention of cardiovascular diseases and cancers (Durazzo
et al., 2019). Lignin is a random oxidative polymerization of
lignans and have been considered as the most naturally abundant
and important biopolymer substance in plant cell walls, exceeded
only by cellulose.

Flavonoids
Flavonoids are widely distributed in plants, especially in fruits
and vegetables. They have been extensively studied over the past
few years due to their important role in synthesis of enzymes and
vitamins, in minimizing lipid peroxidation and in influencing
the organoleptic characteristics of foods (Del Rio et al., 2013;
Belščak-Cvitanović et al., 2018; Durazzo et al., 2019). Structurally,
they consist in an oxygenated heterocycle (C) linked to two
aromatic rings (A and B) with a three-carbon bridge. This 15-
carbon skeleton structure is usually referred to as C6-C3-C6.
Flavonoids can be divided in six subclasses according with the
degree of oxidation of the C ring and the position and number of
hydroxyl groups: flavanols, flavones, flavonols, anthocyanidins,
flavanones, and isoflavones (Durazzo et al., 2019). Each group
contains a huge number of structural variations due to chemical
substitutions such as glycosylation, acylation or alkylation (Birt
and Jeffery, 2013; Calderón-Oliver and Ponce-Alquicira, 2018).
The content of flavonoids in fruits and vegetables depend on
several factors, including genetic factors, climatic and agronomic
conditions or ripening. Usually, flavonoids are found in plants
under the form of glycosides. Despite their high bioactivity, their
bioavailability when ingested is very low (Vuolo et al., 2018).

Flavonols
Flavonols are one of the most abundant flavonoids in plant
kingdom. They are usually glycosylated with glucose or rhamnose
residues but other mono or di-saccharides may also be involved
(El Gharras, 2009; Del Rio et al., 2013). Quercetin, kaempferol,
and myricetin are the main flavonols found in vegetables such
as broccoli, onions, kale and tomatoes and fruits like apricots,
cranberries, grapes and apples (Lucci et al., 2017).

Flavones
In general, flavones are not found in fruits and vegetables,
but in aromatic herbs such as parsley or even celery (Manach
et al., 2004). Structurally, they can occur in hydroxylated,
methylated, -glycosylated and/or alkylated forms (Del Rio et al.,
2013). Examples of flavones include luteolin, apigenin, tangeritin,
chrysin, scutellarein, 6-hydroxyflavone, wogonin, and baicalein.
Some of these compounds are mainly found in citrus fruits
such as tangerine and orange and are highly hydrophobic
(El Gharras, 2009).

Isoflavones
Isoflavones have been identified almost exclusively in leguminous
and grain plants such as soya and soybeans. Its main
representatives are daidzein, genistein, glycitein, and biochanin
A. These flavonoids have an estrogen-like structure, and thus, are
classified as phytoestrogens. They have the potential to be used as
natural alternatives to traditional hormone therapies (Lucci et al.,
2017; Durazzo et al., 2019).
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TABLE 1 | Polyphenols classification.

Non-flavonoids Phenolic acids

Benzoic acids

R1 = R2 = OH, R3 = H: Protocatechuic acid

R1 = R2 = R3 = OH: Gallic acid
Cinnamic acids

R1 = OH: Coumaric acid

R1 = OCH3, R2 = OH: Ferulic acid

Citrus peels (Ma et al., 2009)

Grapes (seed and skin) (Maier et al.,

2009)

Potato peel (Zeyada et al., 2008)

Stilbenes R1 = R2 =R3 = R4 = OH:

Oxyresveratrol

R1 = R2 = R4 = OH, R3 = H:

Resveratrol

R1 = R2 = R3 = R4 = H:

Trans-stilbene

Grape by-products (Casas et al.,

2010)

Lignans Secoisolariciresinol Triticale straw (Monteil-Rivera et al.,

2012)

Flaxseed cake (Boussetta et al., 2013)

Flavonoids Flavonols R1 = R2 = OH, R3 = H: Quercetin

R2 = OH, R1 = R3 = H: Kaempferol

R1 = R2 = R3 = OH: Myricetin

Onion skin (Ko et al., 2011)

Mango peel (Berardini et al., 2005)

Flavones R1 = R2 = OH: Luteolin

R1 = H, R2 = OH: Apigenin

Lemon and orange peel and pulp

(Russo et al., 2015)

Isoflavones R1 = OH: Genistein

R1 = H: Daidzein

Soy seeds (Popa and Rusu, 2017)

Flavanones R1 = OH, R2 = OCH3: Hesperidin

R1 = R2 = OH: Eriodictyol

R1 = H, R2 = OH: Naringenin

Citrus peel (Giannuzzo et al., 2003)

Tomato peels and seeds (Kelebek

et al., 2017)

(Continued)
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TABLE 1 | Continued

Flavanols R1 = H, R2 = R3 = R4 = H: (+)-

Gallocatechin

R2 = H, R1 = R3 = R4 = OH: (-)-

Epigallocatechin

R1 = R3 = H, R2 = R4 = OH: (+)-

Catechin

R1 = R4 = OH, R2 = R3 = H: (-)-

Epicatechin

Grape seeds (Yilmaz et al., 2011)

Green tea leaves (Chang et al., 2000)

Anthocyanidins

(flavilium cation)

R1 = R2 = OCH3: Malvidin

R1 = R2 = OH: Delphinidin

R1 = OCH3, R2 = H: Peonidin

R1 = OCH3, R2 = OH: Petunidin

R1 = OH, R2 = H: Cyanidin

Grape skin (Cvjetko Bubalo et al.,

2016)

Wine lees (Bosiljkov et al., 2017)

Grape pomace (Panić et al., 2019)

Flavanones
Flavanones are highly present in citrus fruits but can also
be found at lower concentrations in tomatoes, spices and in
some aromatic plants such as mint (El Gharras, 2009). Usually,
this group of polyphenols is bound to one or two sugars
moieties, and less frequently found as aglycones (Del Rio et al.,
2013). Solid parts of citrus fruits have a very high flavanone
content; they contain up to five times as much as orange
juice serving. Generally, flavanones include aglycones such as
hesperetin, naringenin, eriodictyol, and their glycosidic forms,
namely naringin, neohesperidin, narirutin, and hesperidin (Lucci
et al., 2017; Calderón-Oliver and Ponce-Alquicira, 2018).

