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Household decisions to adopt rooftop solar photovoltaics are partly driven by

social influence. Previous research on solar adoption influence has focused on

influence among residential peers. Here, we expand the framework of solar

adoption influence by exploring the influence of non-residential installations

on residential adoption decisions. We use staggered di�erences-in-di�erences

to estimate non-residential influence e�ects using a large data sample of

residential adoptions. We also critically evaluate prevailing frameworks for solar

adoption influence. We find that non-residential installations are associated

with accelerated residential adoption rates, on the order of 0.4 additional

residential adoptions per quarter per non-residential installation. We show that

non-residential systems exert a continuous, long-term influence on residential

adoption decisions. We explore separate results and influence mechanisms for

solar installed on commercial buildings, government buildings, and houses of

worship. The results suggest that non-residential solar adopters could serve as

partners in policies to “seed” residential adoption in underserved communities.

KEYWORDS
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1 Introduction

More than 3 million households had adopted rooftop solar photovoltaics (PV) in the

United States by the end of 2022 (Davis et al., 2022). Every rooftop PV system reflects

the outcome of an idiosyncratic individual or household adoption decision. A growing

literature has emerged to explore what explains rooftop PV adoption decisions, such as

financial incentives, environmental motivations, and customer interest in novel technologies

(Sintov and Schultz, 2015; Alipour et al., 2020; Schulte et al., 2022). Within that literature

are several studies showing that individual rooftop PV adoption decisions are partly driven

by the adoption decisions of other individuals (Bollinger and Gillingham, 2012; Graziano

and Gillingham, 2015; Moezzi et al., 2017; Palm, 2017; Mundaca and Samahita, 2020; Balta-

Ozkan et al., 2021; Bollinger et al., 2022). The impacts of previous adoptions on subsequent

adoption decisions are evident in the physical clustering of PV systems and statistical

associations between the timing of PV installations and adoption decisions (Bollinger and

Gillingham, 2012).

The relationship between past and subsequent PV adoptions has been characterized as a

form of social influence (Axsen and Kurani, 2012; Xiong et al., 2016; Baranzini et al., 2017;

Wolske et al., 2020). The term “influence” has been used in PV adoption research in a broad

sense. Rooftop PV adoption decisions may be directly affected by active social interactions,

such as with neighbors who have already adopted (Sigrin et al., 2017). The literature also

suggests a role for more passive influence mechanisms, such as an individual being primed
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to adopt PV after seeing panels installed on another home

(Graziano and Gillingham, 2015; Baranzini et al., 2017; Bollinger

et al., 2022). Some have characterized PV influence as a form

of social contagion (Axsen and Kurani, 2012; Xiong et al., 2016;

Baranzini et al., 2017; Wolske et al., 2020), implying a process

through which individuals are unconsciously influenced by the

diffusion of PV systems. Here, we use the term “PV influence” to

broadly describe any impacts of previous PV adoption decisions on

subsequent adoption decisions.

PV influence research has mostly focused on influence in

residential adoptions, but influence is not necessarily confined

within residential peer groups (Baranzini et al., 2017). Rooftop

or ground-mounted PV systems installed at non-residential

establishments could likewise influence residential adoption

decisions.1 Non-residential PV influence is of interest for several

reasons. First, non-residential PV influence may quantitatively vary

from the effects of residential installations. For instance, non-

residential systems may generate more influence due the larger

size of non-residential relative to residential systems. Alternatively,

large ground-mounted non-residential systems could generate

some degree of public resistance like that associated with larger

utility-scale systems (Carlisle et al., 2016), which could decelerate

residential PV adoption. Second, non-residential actors may be

able to use unique channels of influence to promote PV adoption.

For instance, houses of worship directly engage with and can

influence the behavior of their congregations (Van Cappellen et al.,

2016) and can serve as conduits for public policy implementation

(Evans and Hudson, 2014; Flórez et al., 2017). Third, installers or

policymakers could leverage non-residential influence by installing

“seed” systems, following the rationale that installing a seed

system promotes subsequent adoptions (Zhang et al., 2016; Sigrin

et al., 2022). Installers could use seeding to promote business in

new markets, and policymakers could use seeding to promote

deployment in underserved communities, an increasingly common

policy objective (Carley et al., 2021). Seeding policies could be more

effectively designed if seeding interventions are targeted at building

types that maximize influence.

In this study, we explore the impacts of non-residential

installations on residential adoption decisions in the United States.

We explore the hypothesis that non-residential PV installations

influence residential PV adoption rates. We also explore how non-

residential PV influence compares in magnitude to residential PV

influence. We begin with a background discussion of how our

theoretical and empirical models vary from PV influence research

to date.

2 Background

Previous rooftop PV influence studies have framed theirmodels

as quantifying peer effects, meaning the impacts of previous

adoptions on subsequent adoptions stemming from interpersonal

influence among peers—primarily meaning residential neighbors.

1 Throughout this paper, the term “non-residential” refers exclusively to

PV adopted by a single non-residential electricity customer, as distinguished

from utility-scale PV which is operated by electric utilities to serve ratepayers,

or community PV which serves multiple customers.

