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Acute ischemic stroke (AIS) is the second leading cause of death globally.

No Food and Drug Administration (FDA) approved therapies exist that

target cerebroprotection following stroke. Our group recently reported

significant cerebroprotection with the adenosine A1/A3 receptor agonist,

AST-004, in a transient stroke model in non-human primates (NHP) and

in a preclinical mouse model of traumatic brain injury (TBI). However, the

specific receptor pathway activated was only inferred based on in vitro

binding studies. The current study investigated the underlying mechanism of

AST-004 cerebroprotection in two independent models of AIS: permanent

photothrombotic stroke in mice and transient middle cerebral artery

occlusion (MCAO) in rats. AST-004 treatments across a range of doses

were cerebroprotective and e�cacy could be blocked by A3R antagonism,

indicating a mechanism of action that does not require A1R agonism. The

high a�nity A3R agonist MRS5698was also cerebroprotective following stroke,

but not the A3R agonist Cl-IB-MECA under our experimental conditions.

AST-004 e�cacy was blocked by the astrocyte specific mitochondrial toxin

fluoroacetate, confirming an underlying mechanism of cerebroprotection

that was dependent on astrocyte mitochondrial metabolism. An increase in

A3R mRNA levels following stroke suggested an intrinsic cerebroprotective

response that was mediated by A3R signaling. Together, these studies confirm

that certain A3R agonists, such as AST-004, may be exciting new therapeutic

avenues to develop for AIS.
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Introduction

Acute ischemic stroke (AIS) occurs in ∼795,000 individuals

annually in the US, resulting in over 147,000 deaths, and often

permanent disability in those who survive (Virani et al., 2021).

Globally this number rises to over 6.5 million annual deaths

(GBD 2019 Stroke Collaborators, 2021). Current approved

treatments are limited and focus only on restoration of cerebral

blood flow to the ischemic area of the brain, achieved by

either intravenous administration of tissue plasminogen factor

(tPA) to dissolve blood clots and/or endovascular mechanical

thrombectomy to remove a large vessel blood clot causing

ischemia (National Institute of Neurological Disorders Stroke rt-

PA Stroke Study Group, 1995). These therapies are constrained

to small subsets of patients in the emergency departments of

both primary and comprehensive stroke centers; ranging from

10 to 14% of patients for tPA and from 1 to 4% of patients

for endovascular clot removal, respectively (Man et al., 2018).

Moreover, neither therapy directly targets neuronal survival

within the ischemic penumbra, which if rescued would lead to

better patient outcomes (Meyers et al., 2011; Powers et al., 2015).

Loss of oxygen and glucose during ischemia dysregulates

many energy-dependent processes in the brain, leaving

affected tissue at significant risk of damage and cell death

(Parpura et al., 2017). While brain tissue at the core of

Abbreviations: 2MeS-ADP, 2-methylthio-adenosine-5′-diphosphate;

A1R, Adenosine A1 Receptor; A3R, Adenosine A3 Receptor; AAALAC,

Association for Assessment and Accreditation of Laboratory Animal Care,

International; AIS, acute ischemic stroke; ANOVA, analysis of variance;

AR, adenosine receptor; AST-004, (1R,2R,3S,4R,5S)-4-(6-amino-2-

(methylthio)-9H-purin-9-yl)-1- (hydroxymethyl)bicyclo [3.1.0] hexane-

2,3-diol; ATP, adenosine 5′-triphosphate; Ca2+, calcium ion; CO2, carbon

dioxide; CCA, common carotid artery; Cl-IB-MECA, 2-Cl N6-(3-chloro

or iodobenzyl)-adenosine-5′-N-methylcarboxamide; cm, centimeter;

CNS, central nervous system; ddH2O, double deionized water; DEPC,

Diethyl pyrocarbonate; DMSO, dimethyl sulfoxide; ECA, external carotid

artery; FDA, food and drug administration; FAc, fluoroacetate; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; GFAP, glial fibrillary acidic

protein; IACUC, institutional animal care and use committee; ICA, internal

carotid artery; IP, intraperitoneally; kg, kiligrams; MCAO, middle cerebral

artery occlusion; mg, milligrams; ml, milliliter; mm, millimeter; mM,

millimolar; MRS2365, (N)-methanocarba-2MeSADP;MRS5698, Molecular

Recognition Section compound 5698; MRS1523; Molecular Recognition

Section compound 1523, mNRS, modified neurological rating scale;

nM, nanomolar; NIH, National Institutes of Health; NHP, non-human

primates; P2Y1R, P2Y type 1 receptor; PBS, Phosphate bu�ered saline;