Anthocyanidins
Anthocyanidins are responsible for providing color to plant
tissues such as stems, leaves, roots, flowers and fruits. The
chemistry of anthocyanins is a little bit complex varying
according with the pH. Their color range from red to purple
and blue depending on the species in equilibrium (Manach
et al., 2004). Besides their role as water-soluble pigments,
anthocyanidins also contribute to taste modeling astringent
sensations, even though they are odorless and flavorless.
Anthocyanidins are considered one of the most important
flavonoids classes and can be found in colored fruits like berries,
cherries, red cabbage, eggplant, red onion, and red wine (Lucci
et al., 2017; Calderón-Oliver and Ponce-Alquicira, 2018). Due to
their instability in the aglycone form, they are usually present in
fruits and vegetables in the form of glycosides (anthocyanins),
such as malvidin, delphinidin, peonidin, petunidin, cyanidin,
among others (Del Rio et al., 2013). In this form, anthocyanins in
fruits and vegetables provide resistance to light, pH and oxidation
(Mrduljaš et al., 2017).

Flavanols
Flavanols are the most complex class of flavonoids, ranging from
simple monomers to oligomers and polymers (also known as
condensed tannins or proanthocyanidins). Contrary to other
flavonoids, flavanols do not appear in plant-based foods and

beverages glycosylated (Del Rio et al., 2013). Monomeric
flavanols such as catechin and epicatechin can be found in high
concentrations in red wine, green tea and chocolate, whereas
epigallocatechin, gallocatechin and epigallocatechin gallate are
found in certain seeds, grains or grapes, and in green tea (Manach
et al., 2004; El Gharras, 2009). Proanthocyanidins made of
catechin units are named procyanidins. Usually these compounds
are the main responsible for the astringency of some fruits and
beverages are the most ubiquitous type of proanthocyanidins
found in plants (Mrduljaš et al., 2017).

Despite the great structural diversity among polyphenols
(Figure 1), little isolated compounds or extracts have been
assayed as modulators of food allergy. Indeed, related
information is summarized in Table 2. As shown, different
mechanisms were proposed, as further in-detail discussed, but
little is known regarding the structure-activity relationship. Both
polyphenol-rich extracts as well as isolated compounds were
tested. A higher anti-allergic activity was generally observed in
extracts instead of pure compounds (Tokura et al., 2005; Shim
et al., 2009a; Zuercher et al., 2010). Likewise, flavonoid aglycones
appeared to present a stronger histamine release-inhibitory
activity and cytotoxicity than glycosides. Among flavonoids, it
has been highlighted that flavonols require a 3-OH group for
inhibitory activity while a 3-O-glycoside group may sterically
hinder the active site of the aglycone. At the same, the presence
of a 4’-hydroxyl group enhanced the activity of flavones while
c-glycosilated flavones are less active. Overall, the glycosylation
and methylation patterns was probed as able to influence the
immunomodulatory effect of polyphenols in flavonols and
flavones. However, the activity of anthocyanins, as well as the
polymerization grade in flavan-3ols or structural key motifs in
non-flavonoid compounds have not been studied jet.

Innovative Green Extraction Technologies
Applied to Agri-Food By-Products
Sample treatment is considered a crucial step before the
extraction, isolation and characterization of compounds. The

Frontiers in Sustainable Food Systems | www.frontiersin.org 5 July 2021 | Volume 5 | Article 623611

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Bessa et al. Waste Polyphenols and Food Allergy

FIGURE 1 | Diversity in polyphenols structures and families.

major objectives of this process are to improve sample stability,
to increase extraction efficiency, to remove impurities and
to convert the analytes into a suitable form for detection,
separation or quantification (Kontogianni, 2014; Pyrzynska and
Sentkowska, 2019).

Solid samples usually follow pretreatment processes such as
milling, grinding or sieving and homogenization. The latter
are generally preceded by air drying or freezing with liquid
nitrogen and freeze-drying in order to prevent or stop enzymatic
activities. On the other hand, liquid samples can be treated
by filtration, centrifugation, and purification before extraction
(Khoddami et al., 2013; Kontogianni, 2014). Usually, solid phase
extraction (SPE) is used as a pre-cleaning step to remove
interfering elements from samples, allowing polyphenol isolation
and determination (Pyrzynska and Sentkowska, 2019). The most
used material for SPE is chemically bonded silica, typically with
a C8 or C18 organic group, but other type of resins such as
Sephadex LH-20, polyamide and amberlite have also been used
to remove interfering compounds or to concentrate analytes
(Kontogianni, 2014).

