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Hepatitis E Virus (HEV) is endemic in areas with poor sanitation and has traditionally been

classified as a water-borne virus. Until recently, cases of HEV in industrialized countries

were associated with travel to those areas. In the last decade, locally acquired cases

of HEV have increased in the European Union, leading to the investigation of potential

foodborne transmission of the virus. In the mid-1990’s HEV was found to be unique

among other water- and food-borne viruses because of the observation of zoonotic

transmission of the virus. HEV is endemic on domestic swine farms worldwide and can

infect pigs of all ages. Consequently, pork liver and pork liver containing products have

been identified as the source of many of the foodborne HEV outbreaks in Europe. Other

pork products and game meats have also been implicated in HEV outbreaks. Finally,

anecdotal evidence exists for HEV transmission via shellfish and produce. HEV disease

presentation is typically a self-limiting acute hepatitis; however, chronic hepatitis and

extrahepatic manifestations occur in high-risk populations. Detection and control of HEV

remains challenging because an efficient cell culture system has yet to be developed.

Thus, detection relies upon molecular and serological methods. No standardized method

exists for the detection of HEV in foods and research on the stability of HEV in foods

and the environment has been limited. This review summarizes the current knowledge

available on foodborne HEV.
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INTRODUCTION OF FOODBORNE VIRUSES

The main unifying trait of foodborne viruses is that they are non-enveloped viruses, lacking a lipid
envelope. Non-enveloped viruses, in general, are resistant to environmental stress such as heat,
extreme pH, desiccation, organic solvents, etc. Typical treatments used to inactivate vegetative
foodborne bacterial pathogens or enveloped viruses (such as influenza virus) are not effective in
inactivating non-enveloped viruses. This allows non-enveloped viruses to be maintained in foods
and the environment for long periods. The stability of non-enveloped viruses alsomakes themmore
resistant to common sanitation methods and food processing technologies. Foodborne viruses,
primarily noroviruses, are a major cause of foodborne disease in industrialized countries (De
Aceituno et al., 2013). However, there are emerging foodborne viruses, such as hepatitis E virus
(HEV) and sapoviruses, increasing in prevalence in the European Union (EU) and Asia (Ruggeri
et al., 2013). Of the emerging foodborne viruses, HEV is unique because it has known animal
reservoirs and is zoonotic (Meng et al., 1997). Norovirus and rotavirus have genotypes or serotypes
that can infect animals, but these viruses are not known to be transmitted to humans (i.e., not
zoonotic) (Bank-Wolf et al., 2010). A summary of food-borne viruses is found in Table 1.
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TABLE 1 | Summary of major foodborne viruses.

Virus Genome Envelope Disease

Norovirus +ssRNA No Gastroenteritis

Adenovirus dsDNA No Gastroenteritis

Rotavirus dsRNA No Gastroenteritis

Sapovirus +ssRNA No Gastroenteritis

Astrovirus +ssRNA No Gastroenteritis

Aichivirus +ssRNA No Gastroenteritis

Hepatitis A virus +ssRNA No Jaundice, Hepatitis, Gastroenteritis

Hepatitis E virus +ssRNA No Jaundice, Hepatitis, Gastroenteritis

Polio virus +ssRNA No Poliomyelitis

+ssRNA, single-stranded positive-sense RNA virus; dsDNA, double-stranded RNA virus;

dsRNA, double-stranded RNA viruses.