Researchers have generally estimated peer effects by modeling PV

adoption rates as functions of PV installation rates (Bollinger and

Gillingham, 2012; Richter, 2013; Graziano and Gillingham, 2015;

Baranzini et al., 2017; Bollinger et al., 2022). The logic is that

influence begins after systems are installed and become visible.

These models mostly share four characteristics. First, the models

exploit the temporal lags between adoption decisions and system

installations, two events that are typically separated by weeks or

months. The lags between these two events allows researchers

to identify the impacts of previous adoptions on subsequent

adoptions. Second, PV peer effects are typically modeled within

defined geographic areas, such as zip codes, such that influence is

measured among near neighbors. Third, the models do not specify

the mechanisms of influence. That is, estimated peer effects can

reflect various influence mechanisms, such as active interactions

between peers and passive influence from system visibility. Fourth,

the measured effects are contemporaneous, meaning that the

models estimate the impacts of installations on adoptions in the

same time period.

Our approach largely builds on residential peer effect

methodologies and shares the first three of the four characteristics

outlined above. Still, our theoretical model and empirical

specification deviate in important ways from previous work. In

terms of the theoretical model, we discard any assumptions about

the nature of PV influence and use the term influence effects to

capture any impacts of previous adoptions on subsequent adoption

decisions. Our definition does not imply a peer-to-peer basis nor

do we make any assumptions about the social nature or mechanism

(e.g., panel visibility) of the influence. We believe this terminology

more accurately reflects what is being measured, not only in our

results but in all PV peer effect models. To illustrate, suppose a PV

contractor installs a PV system in a neighborhood and markets to

that customer’s neighbors. Peer effect models do not distinguish

subsequent adoptions in this example that resulted from direct

interactions among neighbors (i.e., peer influence) from those that

resulted from broader social contagion such as the change in the

installer’s marketing patterns or simply the visibility of the original

PV system. As a result, peer-effect models likely overstate the

degree of true peer influence by measuring impacts unrelated to

social interaction. Rather than attempt to isolate peer influence

we simply accept that the estimates reflect a broader range of

influence mechanisms.

A novel contribution of our empirical model is that we estimate

the impacts of continuous, long-term influence, in contrast to

prior peer effects models that estimate only contemporaneous

impacts. That is, our model estimates influence effects under the

assumption that a system installed in one quarter continues to

influence residential adoptions in subsequent quarters. The notion

of continuous influence is supported by the fact that certain PV

influence mechanisms, namely system visibility, persist over time.

Further, if an install influences an adoption in one quarter, that

influenced residential install itself becomes a source of influence in

subsequent quarters, such that influencemay accumulate over time.

Likewise, an install in one quarter can change market conditions in

ways that affect residential adoptions in subsequent quarters, such

as by inducing an installer to begin marketing in that area. Our

approach estimates influence effects resulting from associations

between a non-residential install and contemporaneous residential
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FIGURE 1

Schematic of PV influence identification strategy.

adoptions as well as long-term associations resulting from direct

or indirect influence. For these reasons our results are not directly

comparable with previous residential PV peer effect estimates.

3 Materials and methods

As described above, we largely build on previous peer effect

models by estimating the impacts of non-residential installations

on residential adoptions. Like Bollinger and Gillingham (2012), we

model influence at the zip code level. Section 3.1 describes our data

sources, Section 3.2 describes our empirical model, and Section 3.3

notes several methodological limitations.

3.1 Data

Our approach requires data on non-residential PV installation

dates (physical installation) and residential PV adoption dates

(adoption decision). We compiled non-residential installation

dates from the Lawrence Berkeley Laboratory’s Tracking the Sun

(TTS) data set of PV system installations (Barbose et al., 2021).

TTS includes records on over 80% of rooftop PV systems installed

in the United States. About 3% of all TTS records are non-

residential systems. Of those non-residential systems, about 77%

are installed on building rooftops, while about 23% are ground-

mounted on the premises of non-residential buildings. The TTS

data include dates for when PV systems were interconnected to the

grid. Data compiled by NREL (2023) suggest that PV installations

typically occur around 25 days before interconnections, based

on median installation timelines (average durations are 33 days

with a standard deviation of 25 days). We therefore adjust the

non-residential interconnection dates 25 days backward to create

installation date proxies (Figure 1).

We estimate influence effects from 35,526 non-residential

systems, comprising all non-residential building types that had

adopted PV in any of the service territories covered by the TTS

data set. To explore the robustness of the results across non-

residential building types, we also implement separate models for

systems installed on commercial buildings, government buildings,

and schools using the TTS data. We were also interested in the

potential influence of houses of worship, given previous research

showing the effects of house-of-worship influence on the behavior

of their congregations (Van Cappellen et al., 2016; Yale, 2022).

We used data provided by Interfaith Power and Light2 and data

from the Department of Homeland Security’s (DHS) Homeland

Infrastructure Foundational-Level Data matched to TTS addresses

to identify houses of worship that had adopted rooftop PV. To

confirm the DHS records accurately identify non-residential houses

of worship, we used an address verification service procured from

melissa.3 That service suggested that some DHS records were

residential addresses. A spot check using Google Earth satellite

images suggested that roughly half of DHS records coded as

residential in fact referred to residential buildings. These records

may refer to homes of individuals affiliated with houses of worship.