The extraction of polyphenols from agri-food by-products
and food-based products is fundamental to obtain the
desired compounds for further analytical characterizations
(Kontogianni, 2014; Chemat et al., 2019). As already referred,
extraction techniques have been classified into conventional
techniques and green technologies (Pimentel-Moral et al.,
2020). The conventional extraction methods include solid-liquid
extraction and liquid-liquid extraction, using heat and/or
mixing with organic solvents such as acetone, hexane, methanol,
ethanol or ethyl acetate. These extraction methods depend on
several factors such as pressure, extraction time and pH (Louis

et al., 2019; Gullón et al., 2020) and presents some difficulties
associated with the thermal degradation of target compounds
due to the high temperature employed (Pimentel-Moral et al.,
2020). Considering this, great efforts have been made to develop
emerging extraction techniques based in clean and sustainable
practices focused on minimizing the use of solvents, energy
and materials that are unsafe to human health and to the
environment (Zuin and Ramin, 2018; Chemat et al., 2019).
Recent technologies have been recently developed in order to
control undesirable effects on the bioactivity and structure of
polyphenols during extraction processes, such as microwave-
assisted extraction (MAE), pressurized liquid extraction (PLE),
ultrasound-assisted extraction (UAE) and supercritical fluid
extraction (SFE) among others (Mourtzinos and Goula, 2019;
Kumar, 2020). These greener extraction techniques are known
for their short extraction time, reduced volume of organic
and unsafe solvents and high efficiency with lower energy
consumption when compared to conventional extraction
methods (Belwal et al., 2018).

Ultrasound-Assisted Extraction
This extraction method is based on the creation of cavitation
bubbles when ultrasound waves pass through the extraction
system, creating alternate decompression and compression
cycles, which result in the compression and expansion of bubbles.
When this bubbles grow too large to be contained by the
surface tension force, they collapse, thus creating localized high
pressure and temperature zones that cause plant tissues rupture
and improve the release of intracellular compounds into the
solvent (Magaton et al., 2020; Pimentel-Moral et al., 2020). This
extraction method can be affected by several factors such as
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TABLE 2 | Polyphenols assayed and mechanisms probed as modulators of food allergies.

Polyphenol Experimental study Biological action Food Allergy References

Epigallocatechin

gallate

Protein-polyphenol

complexation

Conformational changes Milk allergy

(lactalbumin)

Wang et al., 2014;

Al-Hanish et al., 2016

Epigallocatechin

gallate

Protein-polyphenol

complexation

Conformational changes Peanut allergy Vesic et al., 2015

Apple extract

Pomactiv HFV and

quercetin

Mouse model Impair the presentation

to dendritic cells

Ovalbumin model Zuercher et al., 2010

Red wine and coffee

polyphenols

In vivo-gut microbiota Increase bacterioides Inflammation

biomarkers-rhinitis

allergic asthma

Singh et al., 2017

Fruit, seed, wine and

tea polyphenols

In vivo-gut microbiota Decrease clostridium Inflammation

biomarkers-general

health status

Singh et al., 2017

Apple crude extract,

apple condensed

tannins, epicatechin,

chlorogenic acid,

phlorizin

Mast cell degranulation

in vitro (RBL-2H3 cells

and rat mast cells)

Histamine release Allergy universal

model

Kanda et al., 1998

Psidium guajava

extracts

Mouse model-C57BL/6

mice

Inhibition Treg cells – Seo et al., 2005

Polyphenol-enriched

apple extracts

Mast cell degranulation

in vitro

Binding between

polyphenols and IgE -

FcεRI

Allergy universal

model

Tokura et al., 2005

Ferulic acid,

chlorogenic acid,

caffeic acid

Western blot IgE binding Peanut allergy Chung and

Champagne, 2009b

Ecklonia cava extract Mast cell degranulation

in vitro (KU812F cells)

Binding between

polyphenols and IgE -

FcεRI

Allergy universal

model

Shim et al., 2009a

Perilla frutescens

extract, apigenin

In vivo-BALB/c mice

Mast cell degranulation

in vitro - RBL-2H3 cells

Mast cell degranulation

Histamine release

FcεRI cross-linking

Japanese cedar

pollinosis

Kamei et al., 2017

Green tea polyphenols Protein-polyphenol

complexation

Digestion process Egg allergy

(ovalbumin and

lysozyme)

Shen et al., 2014

Ferulic acid Mouse model Inflammation biomarkers Atopic dermatitis Zhou et al., 2020

Cocoa enriched diet In vivo-gut microbiota Inflammation biomarkers – Camps-Bossacoma

et al., 2019

Polyphenol-rich diet In vivo-gut microbiota Metabolic parameters – Singh et al., 2011; Mine

et al., 2020

Green tea, black tea,

oolong tea

In vivo-gut microbiota

Polyphenols

Bioavailability (caco-2

cell model)

Metabolic parameters

Epithelium transport

Gut bacteria proliferation

– Sun et al., 2018

ultrasound power and solvent composition or extraction time
and temperature (Vieira da Silva et al., 2016). Usually, two
types of equipment are employed, namely, ultrasonic probe and
water bath system fitted with horn transducers (Panja, 2018).
UAE is a green and efficient way to increase mass transfer,
requiring reduced quantities of solvent and without specific
solvent requirements (Dedousi et al., 2017; Contreras et al.,
2020). Additionally, this extraction method is considered a rapid
and sustainable alternative to conventional methods and it can
be scaled up to industrial scales (Briones-Labarca et al., 2015;
Meregalli et al., 2020; Saifullah et al., 2020).

Microwave-Assisted Extraction
Microwave-assisted extraction (MAE) is an emerging technology,
that consists in the insertion of solvent and sample in a closed
vessel using radiation to raise the temperature of the solvent
above its boiling point. This heating process causes the rupture
of the cell membrane, increasing polyphenol extraction (Kelly
et al., 2019). Many aspects may affect this extraction method such
as extraction time or temperature, solvent, sample-to-solvent
ratio and microwave power. The capacity to absorb microwave
radiation is the key factor when choosing the solvents to be
used for extraction. This extraction process is quick, uses lower
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solvent volume, can be performed in the absence of light and
allows the extraction of polyphenols with similar yields when
compared to conventional methods. Therefore, MAE is a useful
methodology to extract and concentrate polyphenols in a single
step (Mourtzinos and Goula, 2019; Kumar, 2020).