HEPATITIS E VIRUS DISCOVERY

In 1973, a large-scale epidemic of hepatitis was observed in
Kashmir affecting over 200,000 individuals in an area with very
poor sanitation (Khuroo, 1980; Khuroo et al., 2016). Epidemics
in India continued to be observed over the next 14 years.
Patient serum samples collected during this period were tested
for antibodies against hepatitis A virus (HAV) and hepatitis B
virus (HBV). The serological tests ruled out HAV and HBV as
the cause of the epidemics, leading to the identification of a
non-A, non-B hepatitis virus (Khuroo, 1980). An outbreak at
a Russian military outpost a few years later led to symptoms
in patients like those observed in the 1978 Kashmir epidemic.
Ingestion of pooled patient fecal samples by human volunteers
led to the development of the prior observed non-A, non-B
hepatitis and shedding of virus particles in the feces (Balayan
et al., 1983). Immune electron microscopy revealed that the virus
isolated from the subject was antigenically distinct from both
Hepatitis A and Hepatitis C (Balayan et al., 1983). Following
this, the physiological traits of the virus were characterized
using virus collected from challenge studies conducted in non-
human primates (Bradley et al., 1991). In 1991, the full-length
HEV genome was sequenced and an enzyme immunoassay was
developed for clinical diagnosis (Tam et al., 1991).

CLASSIFICATION AND TAXONOMY OF
HEPATITIS E VIRUS

HEV is a member of the Hepeviridae family in the genus
Orthohepevirus (Meng, 2013; Cossaboom et al., 2016). The genus
Orthohepevirus is divided into 4 species, Orthohepevirus A-D,
of which Orthohepevirus A includes HEVs infecting humans
(Meng, 2013; Cossaboom et al., 2016).Orthohepevirus A contains
8 genotypes, HEV1-8, which are determined by amino acid
sequence comparisons of concatenated open reading frames 1
and 2 (ORF1 and ORF2) sequences (Smith et al., 2016; Sridhar
et al., 2017). HEV1 and HEV2 are specific to humans and these
viruses are often the cause of waterborne HEV outbreaks (Geng
and Wang, 2016) (Table 2). HEV3 and HEV4 infect a wide
variety of hosts including humans, pigs, wild boar, deer, primates,

TABLE 2 | Orthohepevirus A HEV genotypes infecting humans: host range and

transmission routes.

Genotype Natural host(s) Transmission route

1 Humans Water

2 Humans Water

3 Humans, pigs, wild boar, rabbits,

deer, non-human primates

Food, direct contact with

reservoir animals

4 Humans, pigs, wild boar, rabbits,

deer, non-human primates

Food, direct contact with

reservoir animals

and rabbits (Cossaboom et al., 2011; Doceul et al., 2016; Smith
et al., 2016) (Table 2). HEV3 and HEV4 are zoonotic and are the
causative agents of foodborne HEV infections in industrialized
countries (Hughes et al., 2010;Meng, 2010; Teo, 2010; Yugo et al.,
2014).

HEPATITIS E VIRUS EPIDEMIOLOGY AND
DISEASE MANIFESTATIONS

An estimated 2.3 billion people, one third of the world’s
population, have been exposed to HEV (Teshale and Hu, 2011;
Pérez-Gracia et al., 2013). HEV is traditionally endemic in
developing countries where sanitation is poor, which leads to
waterborne outbreaks caused by HEV1 and HEV2 strains (Geng
and Wang, 2016). Foodborne HEV outbreaks are most often
associated zoonotic HEV3 and HEV4 strains. The transmission
mode of HEV is generally the fecal oral route. HEV infections
have been associated with direct contact with reservoir animals
and consumption of contaminated water and foods (Cossaboom
et al., 2016). High-risk foods for HEV contamination include raw
or undercooked meat of infected animals, filter feeding bivalve
shellfish, and produce (Brassard et al., 2012; Cossaboom et al.,
2016; Mansuy et al., 2016; Hazards et al., 2017). In 2004, cases
of HEV acquired after blood transfusion were reported in Japan
and India (Khuroo et al., 2004; Matsubayashi et al., 2004). Since
then, transfusion-associated HEV has been reported worldwide
and seems to be highly prevalent among donors (Dreier and
Juhl, 2014; Al-Sadeq et al., 2017). Foodborne HEV can also
indirectly affect patients receiving blood transfusions. In Japan,
a case of transfusion-acquired HEV was linked to a donor who
had become infected after consuming pig liver and intestines
(Matsubayashi et al., 2008).