Therefore, we restricted the combined data set to records identified

as businesses by the Melissa Data identifier. A further spot check

2 See https://www.interfaithpowerandlight.org/congregational-solar/.

3 Seemelissa.com formore information on the address verification service.

Note that a similar confirmation was not required for the other non-

residential systems which are confirmed as non-residential during the data

collection process.
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suggests that all records in that subsample are correctly identified

as houses of worship. Using these sources, we built four separate

samples of non-residential systems installed from 2010 to 2021

for commercial (N = 23,975), government (N = 3,989), schools

(2,089), and house of worship (N = 1,329) installations. Note that

the “all” non-residential category (N = 35,526) includes buildings

in the subsamples that were not specifically identified (e.g., some

schools may be simply coded as “non-residential”) and other

building types not included in the four subsamples (e.g., secular

non-profits, non-government public buildings). The four separate

samples are roughly equally distributed across the 29 states tracked

in the TTS data. Schools tend to have the largest systems, with a

median capacity of around 83 kilowatts (kW), compared to 47 kW

for government systems, 40 kW for commercial systems, and 33 kW

for houses of worship.

Our source for residential PV adoption dates is a large

set of residential PV adopter data compiled by BuildZoom, an

online platform connecting customers with contractors. These data

represent on-site residential systems—mostly rooftop—and do not

reflect off-site residential solar options such as community solar.

The final, cleaned set includes 1,449,189 records for residential PV

adoptions from 2010 to 2021. The advantage of the BuildZoom

data is that the set includes dates for when adopters applied

for local permits. These permit application dates provide much

closer proxies for adoption dates than the interconnection dates

in TTS. Again, using NREL data on median timelines, we adjust

the residential permit application dates 12 days backward from the

permit application dates to create proxy adoption dates. However,

the advantage of more precise dates in the BuildZoom data come

with the tradeoff of smaller sample size. We analyze the larger TTS

residential adoption sample as a robustness check in Section 4.2.

3.2 Di�erences-in-di�erences model

To motivate our approach, consider an ideal experiment to test

the impacts of non-residential installations on residential adoption.

A researcher in this ideal experiment would randomly install non-

residential systems in a “treatment” group then compare how

the number of adoptions—henceforward referred to as adoption

levels—changes in the treatment group relative to a “control”

group. Our approach follows this conceptual ideal. We use the

standard terminology of treatment to refer to non-residential

installations, the treatment group to refer to zip codes with non-

residential installs, the control group to refer to zip codes without

non-residential installs, and the treatment effect as the estimated

impact of non-residential installs on residential adoptions in the

same zip code.

Differences-in-differences (DiD) is a common method for

replicating the ideal experiment described above in an empirical

context. DiD models identify treatment effects based on the

differences in temporal trends in the treatment and control group.

The treatment group in our case comprises zip codes with at least

one non-residential PV system installed after 2010 (we return to the

rationale for ignoring 2010 non-residential installs further below).

All zip codes with at least one residential PV adoption and no non-

residential installs from 2010 to 2021 are candidates for the control

groups. We use propensity score matching to determine which

candidate zip codes are used as controls. Propensity score matching

is a common approach for mitigating the impacts of confounding

differences between treatment and control groups. The propensity

score is an estimate of the probability that a unit is treated, in this

case the probability that a zip code has a non-residential PV install.

The approach estimates propensity scores based on factors that

affect the outcome (in this case PV adoption levels, i.e., adoptions

per quarter per zip code) and correlate with the treatment (in this

case non-residential PV systems). We calculated propensity scores

based on the factors described in Table 1 using thematchit package

in R (Ho et al., 2011). We then used the propensity scores to

construct control groups comprising equal numbers of zip codes

as the treatment groups.

Using the propensity-matched treatment and control groups,

we constructed a balanced panel data set at the quarter level (i.e.,

4 blocks of 3-month increments in each year). The “treatment”

occurs in the quarter in which a non-residential system is first

installed. In standard DiD models the treatment occurs across

the whole treatment sample at the same point in time. In this

case the treatment occurs at different points in different zip

codes throughout the study period, also known as a “staggered”

treatment. We estimated staggered DiD using the group-time

model developed by Callaway and Sant’Anna (2021). The group-

time approach assigns each zip code into a group g based on the first

quarter in which a non-residential system was installed (all control

zip codes are in the same group). The approach estimates influence

effects through the following model:

az∈g,q = β0 + β1Gg + β2Qq + θgqGgQq + Xzqγ + εgq (1)

Where az∈g,q is the adoption level (i.e., number of adoptions)

for zip code z in group g in quarter q,4 Gg is a group indicator

variable, Qq is a quarter indicator variable, and Xzq is the vector

of covariates used for the propensity score match (see Table 1)

plus an additional control for the average value of state-level

incentives in each quarter by state. The coefficient θgq estimates

group- and time-variant differences in adoption rates, known as

group-time effects. Group-time effects are the equivalent of the

DiD estimator in a standard, non-staggered DiD model. For this

reason, we excluded zip codes with non-residential installs in 2010

to ensure that DiD could be estimated with at least 4 pre-treatment

periods. Conditioning on the control variables in Xzq ensures that

other confounding factors do not explain deviations in parallel

trends. Importantly, by including cumulative residential adoptions

(the variable typically used to measure residential peer effects), we

control for the confounding effects of residential PV influence. We

add the state-level incentive value variable to control for changes

in incentive levels over time and how those changes may affect

residential demand, such as the introduction of new incentives in

certain quarters and the decline in rebate values over time in some

programs.5 The state-level incentive was estimated using incentive

4 Peer e�ectmodels are commonly specified using adoption rates (number

of adoptions per household). We chose to implement the models in terms of

adoption levels to simplify the interpretation of the results. We present results

for models in terms of adoption rates as a robustness check in Section 4.2.
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TABLE 1 Propensity score matching factors.