Pressurized Liquid Extraction
PLE occurs inside a closed and inert reaction vessel at high
pressures (3.3–20.3 MPa), allowing the use of temperatures well
above the boiling point of some common solvents (40–200◦C).
This improves the solubility and mass transfer of compounds,
consequently raising the extraction efficiency (Ballesteros-Vivas
et al., 2020; Pimentel-Moral et al., 2020). Matrix properties, type
of solvent, extraction time and temperature are fundamental
factors that determine PLE efficiency. When water is used
as a solvent, PLE is commonly called pressurized hot water
extraction, being this process entirely environmentally friendly
and economically viable. Therefore, PLE is considered an energy
saving methodology and environmentally safe as the most used
solvents are water and ethanol, which are considered GRAS
(Generally recognized as Safe) solvents (Kelly et al., 2019).

Supercritical Fluid Extraction
This extraction method is based on the use of gases, mostly
CO2, above or near critical temperature and pressure (Panzella
et al., 2020). In these conditions, fluids behave like a single phase,
displaying the properties of both liquid and gas at the same time.
Fluid disperses into the solid matrix like a gas and dissolves target
compounds like a liquid (Maroun et al., 2018). This extraction
process is highly dependent on temperature and pressure. CO2

is the most attractive fluid for SFE since it is non-toxic, non-
flammable, chemically inert, cheap and widely (Kelly et al., 2019).
The addition of a co-solvent can modify the polarity of the
scCO2 allowing the extraction of more polar molecules (Panzella
et al., 2020). Usually, SFE uses extraction temperatures between
30 and 70◦C. Also, this extraction process can be scaled up to
an industrial size (Carabias-Martínez et al., 2005; Herrero et al.,
2010). Although this technology involves easy operation, low
production costs and high extraction efficiency, there has to be
a significant investment in equipment need to be made to make
the process viable (Wang et al., 2016).

Despite the great diversity in extraction methods little is
known regarding the impact in the biological activity. A recent
study reveals that solvent extracts had a remarkable influence on
polyphenols characterization and activity, confirming the strong
correlation between phytochemical constituents and antioxidant
activities (Bouasla et al., 2021). However, most studies focused in
analyzing the anti-allergic activities of polyphenols have not deep
in the extracts characterization and effects of extraction methods.
In the face of the priority to obtain sustainable agri-food systems,
is mandatory to evaluate the gap between the extraction methods
and their impact in bioactive compounds characterization and
further biological effect.

CHARACTERIZATION OF POLYPHENOLS

The analysis of polyphenols in complex extracts requires efficient
separation methods prior to their detection. Despite a high

number of investigations, the separation and quantification
of polyphenols in food matrices remain difficult, particularly
if there are polyphenols from different groups (Naczk and
Shahidi, 2004; Khoddami et al., 2013). High performance
liquid chromatography (HPLC) has been the main technique
to separate, characterize, and quantify polyphenols in
the last 20 years. Some other relevant techniques include
spectrophotometric assays (Kontogianni, 2014).

Spectrophotometric Assays
The Folin-Denis and Folin-Ciocalteu methods are relatively
simple and have been commonly used to measure total phenolics
in foods and plant materials for many years. The theoretical
basis behind these methods are based on the chemical reduction
of tungsten and molybdenum-containing salts, whose products
have a broad light absorption around 760 nm (Khoddami et al.,
2013). Besides the low cost and simplicity of these methods, the
results are prone to overestimations because the Folin reagent
reacts not only with polyphenols but also with compounds
with reducing groups like sugars. These methods are suitable
to obtain a global estimation of total phenolic compounds; yet,
they do not offer a quantitative measurement of individual
compounds. Therefore, more precise and exact methods such
as chromatographic techniques are needed for qualitative and
quantitative analyses (Naczk and Shahidi, 2004; Domínguez-
Rodríguez et al., 2017).

Chromatographic Assays: High
Performance Liquid Chromatographic
High performance liquid chromatographic techniques are now
most widely used for both separation and quantitation of
polyphenols (Naczk and Shahidi, 2004). This technique has
not only the capacity to analyze all components of interest
simultaneously but also their derivatives and degradation
products. The chromatographic conditions of the HPLCmethods
include the use of a reversed-phase C18 column or alternatively
a C8, a UV-Vis diode array detector and a binary solvent
system containing acidified water (solvent A) and a polar organic
solvent (solvent B) (Ignat et al., 2011). Generally, the most
used organic solvents are acetonitrile and methanol. A common
strategy to suppress the ionization of phenolic hydroxyl groups
is to acidify solvents using acetic or formic acid, which also
improves the resolution and reproducibility of the retention
characteristics (Stalikas, 2007). Chromatographic separation
depends mainly on the molecular weight, stereochemistry,
polarity of the analytes and on matrix complexity. Reverse phase
(RP) HPLC-DAD is the mostly used tool for the separation
and determination of polyphenols. However, because the UV
spectra of polyphenols are often very similar to each other,
one needs to apply modern high-performance chromatographic
techniques combinedwith instrumental analysis like NMR anMS
for structural identifications (Ignat et al., 2011; Khoddami et al.,
2013; Dzah et al., 2020).

Mass spectrometry coupled to liquid chromatography is a very
useful analytical technique not only for quantitative analysis but
also to elucidate the chemical structure of known and unknown
compounds (Khoddami et al., 2013). This technique relies on
the ionization of chemical compounds to generate charged
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molecules or molecular fragments whose mass-to-charge ratios
are subsequently measured. Analysis with MS detector can be
performed with different types of ionization in the ion source
such as electrospray ionization (ESI) and atmospheric pressure
chemical ionization (APCI) (Yang et al., 2009). ESI is the most
used interface in LC-MS configurations, because it combines
efficient separation capabilities of HPLC with the exact structural
characterization of MS. Several scanning modes can be used
to give additional structural information such as fragmentation
of the pseudo molecular ion, selected ion monitoring (SIM),
selected reaction monitoring (SRM) or multiple reaction
monitoring (MRM) (Pyrzynska and Sentkowska, 2019). In order
to improve the sensitivity and minimize the matrix effects,
several MS/MS parameters can be optimized such as the capillary
voltage, collision energy and ion mode (López-fernández et al.,
2020). Therefore, LC-MS is considered as a standard method
for the identification and characterization of polyphenols and
presents several advantages such as selectivity, rapid method
development, cost effectiveness, among others (Kumar, 2017).