HEV infection is typically self-limiting with clinical
presentation ranging from asymptomatic infection to acute
liver failure (Debing et al., 2016). Pregnant women tend to have
symptomatic infections and are at higher risk of acute liver
failure and death than other infected individuals (Abravanel
et al., 2013). Interestingly, the high morbidity and mortality
amongst pregnant women has only been observed following
HEV1 and HEV2 infections and not infection with zoonotic
HEV strains (Abravanel et al., 2013). HEV was exclusively
described as an acute infection until 2008 when significant
numbers of chronic HEV infections were reported amongst
organ transplant recipients in France (Kamar et al., 2008).
Subsequently, chronic HEV infection has been reported in
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other groups of immunocompromised patients including those
with human immunodeficiency virus (HIV) and those with
hematological cancers (Péron et al., 2006; Colson et al., 2009;
Kamar et al., 2012). To date, chronic HEV infections have only
been associated with HEV3 and HEV4 infections (Xin and Xiao,
2016). There is also evidence of neurological manifestations of
acute and chronic HEV infection. HEV RNA has been detected in
the cerebral spinal fluid of patients with peripheral neuropathy,
which resolved upon clearance of the virus (Kamar et al., 2011).

MOLECULAR BIOLOGY OF HEPATITIS E
VIRUS

HEVhas a single stranded positive sense RNA genome (ss+RNA)
that is approximately 7.2 kb in length (Cao and Meng, 2012;
Emerson and Purcell, 2013; Debing et al., 2016). The genome
is divided into three ORFs, has a 5′ cap structure, and is
polyadenylated at the 3′ end (Cao and Meng, 2012). An
overview of the HEV genome structure in presented in Figure 1.
ORF1 encodes the nonstructural proteins, ORF2 encodes the
capsid protein, and ORF3 encodes a small multifunctional
phosphoprotein (Cao and Meng, 2012) (Table 3). Proteins
translated from ORF2 and ORF3 are encoded by a biscistronic
subgenomic mRNA (Graff et al., 2006).

ORF1 spans the genome from the 5′ non-coding region
(NCR) to position 5,082 and encodes a 1,693 amino acid
polypeptide. This polypeptide includes domains, which function
as the methyltransferase (Met), papain-like cysteine protease
(PCP), helicase (Hel), RNA dependent RNA polymerase (RdRp),
as well as other domains with unknown functions (Y domain,
X domain, and hypervariable region) (Koonin, 1991; Koonin
et al., 1992; Agrawal et al., 2001; Magden et al., 2001; Zhang
et al., 2001; Emerson et al., 2004; Pudupakam et al., 2009, 2011;
Cao and Meng, 2012). ORF2 encodes the 660-amino acid capsid
protein, which has a molecular weight of 72 kDa (Cao and Meng,
2012). The HEV virion has T = 3 icosahedral symmetry and
contains 180 copies of the capsid protein (Guu et al., 2009;
Yamashita et al., 2009; Xing et al., 2010; Cao and Meng, 2012;

FIGURE 1 | Organization of the HEV genome. The HEV genome has a 5′ cap

structure, followed by three open reading frames (ORFs), and is

polyadenylated at the 3′ end. ORF1 encodes a polyprotein containing the

nonstructural domains (Met, methyltransferase; Y, Y domain; PCP, papain-like

cysteine protease; HVR, hypervariable region; X, X domain; Hel, helicase;

RdRp, RNA-dependent RNA polymerase. ORF2 encodes the capsid protein

and ORF3 encodes a phosphoprotein (PP). ORF1 is translated from full length

genomic RNA while ORF2 and ORF3 are translated from a 2kb bicistronic

subgenomic RNA.

Emerson and Purcell, 2013). The capsid protein makes up the
viral particle structure, interacts with the host cell receptor, and is
immunogenic (Li et al., 1997, 2005b; Guu et al., 2009; Yamashita
et al., 2009; Cao and Meng, 2012). The HEV capsid structure
is more homologous to that of small plant viruses than that of
Norovirus or Hepatitis A (Guu et al., 2009).