Factor Description Rationale for inclusion Source

Cumulative adoptions The total number of adoptions in the study period Residential adoptions are themselves sources of

influence, and including this variable mitigates

preexisting differences in adoption levels

BuildZoom

Rooftop PV hosting capacity The percentage of households with rooftops

suitable for hosting rooftop PV

Hosting capacity directly affects potential

adoption levels

NREL’S Rooftop Energy

Potential of Low Income

Communities in America∗

Number of households Number of households in zip code Population size determines technical potential of

adoption levels

U.S. Census

Electricity rates A zip code-level average of residential electricity

rates

Higher electricity prices are generally associated

with higher adoption

Huggins (2022)

Owner-occupancy rate Percentage of households that are owner-occupied Owner-occupants are more likely to adopt PV

than renters

U.S. Census

Household income levels Zip code-level median household income Higher-income households are generally more

likely to adopt

U.S. Census

∗Note that this data set covers all communities, low income or otherwise.

values reported to utilities and compiled in the TTS data set. The

incentives reflect state or utility rebates, tax credits, or production-

based ($/kWh) incentives provided throughout the study period.

The incentive values do not reflect other clean energy policies such

as local decarbonization targets or community solar programs.

The central question is whether group-time effects vary in

post-treatment periods, i.e., for periods q > g. Our key metric

to answer that question is the average treatment effect, which is

provided by the group-level averages of the post-treatment group-

time effects, i.e., θ g,post = θ g,t∀q > g. The hypothesis is that

adoption levels are higher in the post-treatment quarters, such

that θ g,post > 0. Following Callaway and Sant’Anna (2021) we

present results for average treatment effects weighted by group

sample size. As noted in Section 2, the estimated effects reflect the

average of contemporaneous impacts and long-term influence in

every quarter after non-residential systems have been installed.

Point identification of the average treatment effect requires the

assumption of parallel trends in the treatment and control groups

in a counterfactual scenario with no non-residential installations.

The parallel trends assumption is untestable and often unrealistic

in practice (Rambachan and Roth, 2022). Following Manski and

Pepper (2018), we relax the point identification assumptions

and partially identify non-residential influence effects. Partial

identification is an approach that calculates a potential set of

estimates containing the true value in lieu of calculating a single

point estimate (Tamer, 2010). Formally, instead of attempting to

identify the treatment effect using a single point estimate θpost ,

we instead assume that the treatment effect belongs to a bounded

set. The advantage of partial identification is that we can identify

this set of estimates under weaker assumptions than those required

for point identification. We bound the group-time effects based

on estimated pre-trends for each group: θ g,pre = θ g,t∀q < g.

5 We exclude this value from the propensity score matching because the

value and type of incentives are not comparable across states. For instance,

the value of an up-front rebate in one state is not directly comparable to

the long-term value of a production-based incentive ($/kWh of output) in

another state.

For each group we estimate a bounded group-time effect equal to

θ g,post−θ g,pre. We then present an average bounded treatment effect

weighted by group sample size. To summarize, we present results

for two average treatment effects:

ATT =

∑

g θ g,postwg
∑

g wg

|ATT| =

∑

g

(

θ g,post − θ g,pre
)

wg
∑

g wg
(2)

Where ATT is the unbounded average treatment effect, |ATT|

is the bounded treatment effect, and wg is the weight for group g,

the group sample size.

One key remaining concern is exogenous changes that drive

spurious correlations between non-residential installations and

residential adoptions at the zip code level. The most likely source

of such correlations is exogenous changes in installer marketing

patterns. That is, installers may install a non-residential system in

a zip code at the same time they begin marketing to residential

customers in that zip code. To control for this issue, we identify

data subsamples where non-residential installs are theoretically

less correlated with exogenous residential marketing patterns.

We define “specialist” installers as those who install at least as

many non-residential systems as residential systems. About 17% of

installers in the TTS data sample are specialists by that definition.

Specialist installers tend to operate at relatively small scales, such

that specialists only account for about 0.7% of residential systems

installed in the TTS sample. We construct alternative treatment

and control groups following the same procedures described above

limited to subsamples of non-residential systems installed by

specialists. That is, we define treatment groups based on non-

residential installs by specialist installers and estimate treatment

effects based only on changes in residential adoption levels in the

treated zip codes. The logic is that the movements of specialist,

non-residential installers are less likely to correlate with exogenous

changes in residential marketing patterns, thus mitigating that
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TABLE 2 Data samples.