PFA, paraformaldehyde; PK, pharmacokinetics, PE, Polyethylene; qRT-

PCR, quantitative real-time polymerase chain reaction; ROS, reactive

oxygen species; Rpm, revolutions per minute; SDS, sodium dodecyl

sulfate; tPA, tissue plasminogen factor; TTC, 2,3,5-Triphenyltetrazolium

chloride; RNA, ribonucleic acid; S.E.M., standard error of the mean.

an infarction is rapidly and irreversibly lost, cells in the

surrounding hypoperfused penumbra die over hours and days

after the initial ischemic event, and thus have the potential to

be rescued (Tymianski, 2013; Grupke et al., 2015). Research by

our group demonstrated the intrinsic healing mechanisms of

astrocytes could be enhanced by improving their mitochondrial

ATP production, leading to an energy-dependent reduction

in the size of brain lesions in mouse models of stroke (Zheng

et al., 2010, 2013). This early research focused on P2Y1

receptor activation (P2Y1R), using the P2Y1/12/13 receptor

agonist 2-methylthio-adensoine di-phosphate (2-MeSADP)

and then the specific P2Y1R agonist MRS2365. Subsequent

research on the pharmacokinetics (PK) and metabolism of these

compounds indicated MRS2365 was a prodrug that was rapidly

and completely metabolized in vivo, to the novel nucleoside

metabolite AST-004 (Liston et al., 2020). Cerebroprotection

with these first-generation purinergic agonists (Zheng et al.,

2010, 2013; Talley Watts et al., 2013) was attributed to the

conformationally constrained metabolite of MRS2365, AST-

004, and the non-conformationally constrained metabolite for

2MeS-ADP, 2-methylthioadenosine (Liston et al., 2020).

We recently confirmed the cerebroprotective efficacy of

AST-004 treatments in a preclinical mouse model of traumatic

brain injury (TBI) and a transient stroke model in non-

human primates (NHP) (Liston et al., 2022). However,

the specific receptor pathway activated was only inferred

from binding studies showing AST-004 interacted with the

adenosine A3 receptor (A3R), with some affinity for the

adenosine A1 receptor (A1R) (Liston et al., 2020). Here,

we further investigated the underlying mechanism of AST-

004 cerebroprotection in two independent models of AIS:

permanent photothrombosis stroke in mice and transient

middle cerebral artery occlusion (MCAO) in rats. Our working

hypothesis was that AST-004 cerebroprotection was mediated

by A3R agonism and was dependent on stimulation of astrocyte

mitochondrial metabolism.

We found AST-004 treatments were effective across a

range of doses and that cerebroprotection could be blocked

by the A3R antagonist MRS1523. The high affinity A3R

agonist MRS5698 also decreased infarct size in the mouse

photothrombotic model, whereas the high affinity A3R agonist

Cl-IB-MECAwas ineffective under our mouse photothrombosis

experimental conditions. Cerebroprotection was blocked by the

astrocyte specific mitochondrial toxin fluoroacetate, indicating

a mechanism of action dependent on astrocyte mitochondrial

ATP production. We also found increased levels of A3R mRNA

following stroke, revealing an intrinsic protective response

that could be exploited for treatment. A3R agonists have

been reported as cerebroprotective against stroke since the

mid-1990s (Rudolphi et al., 1992; von Lubitz et al., 1994,

1995, 1999, 2001; Rudolphi and Schubert, 1995; Fedorova

et al., 2003; Choi et al., 2005, 2011; Chen et al., 2006;

Bjorklund et al., 2008), and most recently for TBI (Farr
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et al., 2020; Bozdemir et al., 2021). Together, these studies

confirm that certain A3R agonists, such as AST-004, may be

exciting new treatment options that need to be developed for

clinical evaluation.

Materials and methods

Animals

Male and female C57/BL6 mice with access to food

and water ad libitum were housed in 12 h light-dark cycles.