ORF3 encodes a small, 114 amino acid, cytoskeleton
associated phosphoprotein (Zafrullah et al., 1997; Cao andMeng,
2012). This phosophoprotein is theorized to have a regulatory
role in assembly of HEV virions, pathogenesis, and release of
membrane-associated viral particles (Tyagi et al., 2002; Surjit
et al., 2006; Moin et al., 2007; Ding et al., 2017).

CELL ENTRY AND REPLICATION

HEV replication follows the basic scheme of other ss+RNA
viruses. The host translational machinery is exploited to translate
the viral non-structural polyprotein encoded by ORF1. Evidence
suggests that the ORF1 polyprotein does not undergo proteolytic
processing to carry out viral replication functions (Suppiah et al.,
2011; Perttilä et al., 2013). The RdRp, translated from the 3′

end of ORF1, synthesizes a complimentary negative-strand RNA
(Debing et al., 2016). Genomic RNA is then synthesized from
the negative-strand RNA and the two strands are unwound
by the HEV helicase (Karpe and Lole, 2010a). In addition, a
single bicistronic subgenomic mRNA is synthesized from the
complementary negative-strand RNA and is used as a template
to translate ORF2 and ORF3 (Zhang et al., 1999; Graff et al.,
2006). The formation of the 5′ cap of the genomic RNA
begins with the cleavage of 5′-gamma-phosphate by the helicase-
associated 5′-triphosphatase (Magden et al., 2001; Karpe and
Lole, 2010b). The P110 enzyme facilitates the methylation of
guanosine triphosphate to form 7-methylguanosine, which is
transferred to the 5′ end of the genome (Magden et al., 2001).

TABLE 3 | HEV proteins and function.

Protein Function

Methyltransferase Capping of 5′ end of genome

Cap required for translation initiation

Cap aids in immune evasion

Y domain Unknown function

Papain-like cysteine protease Post-translational processing

Hypervariable region Unknown function

X domain Unknown function

Helicase Nucleoside triphosphatase

RNA duplex unwinding

RNA dependent RNA polymerase RNA genome replication

Sub-genomic RNA synthesis

Capsid protein Viral capsid structure

Virus particle assembly

Host receptor binding

Immunogenic

Cytoskeleton-associated

multifunctional phosphoprotein

Regulation of viral assembly

Viral pathogenesis

Particle release
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Due to the lack of an efficient cell culture system, little else
is known about the replication process (von Nordheim et al.,
2016). A RNA element located within ORF2 may also play a
role in genomic RNA synthesis but further research is needed
to determine the exact function (Emerson et al., 2013). This
element likely does not play a role in HEV host adaptation
since HEV-1 could replicate in porcine liver cells when only
ORF1 was replaced with that of HEV-4 (Chatterjee et al., 2016).
The exact location of replication has yet to be determined but
evidence suggests that at least part of the process may take place
in the endoplasmic reticulum-Golgi intermediate compartment
(Perttilä et al., 2013).

Recently, quasi-enveloped HEV particles were observed in
blood despite HEV being classified as a non-enveloped virus
(Takahashi et al., 2008; Nagashima et al., 2017). The concept of
quasi-enveloped viruses was first described for HAV (McKnight
et al., 2017). HAV has evolved to be released from cells in
exosomes following infection. The HAV particles are covered by
a cellular lipid bilayer upon release from the cell and therefore
are not recognized by the host immune system (Feng et al.,
2013). HAV is shed in the feces in its non-enveloped form
but the virus released from the cell appears to be exclusively
quasi-enveloped (eHAV) (Feng et al., 2013). HAV found in the
feces is derived from eHAV (Hirai-Yuki et al., 2016). Some
eHAV is released across the apical membrane, which leads to
the biliary tract where bile acids degrade the quasi-envelope.
Despite being phylogenetically unrelated, HEV could plausibly
utilize this process prior to being shed in the feces. Regardless
of the mechanism, quasi-enveloped HEV likely plays a role HEV
evasion of the host immune system.