Non-residential data samplea Zip codesb Non-residential
installations

Residential adoptions

All non-residential systems (full sample) 5,178 35,526 1,333,972

All non-residential systems (specialist sample) 2,498 6,340 1,042,799

Commercial (full sample) 4,062 23,975 1,273,100

Commercial (specialists) 1,912 4,116 901,454

Government (full sample) 1,994 3,989 1,005,201

Government (specialists) 782 946 551,334

Schools (full sample) 1,480 2,089 912,726

Schools (specialists) 552 613 325,437

Houses of worship (full sample) 1,654 1,329 967,292

Houses of worship (specialists) 430 258 385,143

aIn all cases the numbers reported for the full samples include specialist and non-specialist installers; bRefers to combined number of treatment and control zip codes (the samples are balanced,

both groups comprise the same number of zip codes).

potential source of confounding correlation. This process largely

eliminates positive pre-trends but substantially curbs sample size

(see Table 2), significantly reducing the statistical power of the

models. Still, by reducing the impacts of potentially confounding

trends, we believe these subsamples yield more accurate estimates

of non-residential influence effects. In the case of houses of

worship, the specialist sample comprised just 70 house-of-worship

installations. To avoid inferring from a small sample, we relaxed the

specialist definition for house-of-worship installs to installers for

whom non-residential systems account for at least 20% of sales.6

3.3 Limitations

We note two limitations of our analysis before proceeding

to the results. First, the results across building types are not

perfectly comparable given the substantial differences in sample

sizes between the commercial, government, school, and house-of-

worship samples. Further, around two-thirds of zip codes in the

commercial treatment sample have more than one commercial

system, compared to around one-third in the house-of-worship

sample and about 10% in the case of the government sample.

We present separate results for each building type primarily as

a robustness check for the overall influence of non-residential

systems. We discuss potential metrics to compare influence across

building types in Section 3.1. Second, our use of DiD requires

us to construct panel data based on discrete geographic units

(zip codes). Influence effects are not necessarily confined to

these arbitrary boundaries. Heterogeneous influence effects likely

exist below the zip code level, as demonstrated by evidence that

6 This adjustment yields more conservative results. Unlike the other cases,

where the specialist sample generates smaller coe�cients, the house-of-

worship specialist sample (N = 70) yielded influence e�ect coe�cients that

were larger than other results presented in Table 3. While it is possible that

these larger results reflect substantial influence in that subsample, the larger

e�ects do not hold across the larger sample of houses of worship.

influence varies down to the street level based on panel visibility

(Bollinger et al., 2022). Similarly, influence effects likely spill over

beyond zip code boundaries. For instance, houses of worship may

influence congregation members who live in zip codes surrounding

the location of the PV system. The results should therefore be

interpreted as proxies for influence effects based on the arbitrary

boundaries provided by zip codes.

4 Results

We present results in two parts, exploring our two research

questions: whether non-residential installations influence

residential adoption decisions, and how that influence compares to

the effects of residential installs on residential adoption decisions.

We begin by exploring the estimated non-residential influence

effects in Section 4.1. In that section, we show how the models

generally support the hypothesis that non-residential installations

drive an increase in residential adoption rates. The magnitude

and significance of that influence correlates with underlying

sample size, such that smaller samples (e.g., houses of worship,

schools) generally yield weaker results. We implement additional

analyses that show that influence may be more comparable

across building types than the DiD results may suggest. We

then compare the estimated non-residential influence effects to

residential effects in Section 4.2. Although this comparison is

imperfect for reasons we discuss, the analysis suggests that the

impacts of non-residential influence on residential adoption is

comparable in magnitude to the impacts of residential influence on

residential adoption.

4.1 Non-residential PV influence e�ects

Table 3 presents the results of our various model specifications.

The first two columns provide results based on the full data

sample, while the third and fourth columns provide results

limited to the specialist installer sample. The first and third
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TABLE 3 Average treatment e�ects from staggered di�erence-in-di�erences (group-time standard errors in parentheses).

Full sample Specialist sample

ATT Bounded ATT ATT Bounded ATT

All non-residential 3.37∗ (0.78) 2.78∗ (0.42) 4.54∗ (1.01) 3.52∗ (0.66)

Commercial 3.34∗ (0.75) 2.70∗ (0.42) 2.58∗ (0.88) 2.19∗ (0.66)

Government 3.87∗ (0.95) 2.86∗ (0.51) 3.99∗ (1.68) 2.97∗ (0.71)

Schools 1.50 (0.81) 0.83 (0.36) 1.33 (0.84) 0.53 (0.34)

Houses of worship 0.19 (0.68) 0.10 (0.28) 0.13 (1.53) −0.11 (0.48)

∗p < 0.05.

FIGURE 2

Average treatment e�ects (ATT) across model specifications and data samples. Boxes are based on the range between the ATT and the bounded ATT

described in Equation 2.

columns provide results for the average treatment effect, while

the second and fourth columns provide results for the bounded

treatment effect (see Equation 2). The estimates are consistently

positive except for the bounded result with the specialist installer

sample for house-of-worship systems. The results from the

specialist sample, our preferred specification, suggest that non-

residential systems influence around 3.5–4.5 residential adoptions

per quarter across the models. Most estimates across the

building types are in the range of 1 to 4 adoptions per

quarter (Figure 2). All results for the total, commercial, and

government samples are statistically significant, while all results

for the school and house-of-worship samples are insignificant,

at least partly reflecting the smaller sample sizes of those

two samples.