Experimenter was blinded to experimental groups. All

mouse experiments were performed on mice aged between

3 and 6 months, in accordance with the Institutional

Animal Care and Use Committee at UT Health San

Antonio. All rat surgeries were performed at NeuroVasc

Preclinical Services Inc. (Lexington, MA). Preclinical services

and procedures reviewed and approved by the IACUC

at NeoSome (Lexington, MA). Male Wistar rats 225–

250 g (8 weeks) were ordered 7–10 days prior to surgery

(Charles River Laboratories, Wilmington MA). They were

allowed free access to food and water and housed two

per cage.

Photothrombotic stroke

Method #1

All photothrombic strokes were induced using this protocol

as previously described (Zheng et al., 2010, 2013), except

for the data presented in Figures 5A,C. Briefly, mice were

anesthetized with 4% isoflurane andmaintained at 2% isoflurane

throughout the surgery. Hair was removed, and incision made

on the dorsal scalp, and head mounted in a custom frame.

Either a cranial window or a thin skull prep was performed.

Rose Bengal (Sigma, Cat no 330000) dye was then injected

intravenously, and a blood clot induced with a 568 nm laser

on a Nikon (TE 200) microscope, with blood vessels between

30 and 40µM targeted for clotting. Mice were injected with

drugs [MRS2365: Tocris Cat no 2157; MRS1523: Sigma Cat

no M1809; Fluoroacetate: Sigma Cat no 62-74-8; MRS5698:

Tocris Cat no 5428; Cl-IB-MECA: Tocris Cat no 1104; AST-

004, synthesized at the National Institute of Diabetes, Digestive

and Kidney Diseases, Bethesda, MD (Ravi et al., 2002)]

either before surgery or 30min post-stroke, as described in

the paper.

Method #2

For the experimental data presented in Figures 5A,C,

a second photothrombotic procedure was used as recently

described (Alamri et al., 2021). In brief, male C57/BL6 mice

(3 months old) were anesthetized with isoflurane and hair

from the top of the head was removed by chemical depilatory

(Nair, over-the-counter). The mouse was placed on a surgical

platform where the head was cleaned, using aseptic techniques.

A 1.5 cm midline incision was then made through the skin.

The connective tissue covering the skull was removed using a

small scissors followed by cleaning of the skull surface with a

hydrogen peroxide swab. Mice were subsequently injected with

Rose Bengal solution (8 mg/mL, 10 mL/kg) by intraperitoneal

administration 5min prior to stroke. During this 5min period,

Bregma 0 was located under a dissecting microscope. A fiber

optic illuminator (2.16mm optic cable) was placed 1.7mm

lateral to midline and Bregma 0 in the right hemisphere of

the mouse. The right hemisphere was illuminated for 15min

through the intact skull with a 120 mW 561 nm laser (Coherent

sapphire CDRH driver unit set at 38%, 45 mW). All laser

procedures were performed in a class 4 laser safety room

with laser curtain. After illumination, the probe was removed

and the incision closed with sutures. The sutured wound was

gently cleaned by chlorhexidine and a thin layer of the first

aid antibiotic pain relieving. After surgery, mice were kept in a

recovery chamber (∼37◦C) for ∼1.5 h before returning them to

their cages.

TTC staining and lesion volume
quantification

2,3,5-Triphenyltetrazolium chloride (TTC, Sigma Aldrich,

Cat no T8877) staining was performed as previously described.

Briefly, brains were removed and placed in ice-cold PBS for

5min on ice. Then brains were placed in a tissue matrix (Ted

Pella, Cat no 15050), and sliced into 1-mm thick coronal

section through the brain and placed in solution with TTC

for 16min at 37 degrees Celsius, turning over halfway through

incubation. Once stained, sections were fixed overnight with

4% PFA.

Scanner-based image acquisition

TTC stained coronal sections were imaged on an Epson

V850 pro scanner (dual lens systems with high pass optics). Care

was taken to ensure that sections did not come into contact with

each other. Slices were sequentially placed on a transparency,

ordered rostral to caudal, then a second transparency was

placed on top of the slices. This permitted the slices to be

turned without damaging them. A 15 cm ruler (provided by

Fine Science Tools) was also placed near the top of each

transparency for calibration. Once scanned, the transparencies

sandwiching the slices were flipped to scan the other side.