HEPATITIS E VIRUS ZOONOSIS

Unlike common foodborne viruses such as HAV and norovirus,
HEV3 and HEV4 strains are zoonotic. As previously mentioned,
humans, pigs, wild boar, deer, primates, and rabbits are all
infected by HEV3 and HEV4 strains (Cossaboom et al., 2011;
Smith et al., 2016). The first zoonotic HEV strain belonged to
genotype 3 andwas a swine strain that was transmitted to humans
(Meng et al., 1998; Schlauder et al., 1998). This seminal discovery
lead to the subsequent finding that in addition to pigs, wild boar
and rabbits are also reservoirs for zoonotic HEV strains (Doceul
et al., 2016).

HEV has also been shown to be transmitted between different
animal species. Pigs inoculated with a rabbit strain developed
viremia and fecal shedding (Cossaboom et al., 2012). Virus
shed from rabbit HEV-infected pigs produced viremia and fecal
shedding in rabbits, which confirms the infectivity of rabbit HEV
in pigs (Cossaboom et al., 2012). Rabbit HEV has also been shown
to be infectious in cynomologus macaques, which suggests that
this virus may also be infectious to humans (Liu et al., 2013).

HEPATITIS E VIRUS PREVALENCE IN
SWINE

HEV is considered endemic on conventional swine farms
worldwide. A nationwide survey conducted in France in

2008–2009 found that 31% of pigs tested (1,069/6,565) were
seropositive for HEV and 65% of pig farms (137/186) had at
least one HEV seropositive pig (Rose et al., 2011). In 2011,
50.21% (714/1,422) of pigs tested in Northern Italy were HEV
seropositive and 97.43% (38/39) of farms sampled had least
one seropositive pig (Martinelli et al., 2011). Similar farm-
level results were obtained in Spain, Norway, and New Zealand
(Garkavenko et al., 2001; Seminati et al., 2008; Lange et al.,
2016). Seroprevalence levels tend to vary between different
types of farms and different age groups. Farms involved in
breeding (farrow to finish or farrow to weaning) had higher
HEV seroprevalence than fattening farms (Martinelli et al.,
2011). Between individual pigs, seroprevalence was highest
among sows and lowest among recently weaned pigs (weaners),
which indicates that the circulation of HEV is influenced by
maternal immunity (Martinelli et al., 2011). Because weaners
no longer receive maternal antibodies, they are more vulnerable
to HEV infection. Therefore, seroconversion is likely to occur
shortly after weaning. While seroprevalence studies can provide
information about HEV exposure and predict age of infection,
this type of study does not provide information on whether the
virus itself is present in the pig.

HEV RNA has been detected in pigs of all ages and the
prevalence in pigs close to slaughter age is of particular interest.
In a survey of pig farms in Portugal, 32% (16/50) of fattener
pigs were shedding the virus in their feces (Berto et al., 2012c).
A similar prevalence was found in a study of pigs between
2 and 4 months of age from 6 US states (Huang et al.,
2002). A six-country (United Kingdom, Czech Republic, Italy,
Portugal, Spain, and the Netherlands) study in Europe found
HEV prevalence ranging from 8 to 73% among fattener pigs
(Berto et al., 2012a). The wide variation could be attributed to the
characteristics of the farms (number of animals, farrow to finish
vs. fattening, etc.) and the predominating practices (organic vs.
conventional, biosecurity measures, etc.) of the farms in each
country (Salines et al., 2017). The sample size may be a major
factor as well because the prevalence data for Spain and the
Netherlands came from one farm in each country. Such a small
sample size can skew the results, thus future studies should
include a much larger number of farms. Extensive national
surveys of near slaughter age pigs in the United States and
Europe should be utilized to elucidate the true prevalence of HEV
infection.