Nuclear Magnetic Resonance
Spectroscopy
Nuclear magnetic resonance (NMR) is a complementary
spectroscopic technique that provides complete structural
elucidation of polyphenols either extracted from complex
mixtures or without any previous sample preparation (Ajila
et al., 2011). Several techniques have been employed to
analyze polyphenols including 1H NMR and 13C NMR, two-
dimensional homonuclear (2D 1H–1H), heteronuclear chemical
shift correlation NMR (C–H HECTOR), correlated NMR
spectroscopy (COZY), totally correlated NMR spectroscopy
(TOCSY), rotating frame of reference (ROESY) and nuclear
Overhauser effect in the laboratory frame (NOESY) (Naczk and
Shahidi, 2006; Ye et al., 2015).

NMR instrument coupled to other analytical instruments such
as HPLC, UV-Vis and MS to achieve an on-line separation and
structural elucidation is a useful tool when target compounds
are difficult to isolate or are unstable (Ye et al., 2015). Although
expensive, NMR has many advantages over other techniques
such as accuracy, precision, simplicity of the sample preparation,
among others (Kontogianni, 2014).

In the last years, a huge number of analytical advances and
applications have been applied for food analyses. Yet, there is
still several concerns that need to be solved in this field of
research. Overall, developing appropriate methods for the proper
extraction, purification and characterization of polyphenols is
necessary to achieve higher accuracy in the obtained results for
each type of analytes.

USE OF POLYPHENOLS AS MODULATORS
OF IMMUNE REACTIONS TO FOOD. THE
CASE OF FOOD ALLERGY

On the basis of cross-sectional, prospective and intervention
studies concerning polyphenols and human health and well-
being, several experimental papers in the literature have

tried to understand the molecular mechanisms behind their
bioactivity. Moreover, in vitro studies have reported the potential
of polyphenols to modulate several diseases such as cancer,
cardiovascular diseases or metabolic disorders (Fernandes et al.,
2017). Polyphenols have been demonstrated to inhibit cell
proliferation in cancer studies, improve insulin secretion,
stimulate vasodilatation and influence cell signaling and function
(Del Rio et al., 2010). But what about food allergies? Are
polyphenols able to influence the process? Food allergy (FA)
is defined as “an adverse health effect arising from a specific
immune response that occurs reproducibly on exposure to a
given food” (Panel et al., 2010). Noteworthy, the prevalence of
FA has increased over the past decades; nevertheless, therapeutic
options remain limited. A better understanding of the key
nutritional mechanisms involved in such immune responses will
likely be vital for disease prevention and development of new
therapies. Scientific knowledge has therefore to be improved to
establish the basis for new treatments and prevention methods
(Sicherer and Sampson, 2018). Hence, the effect of polyphenols
as natural attenuators of FA has to be studied. This section
summarizes the scientific evidences and future challenges in
this field.

Nature and Prevalence of Food Allergy
The prevalence of FA is affected by lifestyle and food availability,
particularly in developed western countries (Prescott et al., 2013;
Tang and Mullins, 2017; De Martinis et al., 2019). In general,
FA are more common in children than in adults due to the
immaturity of their immune system. The great majority of
affected children “outgrow” FA with age (Prioult and Nagler-
Anderson, 2005; Prescott et al., 2013; De Martinis et al., 2019).
Additionally, studies are showing that the incidence of FA among
elderly is increasing with aging all around the world (Ventura
et al., 2010; Mohrenschlager and Ring, 2011).

The immune responses caused by FA can be broadly
categorized in two major types: Immunoglobulin E (IgE)-
mediated disorders and non-IgE mediated food allergies (though
a mix between IgE and non-IgE mechanisms is also common)
(Sicherer and Sampson, 2009; Anvari et al., 2019). In IgE
mediated FA, the allergen activates a rapid T helper (Th) 2
cell response characterized by Th2 cell proliferation, production
of pro-allergic cytokines, interleukin-4 (IL-4), IL-5, and IL-13;
and the release of allergic mediators, such as histamine and
β-hexosaminidase, by effector cells (mast cells and basophils)
(Anvari et al., 2019). In IgE-mediated reactions the symptoms
occur shortly after food ingestion and may result in a
potentially life-threatening allergic reaction that affects multiple
organs (anaphylaxis) (Anvari et al., 2019). Conversely, non-IgE
dependent reactions are typically restricted to the gastrointestinal
tract and include a wide spectrum of chronic disorders, where
allergen-specific T cells are thought to have a prominent role (Yu
et al., 2016). However, non IgE dependent food allergies are more
difficult to diagnose, and they generally reverse in infancy, usually
before the age of 6 years (Connors et al., 2018).