The scanner was controlled with Epson software (Ver 3.9.3.4

US) and set to professional mode, which acquires 24-bit color

images at 1,200 dpi image resolution, no color correction
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or image enhancement, linear gain and a gamma equal to

2.2. The exposure level setting was set to medium and the

densitometer sampling area setting was set at 1 × 1 pixels. The

resulting image was saved as an uncompressed tagged image file

(tiff) format.

Image analysis and infarct size
determinations

Analysis was performed using NIH Image J. (version 1.53K).

A measurement scale setting was initiated using the line draw

tool. A horizontal line was drawn from 1 to 2 cm on the ruler.

Under the “Analyze” pull down menu, “Set Measurements” was

selected and the distance in pixels was set to 235.0021, with a

known distance of 10 and the pixel aspect ratio set at 1.0. The

“Global” box was checked to permit measurement of multiple

images for each series of coronal sections. The image for each

coronal sections was zoomed to 300% prior to outlining the

lesion area with the freehand button on the toolbar. The area

of each lesion was read off the “Measure” tool, selected under

the “Analyze” pull down menu. The lesion volume per slice was

calculated as the average of the front and back side of each

slice times 1mm, the thickness of each section. Slice volumes

were then summed to calculate the total infarct volume per

mouse brain.

Western blotting

A 1mm punch was removed each from ipsilateral and

contralateral sides of a stroke brain. The punch was then sheered

in sample buffer and sonicated for 10min and spun at 10,000

rpm. Supernatants were collected and 50 µg of protein was

loaded onto a 10% SDS gel and run and transferred to a

nitrocellulose membrane. Blots were then probed for GFAP

(Dako Omnis Cat no Z0334) at 1:1000 and GAPDH (Cell

Signaling Cat no 97166S) 1: 1000. LiCor secondary antibodies

(donkey anti-rabbit Cat no 926032213 and donkey anti-mouse

Cat no 926-68022) were used and images were developed using

the Odyssey system.

RNA isolation and quantitative
real time-PCR

Tissue harvest

Twenty-four hours after stroke, mice were euthanized, and

their brains were rapidly removed, and 1mm serial coronal

sections were collected. Following TTC staining and scanning,

brain sections were placed under a dissection microscope

and the region of tissue classified as “stroke lesion” (i.e., the

section of the brain that remained white following incubation

in the TTC solution) was removed through cutting with

a scalpel or pair of fine dissection scissors (Fine Science,

Cat no 15018-10). The stroke lesion samples were pooled

in a 1.5mL microcentrifuge tube, weighed, and then flash-

frozen in liquid nitrogen. The side of the brain with a

stroke lesion was termed “ipsilateral.” An equivalently sized

piece of tissue was cut from the opposite side of the brain

(contralateral) on each section that displayed a stroke lesion.

The contralateral pieces were also pooled in a separate

1.5mL microcentrifuge tube, weighed and flash-frozen in liquid

nitrogen. Tubes were then stored in a −80◦C freezer for down-

stream processing.

RNA isolation and cDNA synthesis

Frozen ipsilateral and contralateral tissue was ground into

a tissue powder using a liquid nitrogen mortar and pestle. The

tissue powder was transferred to a 2mL microcentrifuge tube

and 1mL TRIzol Reagent (ThermoFisher, Cat no 15596018)

was added. The tissue powder sample was homogenized for

15–20 s in TRIzol using a mechanical hand-held homogenizer.

Following homogenization, samples were centrifuged at 12,000

× g for 10min in a 4◦C centrifuge and the supernatant

was transferred to a separate tube for RNA isolation. The

RNA isolation procedure was then followed according to the

manufacturer’s instructions. Isolated RNA was resuspended

in DEPC-treated ddH2O and checked for concentration and

quality of a Nanodrop 2000. RNA samples were diluted to

200 ng/µL and 1 µg of RNA was converted into cDNA

using a High-Capacity cDNA Reverse Transcription Kit

according to the manufacturer’s instructions (ThermoFisher,

Cat no 4368814). cDNA was then diluted 1:5 in ddH2O for

downstream analysis.