As already noted, the results are not perfectly comparable across

the four building types. One issue is the substantial differences in

sample sizes, and in particular the smaller sample associated with

the school and houses of worship samples. Further, the “treatment”

can entail different numbers of installations across the building

types. In the treated groups there is an average of 11.8 commercial

installs per zip code, compared to 1.6 house-of-worship installs,

for instance. One way to level the results across the types is to

estimate the total number of influenced residential adoptions per

non-residential installation in each group. That is, we divide the

group-level treatment effects by the number of non-residential

installations in each group and take the average for all positive

treatment effects. Based on the specialist sample, we estimate that

each commercial install influences around 0.06 installs per quarter,

each government and school install influences around 0.3 installs

per quarter, and each house-of-worship install influences around

1.2 installs per quarter. This comparison is still imperfect, since the

smaller numbers of school and house-of-worship installs inflate the

per-install estimates even if the overall treatment effect is the same.

Still, this analysis suggests that the school and house-of-worship

influence per install is more comparable to the other types than the

aggregate results in Table 3 would suggest.

The individual group-time effects are also of interest to

show how influence effects may vary over time. To visualize

these results, we calculated average group-time effects based on

the elapsed number of quarters from treatment. For instance,

for the group of zip codes where a non-residential system

was first installed in quarter 5, the elapsed quarters in quarter

5 is 0, the elapsed quarters in quarter 6 is 1, the elapsed

quarters in quarter 10 is 5, and so on. Conversely, elapsed

quarters are negative in quarters preceding the first non-

residential installation.

Figure 3 depicts the average group-time effects by elapsed

quarters for 5 years before and after non-residential system

installations (20 elapsed quarters). The group-time effects mostly

vary around zero prior to the non-residential installations
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FIGURE 3

Group-time e�ects by number of quarters elapsed from

non-residential installation. Based on specialist installer data

samples.

(negative elapsed quarters). The consistently positive group-time

effects after the zero mark provide a visual depiction of the

influence effects. The average treatment effects are effectively

aggregate values of the points to the right of zero depicted in

Figure 3.

The fact that the group-time effects are consistently positive

after non-residential installs supports the premise that PV influence

is a continuous, long-term process. All three of the non-residential

types exhibit similar temporal trends as the full non-residential

sample, with group-time effects gradually increasing over time.

We posit several explanations for why the group-time effects

tend to grow over time. First, influence effects likely correlate

with underlying propensities to adopt. For instance, a household

with a low preexisting adoption propensity is less likely to be

influenced to adopt by seeing an installed system than a household

that was already considering adoption, all else equal. Aggregate

propensities to adopt have likely increased over time as PV prices

declined and households became more aware of rooftop PV. These

increasing propensities to adopt could mean growing impacts from

PV influence. Households may therefore become more likely to

adopt in response to an external influence. Second, when a non-

residential install influences a household to adopt, that household’s

installed system becomes another source of influence. As a

result, increasing group-time effects could reflect the accumulating

influence effects of previously influenced adoptions. Third, growing

influence over time may reflect the accumulating effects of multiple

non-residential systems in the same zip code.

The fact that group-time effects increase over time means that

the average treatment effects are potentially sensitive to spurious

long-term trends in adoption. To test the dependence of the results

on potentially spurious long-term trends, we use a decay rate to

weight the group-time effects by time. The decay rate effectively

measures the rate at which we assume true influence wanes over

time. The results for all non-residential systems in the model are

statistically significant up to a decay rate of 68%, suggesting that

the results are robust assuming that true influence wanes by <68%

per quarter.

4.2 Robustness checks

Table 4 presents the results of several alternative models as

robustness checks to our preferred results in Table 3. All the

robustness checks follow the same structure described in Section 3

and are based on the non-residential specialist installer subsample.

We implement the following robustness checks:

a) This model uses TTS rather than BuildZoom data for

residential adoptions (N= 6,313 non-residential installations,

1,241,160 residential adoptions). As discussed in Section

3.1, we prefer the BuildZoom data since those data include

better proxies for adoption dates. However, we can increase

the residential adopter sample by about 20% by using the

interconnection dates in the TTS data. To bring those dates

closer to adoption dates, we adjust each interconnection date

68 days backwards, the median duration between contract

signature and interconnection as estimated by NREL (2023).

b) This model restricts the geographic sample to zip codes

with at least 100 non-residential establishments (N = 4,799

non-residential installations, 953,220 residential adoptions).

The rationale is that zip codes with few non-residential

establishments are more likely to be allocated to the control

group and could vary in confounding ways from other

zip codes. Restricting the sample to zip codes with at

least 100 non-residential establishments should mitigate that

confounding variation. We identify the subsample using U.S.

Census zip code business pattern data.

c) This model converts the dependent variable to a residential

adoption rate (number of adoptions per 1,000 households)

rather than the adoption level (number of adoptions). We

exclude the number of households from the control group in

these models.

The results are largely robust across the alternative models.

Consistent with our preferred results in Table 3, the results are

consistently positive and statistically significant in the larger

samples (all non-residential, commercial, government). Results are

either weakly significant or insignificant for the smaller samples

(schools, houses of worship).