The most common diagnostic procedures for FA are skin
prick tests (SPTs) and serum food-specific IgE tests. However,
there are numerous diagnostic procedures whose employment is
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chosen based on the medical history and physical examination
(Sicherer and Sampson, 2010). The standard of care of FA
includes strict dietary elimination of the allergen and ready access
to injectable epinephrine to avoid anaphylaxis reactions (Bird
et al., 2015); however, no active, definitive therapeutic options
exist for food-allergic patients (Muraro et al., 2014; Sicherer
and Sampson, 2018). Although the mechanisms underlying the
development of FA are still under study, FA appears to be
the direct result of a breakdown in oral tolerance, defined as
the unresponsiveness of the immune system after food antigen
exposure (Yu et al., 2016). Oral tolerance is an active process
that occurs at the gut-associated lymphoid tissue (GALT) and
is mediated predominately by regulatory T cells (Yu et al.,
2016). The lack of tolerance initiates when the food antigen
crosses the gut epithelial barrier and is processed by antigen
presenting cells (APCs) into peptides, which are displayed on
APCs surface to be recognized by antigen-specific Th cells. In
the presence of inflammatory stimuli, Th cells differentiate into
allergen-specific Th2 cells that orchestrate allergic sensitization
mechanisms. Accordingly, sensitization mediated by Th2 cells
includes the differentiation of B cells into plasmocytes, which
secret antigen-specific systemic IgEs. Then, after the re-exposure
to the food antigen, IgEs bind the surface receptor FcεRI
expressed in mast cells and basophils. This IgE-FcεRI interaction
promotes mast cells and basophils degranulation as well as
the release of allergen-induced cytokines (IL-4 and IL-13)
(Yu et al., 2016).

Currently, therapeutic approaches to FA are focused on oral
food challenges (OFCs) that is to say, modulating the immune
response to allergens promoting the induction of oral tolerance
(Muraro et al., 2014; Sicherer and Sampson, 2018). Although
OFCs are promising, tolerance to allergens has to be induced,
posing a danger to patients (e.g., anaphylaxis). Overall, to date
the guidelines for controlling a FA are to avoid allergens and
be prepared in case of exposure, for example with epinephrine
to counteract a potential fatal reaction (Lieberman et al., 2015).
Hence, further research must be performed in order to find safer
alternatives to prevent or control FA epidemic.

Dietary Effects in Food Allergy
Incidence—Microbiota Role
Dietary factors influence gut microbiota and consequently the
immune system (Chistiakov et al., 2015). Not surprisingly, this
crosstalk between gut bacteria and immune cells was found
to be closely related to the development of allergic disorders.
Commensal microbiota colonizes mucosal surfaces, such as
respiratory tracts, skin, vagina, and gastrointestinal tracts. These
microorganisms are in symbiosis with the host, and influence
nutrient absorption, resistance to pathogens, immune defense,
and tissue repair (Hong et al., 2017). In the intestine, these
bacteria have important immunoregulatory properties, as they
provide a large variety of harmless antigens that continuously
stimulate intestinal immune cells to be tolerant, not only
to molecules produced by commensal bacteria, but also to
exogenous proteins derived from food (Chistiakov et al., 2015).
Moreover, microbiota derived signals have a direct impact on

T cell differentiation, with some favoring the regulatory T cell
subset, which is vital for the maintenance of the intestinal
homeostasis (Arroyo Hornero et al., 2020).

Notwithstanding, some factors including the mode of delivery
(van Nimwegen et al., 2011; Mitselou et al., 2018), use of
antibiotics (Hirsch et al., 2017), a western diet (Myles, 2014),
and improved hygiene patterns (Prioult and Nagler-Anderson,
2005; Hong et al., 2017), can lead to dysbiosis, which is
characterized by changes in the microbial communities and their
metabolic reactions. Altogether, this imbalance can diminish the
mucosal immune tolerance to commensal bacteria and food
antigens leading to a less protection against allergic diseases
(Pascal et al., 2018).

There are a few studies relating the presence of allergies with
changes in bacterial ecology and diversity early in life (Prioult
and Nagler-Anderson, 2005; Hong et al., 2017). Furthermore,
different diets lead to different microbial compositions, as
shown in Figure 2. Protein, fats, carbohydrates, probiotics,
and polyphenols induce changes in commensal microbiota,
interfering with immune responses. The intake of animal
protein induces the increase concentration of bile-tolerant
microorganisms and decrease butyrate-producing bacteria.
Carbohydrates suppress the growth of butyrate-producing
bacteria and increase the anaerobic bacteria concentration. The
saturated fat ingestion contributes to increase the number
of anaerobic bacteria. Probiotics contain beneficial living
microorganisms to balance the gut microbiota (Singh et al.,
2017). Moreover, probiotics and polyphenols increase lactic-acid
bacteria concentration.

The study of different diets seems to be important to
understand how it interferes with gut microbiota. Western and
Mediterranean diets are very popular worldwide and differ
widely. Table 3 compares the two types of diet. The association
between the mostly consumed components in these diets and
their interference in gut microbiota, allows to conclude that
Western diet contributes to the reduction of flora diversity,
particularly of the beneficial species, whereas Mediterranean diet
provides a more varied and balanced microbiota. Accordingly,
considering the influence of intestinal microbiota on immune
responses, the adoption of Mediterranean diet provides greater
protection against allergic diseases (Singh et al., 2017).

Proving the importance of adopting a varied diet to maintain
a balanced flora (Figure 2), it is also necessary to relate dietary
habits with the digestive processes and how this can influence the
development of FA (Ortega, 2006; Pali-Schöll et al., 2018). Food
intake determines the composition of microbiota and therefore,
the maintenance of a healthy physiological epithelial barrier
and function and, consequently, oral tolerance (Tappenden and
Deutsch, 2007). The effect of several diet components in FA
development has been highlighted. Epidemiologic studies suggest
that selenium; zinc; vitamins A, C, D, and E deficiencies, low
fiber consumption and high fat intake may be associated with
the development of allergic disorders (Kamer et al., 2012; Allen
et al., 2013; Jonsson et al., 2016; Tan et al., 2016). Fruits and
vegetables are important sources of dietary antioxidants, mainly
polyphenols, which have been widely described as containing
antiallergic properties (Kanda et al., 1998; Gruber et al., 2004;
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FIGURE 2 | Influence of different food intakes in commensal microbiota composition.

TABLE 3 | Comparison between Mediterranean diet and Western diet.