qRT-PCR

Diluted cDNA (1:5 dilution) was used for quantitative

real time-PCR (qRT-PCR). Genes of interest were normalized

to Gapdh gene expression. Expression was determined using

the 11CT method. Primer sequences were designed using

Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/). Primer sequences were as follows: Gapdh (Forward

5′-3′ CAAGGAGTAAGAAACCCTGGACC, Reverse 5′-3′

CGAGTTGGGATAGGGCCTCT) (Stubblefield et al., 2018),

Gfap (Forward 5′-3′ AAAACCGCATCACCATTCCTG, Reverse

5′-3′ GTGACTTTTTGGCCTTCCCC), and Adora3 (Forward

5′-3′ GACAGTCAGATATAGAACGGTTACCAC, Reverse 5′-3′

TTCCAGCCAAACATGGGGGTCA). qRT-PCR amplification

of target genes was achieved using Power SYBR Green PCR

Master Mix (ThermoFisher, Cat no 4368706) and primer

forward/reverse mixes at a final primer concentration of

150 nM in a 10 µL reaction on a 384-well plate. qRT-PCR
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was conducted on an Applied Biosystem 7900HT Real-Time

PCR System.

Rat tMCAO surgeries

The middle of the neck was shaved with electric clippers

and cleaned with Hibiclens. A skin incision was made over

the right common carotid artery (CCA), the muscle was

retracted, and the CCA bifurcation was exposed. The CCA

was ligated, and a distal segment of the external carotid

artery (ECA) was temporarily clamped using a suture or

clip. A nylon suture was then inserted through the CCA

and advanced into the internal carotid artery (ICA) for a

predetermined distance (18–21mm) based on animal weight.

The ECA clip/suture was then removed. After a cannulation

of the right jugular vein with PE-90 tubing, the skin incision

was closed with surgical staples. The animal was again

anesthetized after the 90min ischemic period, the wound was

re-opened, and the intravascular suture was removed from

the CCA, initiating reperfusion. The bolus dose, followed by

the primed pump connection, was administered immediately

upon suture removal and the skin wound was again closed.

During the time of anesthesia, a self-regulating heating pad

connected to a rectal thermometer was used and maintained

at 37.0◦ ± 1◦C. Cefazolin (40 mg/kg; Hikma Parma Corp

156005) was given intraperitoneally. before surgery to prevent

infections. Subcutaneous buprenorphine (∼0.1 mg/kg; Par

Pharm companies, Inc.) was given before surgery as analgesia.

All treatment solutions were stored in 4◦C and kept in 4◦C

until use. Vehicle: DMSO, High Dose Group 3 mg/kg bolus

and 0.042 mg/min/kg Alzet Infusion, Mid Dose Group 0.4

mg/kg bolus and 0.0056 mg/min/kg Alzet Infusion, Low Dose

Group 0.04 mg/kg bolus and 0.00056 mg/min/kg Alzet Infusion.

Starting at the time of reperfusion, animals received 1 ml/kg

intravenous bolus followed by Alzet Infusion (8 µl/h for 24 h)

through jugular vein. These dosing regimens were designed to

maintain targeted steady-state plasma and brain concentrations

of AST-004 throughout the evaluation period. Treatments

were randomly assigned to each day of surgery: (https://www.

randomizer.org).

Rat functional assay

Functional activities were evaluated using modified

neurological rating scale (mNRS) (Longa et al., 1989). Modified

Neurological Rating Scale (mNRS): 0—Indicated no neurologic

deficit; 1—Failure to extend left forepaw fully, a mild focal

neurologic deficit; 2—Circling to the left, a moderate focal

neurologic deficit; 3—Falling to the left, a severe focal deficit:

4—Rats did not walk spontaneously and had a depressed level

of consciousness. 5—Death.