4.3 Comparing non-residential and
residential influence e�ects

Our second research question is whether non-residential

influence effects vary substantially from residential influence. The

literature does not provide strong a priori theories about such

deviations. On the one hand, non-residential influence effects

may be stronger than residential influence if factors such as

visibility, installed capacity, and community leadership are central

mechanisms in influenced adoption. On the other hand, non-

residential influence may be relatively weaker if peer influence is
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TABLE 4 Average treatment e�ect robustness checks (group-time standard errors in parentheses).

a) TTS
residential adoptions

b) Restricted
geographic sample

c) Y = Residential
adoption rate (per
1,000 households)

ATT Bounded ATT ATT Bounded ATT ATT Bounded ATT

All non-residential 4.42∗ (0.98) 3.96∗ (0.87) 5.13∗ (1.09) 3.96∗ (0.69) 0.37∗ (0.08) 0.27∗ (0.05)

Commercial 2.00∗ (0.74) 1.34 (1.16) 2.08∗ (0.94) 1.96∗ (0.70) 0.23∗ (0.07) 0.17∗ (0.05)

Government 4.01 (2.93) 3.63∗ (0.86) 4.41 (2.59) 3.65∗ (1.21) 0.28∗ (0.13) 0.22∗ (0.05)

Schools 1.52 (0.82) 1.40∗ (0.49) 1.36 (1.10) −0.10 (0.52) 0.11 (0.08) 0.04 (0.03)

Houses of worship 1.13 (0.75) 0.40 (1.50) −0.12 (1.42) −0.32 (0.56) 0.05 (0.10) 0.02 (0.04)

∗p < 0.05.

FIGURE 4

Comparison of estimated non-residential and residential influence coe�cients. Non-residential estimates based on specialist sample.

the key mechanism, i.e., if households respondmore strongly to the

behavior of other households rather than non-residential actors.

We explored the possibility of comparing residential and non-

residential influence effects using established methods for PV peer

effects estimation, to directly compare our results with previous

peer effect estimates. We encountered two challenges. First, the

non-residential market is about an order of magnitude smaller

than the residential market. As a result, differences in estimated

effects could be affected by differences in the consistency of the

estimates. Coefficient consistency is further reduced by fixed effects,

a critical component in residential peer effect models (Bollinger and

Gillingham, 2012). Second, non-residential installation variables

are highly collinear with the residential installation variables. Severe

multicollinearity inflates the variance of non-residential coefficients

in models that include residential installations. For both reasons,

typical PV peer effect models yield highly inconsistent estimates for

non-residential influence effects.

Instead, we use the same DiD approach described in Section

3.2 to compare the magnitudes of residential and non-residential

influence effects. We lack clear market discontinuities in the

residential context like those we used in the non-residential

context. Still, residential influence effects could be estimated

from exogenous shocks to residential deployment rates. To

establish some intuition behind this approach, suppose a researcher

persuaded a set of random households in different zip codes to

install rooftop PV. The researcher could then explore changes in

residential adoption trends in this hypothetical treatment group.

We use the marketing activities of large, national-scale installers

to replicate this hypothetical experiment. Specifically, we use

installations by the two largest residential PV installers, Sunrun

and Tesla. When these installers “enter” a zip code they compete

with established local installers. Available evidence suggests that

market entry is not zero sum, such that market entry increases

local adoption rates (O’Shaughnessy et al., 2023). As a result, the

market entrance of a national-scale installer represents a shock

to the local market. We use these shocks to estimate residential

influence effects. Building on the approach described in Section

3.2, we restrict our data sample to zip codes where Sunrun/Tesla

had installed no systems prior to 2010. We then identified a

treatment group comprising zip codes where Sunrun or Tesla

entered at some point during the study period (N = 1,498 zip

codes). We built control groups using the same propensity score

matching process already discussed. Again, we use staggered DiD

to measure differences in adoption rates after Sunrun/Tesla had

entered local markets.

The estimated average treatment effect for the residential model

is 6.3 (SE = 1.2). That estimate includes adoptions for systems

installed by Sunrun/Tesla, some of which may reflect influence
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while others may reflect exogenous market decisions. To estimate

a lower-bound on residential influence, we removed adoptions

associated with Sunrun/Tesla to prevent conflating trends in

installer marketing patterns with influence. That is, we effectively

measure the impacts of Sunrun/Tesla installations on adoption

rates associated with other installers. The estimated influence effect

in the restricted model is 2.9 (SE = 0.3) (Figure 4), with evidence

of a weak pre-trend (0.06). The result is similar in magnitude

to the non-residential effects in Table 3, though the effects are

not perfectly comparable. The Sunrun/Tesla systems tend to be

installed in much larger clusters than the non-residential installs.

One way to yield a better comparison is to restrict the Sunrun/Tesla

samples such that the number of installs per treated zip code is

closer to the samemetric in the non-residential samples. Restricting

the residential sample such that the number of Sunrun/Tesla

installs per zip code is slightly less than the number of non-

residential installs per zip code in the specialist sample, the

estimated residential influence effect falls just slightly to 2.1 (SE =

0.4). The residential influence effects similarly increase over time,

consistent with the trends depicted in Figure 3. Hence, the analysis

suggests that non-residential influence effects are of the same order

of magnitude as residential influence. These results accord with

Baranzini et al. (2017), who similarly find that residential and

non-residential installs are associated with comparable increases in

residential adoption rates.