HEPATITIS E VIRUS PREVALENCE IN
PORK PRODUCTS

Pork liver and pork liver products are the most obvious source
of foodborne HEV and have been extensively studied in Europe.
In a survey of foods containing raw pork liver sold in France,
68 out of 394 (17.3%) samples tested positive for HEV with
prevalence for various products ranging from 3% (dried salted
liver) to 30% (figatelli) (Pavio et al., 2014). In a year-long study in
the United Kingdom, HEV was detected in 6 of 63 pork sausages
(10%) collected from 3 retail outlets with 5 of the 6 positive
samples coming from a single batch (Berto et al., 2012b). HEV
has also been detected in sausages sold in Spain (Di Bartolo
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et al., 2012) and Italy (Di Bartolo et al., 2015), in livers and
sausages sold in Germany (Wenzel et al., 2011; Szabo et al.,
2015), and livers sold in the Netherlands (Bouwknegt et al.,
2007). Although fewer studies have been conducted in North
America, HEV has been detected in pork liver and pork liver
products sold in Canada and theUnited States (U.S.). Forty-seven
percentage of pork pâtés (36/76) and 10.5% of pork livers (2/19)
purchased from grocery stores in Ottawa between March 2014
and September 2015 tested positive for HEV (Mykytczuk et al.,
2017). In 2007, HEV was detected in 11% (14/127) of pork livers
purchased from grocery stores in Virginia and Iowa (Feagins
et al., 2007).

Pork liver products are not as commonly consumed in the US
as they are in Europe. Therefore, other pork products need to
be considered as a source of foodborne HEV. Cossaboom et al.
(2016) specifically targeted non-liver pork products and detected
HEV in 25% (3/12) of pork chitterling packages purchased in
southwestern Virginia grocery stores. Sausages, skeletal muscle,
and nervous tissue were also tested but were negative for HEV.
This survey, along with the previously mentioned pork liver
survey conducted in Virginia and Iowa, had a relatively small
sample size and covered a small region of the US. Larger and
more expansive surveys are needed to truly understand the
prevalence of HEV in pork products.

HEPATITIS E VIRUS ASSOCIATED
FOODBORNE OUTBREAKS

The number of HEV cases in the EU each year has been rising
since 2005 with the largest increase occurring between 2011
and 2015 (Aspinall et al., 2017). 98.5% of cases with known
travel history were locally-acquired. Clusters of cases linked to
raw or undercooked pork have been reported in France. In
2013, seventeen people contracted HEV after consuming spit-
roasted piglet stuffed with raw stuffing made from the liver:
three developed hepatitis while the other 14 were asymptomatic
(Guillois et al., 2016). Figatelli, a type of raw pork liver sausage,
has been linked to two clusters of HEV cases in Marseille (Colson
et al., 2012) (Colson et al., 2010) and two cases (1 symptomatic,
1 asymptomatic) in a small French resort town (Renou et al.,
2014). In Spain, an outbreak within a family was traced to wild
boar meat the family had consumed (Rivero-Juarez et al., 2017).
Several outbreaks occurred in Germany but no food source of
infection was identified (Hazards et al., 2017). HEV surveillance
programs exist in 20 EU countries including France, Spain, and
Germany (Aspinall et al., 2017).

According to a 2014 epidemiological survey, 6% of the US
population is HEV seropositive (Ditah et al., 2014). Data on
outbreaks and the number of cases occurring each year is not
readily available due to the lack of a surveillance program. Cases
of acute hepatitis not caused by Hepatitis A, B, or C viruses may
not be investigated further for a viral causative agent. Although
HEV is not considered a reportable disease in the US, cases
should be documented so that the disease burden of HEV can
be elucidated. HEV should be ruled out in cases of non-A, B, or
C hepatitis and in cases of unexplained chronic hepatitis.