Rat sacrifice and lesion volume
quantification

Twenty-four hours after reperfusion/dosing, rats were

sacrificed using CO2, and brains were removed and cut into

seven 2mm thick coronal sections using a rat brain matrix

(+4.7, +2.7, +0.7, −1.3, −3.3, −5.3, and −7.3, compared to

bregma, respectively), and stained with TTC. The brain sections

were put into 2% TTC solution in a dark place at room

temperature for 30min. The TTC solution was then changed

to 10% formalin for fixation until images were captured ∼24 h

later. Images were captured using a digital camera fixed on

a photo stand. Volumetric analysis of the infarct area was

performed using Image J (NIH software). The free-hand tool

was used to trace the area of the infarcted tissue of the right

hemisphere, the uninfarcted tissue for both hemispheres. Infarct

area was calculated by subtracting the uninfarcted area of the

ipsilateral hemisphere from the area of the intact contralateral

hemisphere. The volume of each hemisphere was then calculated

by multiplying the area with section thickness (2mm) and

the number of sections in between each sampling (7). The

infarct volume was expressed as a percentage of the intact

hemispheric volume.

Statistics

Statistical analysis was performed in GraphPad/Prism. All

data were expressed as mean ± S.E.M. The significance level

(alpha level) was set to 0.05 (5%). All pairwise comparisons

were performed using student’s t-test. One way-ANOVA

was used in the multiple dosing experiments, and for

examining inter-sex differences. Rat data was analyzed by one

way ANOVA.

Results

AST-004 is cerebroprotective in mice
after permanent photothrombotic
occlusion over a wide range of doses

To test whether the A1R/A3R agonist, AST-004, was

protective against cerebral ischemia, we induced stroke using

photothrombosis and intraperitoneally (IP) injected AST-004

within 30min of stroke onset. Twenty-four hours post-stroke,

brains were harvested, coronally sliced into 1mm sections, then

stained with triphenyltetrazolium chloride (TTC), a dye which

turns red under dehydrogenase activity in live tissue. Cortical

tissue near the site of injury that remained white was considered

part of the ischemic lesion. Lesion volumes were estimated

by serially integrating the lesions areas in each 1 mm-thick

brain section. Control mice injected with vehicle alone exhibited
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FIGURE 1

Photothrombosis-induced stroke infarctions are reduced by AST-004 treatments. (A) Coronal sections of brains stroked with photothrombosis

for vehicle (saline injected) and AST-004 (mid dose) treated mice. (B) Average TTC-stained stroke volumes in mice treated with either vehicle or

AST-004 at the concentrations labeled: 0.022 mg/kg (L), 0.22 mg/kg (M), and 2.2 mg/kg (H). Composite group are all values from L, M, and H

AST-004 doses. (C) Data in (B) normalized to the mean vehicle lesion size and replotted. Data were pooled from three experiments using male

mice and plotted as mean +/– SEM.

an average lesion volume of 12.59 +/– 1.56 mm3 (n = 23)

(Figure 1A). We tested 3 AST-004 doses a full log difference

from each other: low (0.022 mg/kg), mid (0.22 mg/kg), and

high (2.2 mg/kg) concentrations. Previous work by our group

had demonstrated significant cerebroprotective efficacy after

traumatic brain injury at the mid-dose (0.22 mg/kg) (Bozdemir

et al., 2021). We found that all 3 doses significantly decreased

lesion volume (Figures 1B,C). The low dose of AST-004 (L)

reduced lesion size to 9.26 +/– 1.67 mm3 or 63.38 +/– 10.87%

of vehicle treated mice (n = 15, p < 0.05). Those mice treated

with the middle AST-004 (M) dose following photothrombotic

stroke showed significantly reduced lesion volumes with an

average of 5.92 +/– 0.88 mm3 or 48.39 +/– 6.59% of vehicle

(n = 24, p < 0.001), while the high dose of AST-004 (H)

reduced the average lesion size to 8.80 +/– 1.48 mm3 or

60.38 +/– 8.92% of vehicle (n = 14, p < 0.04; Figures 1B,C).

The composite lesion size when all 3 doses of AST-004 were

pooled was 7.63 +/– 0.75 mm3 or 66.05 +/– 5.67% of vehicle

(n= 53, p < 0.006).