Western diet intake Mediterranean diet

uptake

Food sources examples References

Food macronutrients Lipids (saturated) High Moderate Fast-food, animal oil, butter Mirmiran et al., 2021

Carbohydrates

(sugar)

High Moderate Bread, cookies,

ultraprocessed food

Gómez-Donoso et al.,

2021

Proteins High Moderate Meat, fish, legumes Altomare et al., 2013

Food micronutrients Vitamins Low High Fruits and vegetables De Pergola and

D’Alessandro, 2018

Bioactive compounds Polyphenols Low High Fruits and vegetables Bonaccio et al., 2017

Carotenoids Low High Fruits and vegetables Marhuenda-Munoz

et al., 2019

Phytosterols Low High Fruits and vegetables Escurriol et al., 2009

Phytoestrogens Low High Fruits and vegetables Ogce et al., 2008

Glucosinolates Low High Fruits and vegetables Del Bo et al., 2019

Tokura et al., 2005; Nakano et al., 2008; Chung and Champagne,
2009a; Shim et al., 2009b; Zuercher et al., 2010; Kamei et al.,
2017). Promisingly, in vitro and in vivo studies, including
in humans, have suggested that polyphenols can act on the
sensitization as well as on the re-exposure immune mechanisms
to allergens (Singh et al., 2011). For instance, polyphenols can
impair the presentation of food antigens by APCs, namely
dendritic cells, to allergen-specific T cells, promote a decrease
in intestinal mast cell proteases release (Zuercher et al., 2010),
induce the reduction of local intestinal mRNA expression of
several Th2 associated and pro-inflammatory genes (MacDonald

andMonteleone, 2005; Zhu, 2017) and impact IgE production by
B cells (Singh et al., 2011).

Despite growing research are being conducted regarding the
role of polyphenols in food allergies by direct antiallergenic
mechanisms or indirectly through modulating gut microbiota
some concerns must be considered. Most in vitro studies are
performed by using isolated polyphenols or extracts but only
a large minority of these compounds reach the colon intact.
Under this context, metabolomics approachesmust be conducted
to understand the immunomodulatory action of polyphenols
metabolites. Likewise, the high structural variability as well as
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the already mentioned diversity in extraction methods claim for
further studies correlating the structure/activity relationships and
effects on extraction methods in polyphenols functionality.

Polyphenol/Protein Interactions as a
Mechanism to Modulate Food Allergy
Besides their anti-inflammatory and anti-allergic properties,
polyphenols possess a significant binding affinity for proteins,
which can lead to the formation of soluble and insoluble protein–
phenolic complexes (Perez-Gregorio et al., 2014; Dias et al., 2015,
2016; Fernandes et al., 2016; Brandão et al., 2017). Antigens that
elicit FA reactions are usually proteins. Indeed, recent studies
revealed the interaction between polyphenols and food allergens
(Shen et al., 2014; Wang et al., 2014; Vesic et al., 2015; Al-
Hanish et al., 2016) which could induce conformational changes
in the allergen (Wang et al., 2014; Vesic et al., 2015). However,
whereas the polyphenol binding capacity was already proved in
different food allergens, the influence in each step that leads
to FA development have not been studied yet. Furthermore,
polyphenol-protein interactions have already described as have
potentially significant biochemical implications in the digestion
(Soares et al., 2015) nevertheless is still a gap in the polyphenols
effect in allergen digestion.

Overall, it was already described that polyphenols may bind
to food antigens and conformational changes are consequently
induced. Protein digestibility, conformation, and aggregation
might be important for biological activities of dietary proteins
that elicit hypersensitivity reactions in humans. IgE-binding

capacity and activation of effectors cells, uptake by antigen-
presenting cells and sensitizing potential of food allergens in
allergy are the biological factors key for the disease onset.
However, there is still a gap in the knowledge as how allergen-
polyphenol complexes could influence the immune response.
Little studies tentatively proved the inhibition of the IgE-binding
activity through allergen-polyphenol interaction (Chung and
Champagne, 2009a; Gray et al., 2015). It was also studied that
some insoluble complexes could block the allergen availability
(Chung and Champagne, 2009a). However, these studies should
be interpreted with caution as were based the native unmodified
forms of allergen that might suffer previous digestive and
metabolic steps (Cardona et al., 2013). Several mechanisms
prompted by polyphenols seem to be effective in allergic
sensitization, a) their ability to bind with allergenic proteins (Li
andMattison, 2018; Bansode et al., 2019; Plundrich et al., 2019) or
to IgE (Bansode et al., 2019; Yousef et al., 2020) b) the protective
effect as anti-inflammatory and antioxidant compounds (Zhou
et al., 2020) and/or c) the ability to modulate cell functions either
dampening MHC-II and co-stimulatory molecule expression
or inhibiting cytokine production (Zuercher et al., 2010), or
increasing their expression on Treg cells (Kim et al., 2007),
thus hampering the antigen presentation process. Polyphenols
could also influence FA during elicitation. Indeed, polyphenols
inhibited the activation, proliferation and function of Th-2
cells during re-exposure to allergen in sensitized individuals
(Singh et al., 2011). The polyphenol ingestion also attenuates the
allergenic re-exposure by inhibition of adhesion and migration
of peripheral B-cells, IgA-attenuating (Camps-Bossacoma et al.,

FIGURE 3 | Schematic representation on the polyphenol mechanisms to modulate the immune response in food allergy.
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2019), suppression of IgE and IgG1 levels and abrogation of Th-2
cytokines (Singh et al., 2011;Mine et al., 2020). Growing scientific
research also related the consumption of dietary polyphenols
with the composition of gut microbiota and function (Sun et al.,
2018). Indeed, the ingestion of polyphenols have been related
with the growth of specific gut microbiota that have been shown
to modulate Treg production (Turroni et al., 2020).