HEPATITIS E VIRUS VACCINE

HEV 239 (Hecolin; Innovax; Xiamen, China), a recombinant
vaccine produced using a genetically modified strain of
Escherichia coli, has been available in China since 2012 and is
approved for use in people over 16 years old (Park, 2012; Li
et al., 2015). No vaccine is available elsewhere. The immunogenic
constituent of Hecolin is derived from the ORF2 protein of an
HEV1 strain (Li et al., 2005a; Wen et al., 2016). Vaccination with
Hecolin confers protection against genotypes 1 and 4 for up to
4.5 years (Zhu et al., 2010; Zhang et al., 2015). However, a recent
study showed that sera from people vaccinated with Hecolin
produced a stronger antibody response to HEV1 and HEV2 than
to HEV3 and HEV4 (Wen et al., 2016). Antibody titers induced
by the HEV p179 vaccine, derived from the ORF2 protein of
HEV4, were 2-fold higher for HEV3 and HEV4 compared to
HEV1 and HEV2 (Wen et al., 2016). HEV p179 was shown to
be safe and well tolerated in a phase 1 randomized open-label
study (Cao et al., 2017) and could potentially be protective against
HEV3. Future vaccine design could include ORF1 proteins as
they have been shown to induce T-cell responses in patients with
acute, resolved and chronic hepatitis E (Al-Ayoubi et al., 2018).

No vaccine is currently available for animal use. Theoretical
models have been used to test the effects of HEV vaccination in
pigs. In scenarios where the HEV is not eliminated from the pig
population, reduced transmission rates resulted in an increase
in the rates of infectious pigs at slaughter age while a shortened
infectious period resulted in a decrease (Backer et al., 2012).More
research is needed to determine whether vaccination would be an
effective strategy to control HEV in the domestic pig population.
Future work should take passive immunity, husbandry practices,
and other pathogens into consideration (Salines et al., 2017).

INACTIVATION OF HEPATITIS E VIRUS IN
FOOD

Without an efficient cell culture system, study of inactivation
methods has been severely limited. Using a swine bioassay, where
HEV contaminated pork liver was injected into the ear veins of
naïve pigs, Feagins et al. (2008) found that cooking pork liver to
an internal temperature of 71◦C (161◦F) was sufficient to fully
inactivate HEV. However, heating to an internal temperature of
56◦C (132◦F) for 1 h lead to subsequent infection in inoculated
pigs. In another study, it was found that HEV RNA persisted
in liver suspension stored for 50 days at 4◦C and 70 days at
22◦C and 37◦C, indicating that the virus is highly stable in foods
during long-term storage (Schielke et al., 2011). Heating the HEV
contaminated liver suspension at 56◦C for 30min only resulted
in an approximate 2-log reduction in viral genomic equivalents
(Schielke et al., 2011).

Identifying an appropriate surrogate virus for HEV studies
will also aide in advancing knowledge of HEV stability and
inactivation in foods. Cutthroat trout virus (CTV) is also
a member of the Hepeviridae family, has a similar genome
organization to HEV, and is quasi-enveloped (von Nordheim
et al., 2016). CTV replication in cell culture is robust and
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is a promising model for study of the molecular biology of
HEV (von Nordheim et al., 2016). These features could also
be useful for testing the effectiveness of various inactivation
strategies.

Advancements are being achieved in adapting HEV to cell
culture. Several available immortalized cells lines have been
shown to support increases in HEV RNA following infection,
however these increases have not been sustained in serial passages
(Tanaka et al., 2007; Okamoto, 2013). Cell lines shown to
support HEV genome replication included A549 (human lung
cell cancer) and PLC/PRF/5 (human hepatocellular carcinoma)
(Tanaka et al., 2007; Okamoto, 2013). The swine kidney epithelial
cell line, LLC-PK1, was also shown to support the replication of a
HEV3 strain (Shukla et al., 2011; Okamoto, 2013). A subsequent
study using PLC/PRF/5 cells grown in 3-D culture for HEV
infection showed increases in HEV RNA genome, release of viral
particles, and subsequent infection in serial passages (Berto et al.,
2013). Optimization of these in vitroHEV cultivation techniques
will greatly advance our understanding of the replication and
pathogenesis of the virus, as well as aid in the development of
mitigation strategies for this virus.