5 Discussion and conclusions

Our results suggest that non-residential PV installations are

associated with local increases in residential adoption rates. Our

results broadly support two conclusions: (1) that non-residential

installations accelerate residential adoption; (2) that the magnitude

of influence from non-residential PV installs is roughly comparable

to effects from residential installs. We discuss and explore the

implications of each of these conclusions in turn.

First, our results suggest that non-residential installations

influence residential PV adoption decisions. From a policy

perspective, the results suggest that policy-enabled non-residential

installations could “seed” rooftop PV adoptions. This concept

has been proposed as an approach for accelerating low-income

PV adoption. The idea is that low-income neighborhoods with

limited or no PV installations also have limited or no sources

of PV influence, serving as an additional barrier to low-income

adoption. Policymakers interested in driving low-income rooftop

PV adoption, for example, could potentially facilitate low-income

adoption by enabling non-residential installations in low-income

neighborhoods. Houses of worship may be a particularly effective

non-residential building type to influence low-income adoption

given evidence on house-of-worship influence in low-income

communities (Joshi et al., 2009) and the role of houses of worship

in the implementation of public programs (Evans and Hudson,

2014; Flórez et al., 2017). However, it is unclear how effective such

interventions would be without directly addressing low-income

barriers to solar adoption (e.g., budget constraints, lower home

ownership rates). Further, the results suggest that governments

could lead by doing: the government influence effect estimates

suggest that rooftop PV installed on government buildings drives

residential PV adoption. The efficacy of seeding policies could be

increased with more precise knowledge of the mechanisms of non-

residential PV influence. For instance, if active influence is more

important, policymakers could collaborate with institutions that

can maximize active influence in the community, such as houses

of worship. Alternatively, if passive influence mechanisms such as

visibility are more important, policymakers could seed rooftop PV

adoption by subsidizing non-residential PV on visibly prominent

rooftops or in city centers. Policymakers could potentially foment

passive influence through othermeasures to enhance visibility, such

as public certifications like plaques for building LEED certification.

Understanding the precise mechanisms of PV influence is a

proposed area for further research.

Second, we find that non-residential influence effects are

comparable to residential influence effects. This conclusion is based

on an imperfect comparison, given that we cannot isolate the

impacts of individual residential systems as effectively as for non-

residential systems. Still, broadly speaking, our results indicate that

residential and non-residential influence effects are on the same

order of magnitude, the same conclusion reached by Baranzini

et al. (2017). The comparability of the results suggests shared

mechanisms of PV influence. The most straightforward shared

mechanism is visibility. Previous work shows that visibility plays a

key role in PV influence (Bollinger et al., 2022), and could likewise

drive non-residential influence effects given the relatively large sizes

and prominent locations of non-residential PV systems.

Our results also suggest that non-residential influence effects

may vary across non-residential building types, though further

research is required. Specifically, the estimated influence effects of

government systems are generally larger than those of commercial

systems. These differences suggest that building type or use may

mediate the extent of influence. For instance, it is possible that

buildings that provide spaces of public interaction—including

many government buildings and houses of worship—generate

more influence than other spaces. Stronger influence from

government buildings would be consistent with previous work

showing that local governmental decisions influence private action,

such as how government investments in green buildings can

drive similar investments in the private sector (Koski and Lee,

2014). Further, there are theoretical reasons to expect stronger

influence from certain institutions, especially schools and houses of

worship. Schools often have direct interactions with communities

in ways that could enhance influence (Keyes and Soleil, 2001).

Houses of worship are community institutions that directly

interact with their congregations, establish social cohesion, and

can influence behavior. Houses of worship have been shown to

actively influence their congregations, such as by driving pro-

animal welfare behavior (Brown, 2019), healthy lifestyles (Krause

et al., 2010), and prosocial behavior (Van Cappellen et al., 2016).

Houses of worship that adopt PV could similarly actively influence

PV adoption in their congregations, especially among houses of

worship that profess environmental and sustainability values (Yale,

2022). This hypothesis is borne out in groups such as Green the

Church and Interfaith Power and Light who promote rooftop PV

adoption among houses of worship and environmental education

for congregations. Whether certain institutions achieve greater

influence through existing social linkages is another proposed

area for future research. Differences across building types may
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also reflect architectural differences. For instance, installations

on shorter non-residential buildings with street-facing roofs may

be more influential than installations on taller buildings or on

buildings with architectural features that block panels. The effects

of architecture on solar influence are an area for further research.

Finally, our results suggest a broader understanding of PV

influence than has generally been considered in the literature to

date. We find clear evidence of associations between adoptions

across customer types, suggesting that influence need not have a

peer-to-peer basis as typically assumed in discussion of residential

peer effects models. Further, we model influence as a continuous,

long-term process. We find evidence that influence effects increase

over time. We posit that increasing influence could reflect temporal

trends in propensities to adopt. We also posit that influence can

accumulate over time, partly because an influenced adoption in

one time period is a source of potential influence in subsequent

time periods. Future research could decompose the component

parts of influence effects to better understand the long-term role

of influence on PV adoption.
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