Altogether, although the data collected during the last years
could help to understand the polyphenol’s potential mechanisms
of action (summarized in Figure 3), the metabolism, interactions
with host and/or with other dietary factors as well as intrinsic
variations within individuals remain largely unknown. According
to the diversity of mechanisms proposed, the biological effect
of polyphenols is likely the interplay between all of them.
Furthermore, the digestion, metabolism and bioavailability of
polyphenol, allergens and allergen-polyphenol complexes have
to be well-understood when studying their immunomodulatory
effects. Scientific knowledge must be improved to establish
the basis for nutritional recommendations which could help
preventing or minimize the prevalence and symptoms of FA.

CONCLUSIONS

Polyphenols are bioactive compound usually found in agri-food
wastes with widely proven potential to be incorporated in the
formulation of functional foods designed to prevent the increase
of non-communicable diseases. Healthy constraints must go
hand in hand with climate constraints claiming for the use
of bioactive compounds from wastes in a circular economy
approach. The epidemic increase in immune reactions to food
allergens claim for stablishing nutritional recommendations
able to control this rise. Based in aforesaid evidences, there
is an unmet need to evaluate new therapeutic modalities in
a nutritional approach (functional foods or supplements) that
may decrease the risk of food-induced anaphylaxis and improve
patients’ quality of life. However, there is still a lack in the
real intake of polyphenols through diet given the lack of
standardized methods to characterize them from both, food
components and agri-food wastes. Some missing links need to
be addressed to actively modulate the immune system through
diet and food systems via polyphenols. Active components
and metabolites within different polyphenols extracts must be
identified considering the inter-personal variability. Besides,
complex in vitro systems must be designed for a better
understanding of mechanistic studies and the cellular impact of
polyphenols depending on anatomical locations (gut vs. blood)
or intervention window (prevention vs. treatment). Furthermore,
safe concerns must be explored in terms of maximum
recommended daily intake, presence of toxic substances from
extractionmethods and overall cytotoxic activities.Whether used
as therapy or as dietary interventions, their long-term safety

profile needs to be addressed in different age groups. This
review summarizes the pros and cons of the existent analytical
methods to properly characterize polyphenols as the basis for
the study in the use of polyphenols as modulators of immune
reactions to food. Furthermore, the polyphenols bioavailability
and metabolism, the polyphenols effect in gut microbiota and the
ability to bind to proteins and cell receptors have to be studied in
order to recommend the consumption of polyphenols to prevent
the rise of food allergy.
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Barba, F. J., Putnik, P., Bursać Kovačevi,ć, D., Poojary, M. M., Roohinejad, S.,
Lorenzo, J. M., et al. (2017). Impact of conventional and non-conventional
processing on prickly pear (Opuntia spp.) and their derived products: From
preservation of beverages to valorization of by-products. Trends Food Sci.

Technol. 67, 260–270. doi: 10.1016/j.tifs.2017.07.012
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Putnik, P., et al. (2020). “Valorization of waste and by-products from food
industries through the use of innovative technologies,” in Agri-Food Industry

Strategies for Healthy Diets and Sustainability (Academic Press), 249-266.
doi: 10.1016/B978-0-12-817226-1.00011-4

Zuercher, A., Holvoet, S., Weiss, M., and Mercenier, A. (2010).
Polyphenol-enriched apple extract attenuates food allergy in mice.
Clin. Experi. Allergy 40, 942–950. doi: 10.1111/j.1365-2222.2010.0
3460.x

Zuin, V. G., and Ramin, L. Z. (2018). Green and Sustainable Separation of
Natural Products from Agro - Industrial Waste: Challenges, Potentialities,
and Perspectives on Emerging Approaches. Topics Curr. Chem. 376:3.
doi: 10.1007/s41061-017-0182-z

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Bessa, Francisco, Dias, Mateus, Freitas and Pérez-Gregorio. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Sustainable Food Systems | www.frontiersin.org 18 July 2021 | Volume 5 | Article 623611

https://doi.org/10.1016/j.foodchem.2013.09.127
https://doi.org/10.1016/j.chroma.2008.08.097
https://doi.org/10.2174/9781681080628115030004
https://doi.org/10.1016/j.supflu.2010.10.046
https://doi.org/10.1002/JLB.3A0320-434R
https://doi.org/10.1016/j.molliq.2020.114196
https://doi.org/10.1038/nri.2016.111
https://doi.org/10.21608/ajfs.2008.20136
https://doi.org/10.1080/08923973.2020.1733012
https://doi.org/10.1016/j.tifs.2016.12.003
https://doi.org/10.1016/B978-0-12-817226-1.00011-4
https://doi.org/10.1111/j.1365-2222.2010.03460.x
https://doi.org/10.1007/s41061-017-0182-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles

	Use of Polyphenols as Modulators of Food Allergies. From Chemistry to Biological Implications
	Past, Present and Future in Polyphenols Upcycle
	Polyphenols in Agricultural Byproducts and Food Waste: Chemistry and Occurrence
	Non-flavonoids
	Phenolic Acids
	Stilbenes
	Lignans

	Flavonoids
	Flavonols
	Flavones
	Isoflavones
	Flavanones
	Anthocyanidins
	Flavanols

	Innovative Green Extraction Technologies Applied to Agri-Food By-Products
	Ultrasound-Assisted Extraction
	Microwave-Assisted Extraction
	Pressurized Liquid Extraction
	Supercritical Fluid Extraction


	Characterization of Polyphenols
	Spectrophotometric Assays
	Chromatographic Assays: High Performance Liquid Chromatographic
	Nuclear Magnetic Resonance Spectroscopy

	Use of Polyphenols as Modulators of Immune Reactions to Food. the Case of Food Allergy
	Nature and Prevalence of Food Allergy
	Dietary Effects in Food Allergy Incidence—Microbiota Role
	Polyphenol/Protein Interactions as a Mechanism to Modulate Food Allergy

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