METHODS OF DETECTION FOR HEPATITIS
E VIRUS

Because HEV and other foodborne viruses are difficult to culture,
molecular methods are used for detection. Even so, molecular
detection in food can be challenging due to low levels of virus in
contaminated sample and the presence of inhibitory compounds
in the food matrix (De Aceituno et al., 2013). While other
foodborne viruses likely are restricted to the food surface, HEV
is also present inside the cells of meat thus adequate breakdown
of the food matrix is critical for detection (Szabo et al., 2015).
Common molecular methods used include RNA detection using
PCR based methods and viral antigen detection using ELISA
based methods.

Although no standard method currently exists for the
detection of HEVRNA in foods, all protocols follow three general
steps: (1) virus elution and concentration; (2) extraction of viral
RNA; (3) RNA detection (De Aceituno et al., 2013; Martin-
Latil et al., 2014; Hazards et al., 2017). A variety of methods
have been described but few comparison studies have been
done to optimize the elution-concentration and RNA extraction
processes for HEV detection. Martin-Latil et al. (2014) found
that homogenization in distilled water by stomacher yielded the
highest HEV recovery rates from pork liver sausages compared
to phosphate buffered saline (PBS) and Tris-HCl, glycine, beef
extract (TGBE). Also, purification using the organic solvent
choroform:butanol before or after concentration by polyethylene
glycol (PEG) did not result in significantly higher recovery
rates.When compared with homogenization in TRIzol R© reagent,
homogenization in distilled water and concentration with PEG
resulted in a lower mean HEV recovery rate from pork liver
sausages (Szabo et al., 2015). Ultrafiltration was shown to be
more efficient in concentrating HEV from pork liver than PEG
(Son et al., 2014). Commercial kits are widely used for RNA

extraction but have occasionally been shown to be less efficient
in extracting viral RNA than protocols developed by individual
laboratories (Bouwknegt et al., 2007; Martínez-Martínez et al.,
2011). The elution-concentration and extraction method chosen
also influence the resulting prevalence data, thus it is important
that a standard protocol for HEV elution-concentration and
extraction RNA be developed to combat this emerging foodborne
virus. Larger studies encompassing multiple laboratories should
be conducted to optimize the conditions and develop a validated
method for HEV detection in foods.

Reverse transcriptase polymerase chain reaction (RT-PCR) is
commonly used to detect viral RNA in food. One complication
is developing cross-reactive primer sets that can detect all HEV
genotypes. Several groups have developed degenerate primers
or genotype specific primers for use in HEV RT-PCR assays.
These primer sets typically target the ORF2/3 overlap region as
it is conserved between genotypes. However, no standardized
reagents are yet available commercially for the detection of HEV
RNA. The RT-PCR method itself has the disadvantages of being
time consuming and providing only qualitative results. Real-time
RT-PCR is faster, provides quantitative results, and has been
proven to be more sensitive than RT-PCR for the detection of
HEV specifically (Son et al., 2014). However, RT-PCR has not
been eliminated completely. DNA fragments generated by real-
time RT-PCR are not long enough for sequencing and typing,
which are useful for determining genotype and determining
relatedness among HEV strains (Hazards et al., 2017).

CONCLUSION

HEV is an emerging foodborne pathogen, which needs to be
researched more extensively. The lack of an efficient cell culture
system has hindered study of HEV molecular biology. The
receptor used to enter cells has yet to be identified and may
be a vital clue to the wide tissue tropism of HEV. Many of the
prevalence studies in pigs and pork products have been small-
scale, which can skew results. Large scale studies are needed to
assess the true prevalence of HEV in pigs and pork products.
Lack of standardized detection methods is also an obstacle for
HEV research. Methods can vary among individual labs, which
can result in wide variation in virus recovery rates. Developing
a gold standard method will ensure accuracy and precision,
which will enhance the quality of information used to determine
prevalence in foodborne HEV worldwide. Overall, more research
is needed to understand and combat this emerging foodborne
pathogen.
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