AST-004 is cerebroprotective in mice
following stroke in females and males

To assess whether AST-004 efficacy was sex-dependent, we

re-plotted the data presented in Figure 1, separating lesion data

into groups for male and female mice. We found no significant

differences between female and male average lesion sizes, 9.48

+/– 2.40 mm3 (n = 10) vs. 15.04 +/– 1.89 mm3 (n = 13),

respectively, in vehicle treated mice. Lesion sizes for AST-004

treated mice were significantly reduced for females, 3.95 +/–

0.95 mm3 (p < 0.029, n = 13) or 37 +/– 8.18% of vehicle and

also for males, 8.25 +/– 1.25 mm3 (p < 0.009, n = 11) or 56.20
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FIGURE 2

Photothrombosis-induced stroke infarctions are reduced by AST-004 in both male and female mice. (A) Average TTC-stained stroke volumes for

male (M) and female (F) mice. (B) Female and male groups replotted as a % of their vehicle-treated means. Data were pooled from three

experiments and plotted as mean +/– SEM.

+/ – 7.91% vehicle, indicating sex was not a determinant for

AST-004 efficacy (Figures 2A,B). We note that although male

lesion sizes trended higher, even when expressed as a % of the

mean vehicle lesion size, these differences were not statistically

different (Figures 2A,B).

AST-004 cerebroprotection is blocked by
an A3R antagonist

We recently reported AST-004 was primarily a moderate

affinity A3R (humanKi 1490 nM) andA1R (humanKi 1590 nM)

agonist (Liston et al., 2020). For comparison, the natural

endogenous ligand, adenosine, has Ki values of 70 and 6,500 nM

for human A1Rs and A3Rs, respectively (Dunwiddie and

Masino, 2001). This equates to ∼4x higher affinity of AST-004

for human A3Rs and to ∼23× lower affinity of AST-004 for

human A1Rs compared to adenosine. Accordingly, we tested

whether cerebroprotection was inhibited by pre-injecting mice

with the A3R antagonist, MRS1523 (2 mg/kg), 15min before

inducing a photothrombotic stroke. MRS1523 (2 mg/kg) was

also added along with vehicle or AST-004 after each stroke.

Brains were harvested 24 h post stroke, sliced, stained for TTC,

and lesion volumesmeasured as described in Figure 1.We found

that MRS1523 by itself, did not significantly affect the average

lesion volume (Figures 3A,B). The mean lesion size was 11.57

+/– 2.90 mm3 (n = 7), comparable to the average lesion size

for mice treated with only vehicle (dashed line, Figure 3B). In

contrast, MRS1523 completely blocked AST-004 efficacy. The

average lesion size was 14.48+/– 1.60 mm3 (n= 8, pooled from

low and high AST-004 treated mice), not significantly different

than the average lesion size in control mice. For comparison, the

average lesion size in mice treated with AST-004 alone is shown

as the dashed red line (Figure 3B). We conclude from these data

that AST-004 cerebroprotective efficacy requires activation of

the A3R.

Neuroprotection mediated by the P2Y1R
agonist MRS2365 is blocked by A3R
antagonist

Our recent work suggested the neuroprotective efficacy of

P2Y1R agonist MRS2365 (Zheng et al., 2010, 2013; Talley Watts

et al., 2013), was mediated by the rapid production of an

MRS2365 metabolite, AST-004 (Liston et al., 2020). To test the

dependence of MRS2365 mediated neuroprotection on A3R

agonism, we pretreated mice with the A3R antagonist MRS1523

as described above. As previously reported,MRS2365 treatments

significantly reduced lesion volumes (14.31 +/– 1.81 mm3, n

= 20) compared to untreated mice (23.74 +/– 2.17 mm3, n =

18) (Figures 3C,D). In mice treated with MRS1523, the average

lesion volume reduction was (25.17 +/– 3.38, n = 12), not

significantly different than control mice.

We also tested the efficacy of the high affinity A3R

agonists MRS5698 and Cl-IB-MECA. MRS5698 treatments

(1.4 mg/kg) significantly reduced the mean lesion volume

(7.33 +/– 1.07 mm3, n = 11) compared to untreated mice,

although this reduction lesion size appeared smaller than that

observed for AST-004 (Figure 4). However, in mice treated

with the A3R agonist Cl-IB-MECA (0.19 mg/kg), the mean

lesion size 24 h post-stroke (16.06 +/– 3.18, n = 5) trended
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FIGURE 3

Photothrombosis-induced stroke infarctions reduced by AST-004 or by MRS2365 are blocked by A3R antagonist MRS1523. (A) Coronal sections

from stroked mice pre-injected 15min before stroke onset with the A3R antagonist MRS1523, stroked, and post-treated with vehicle or

AST-004. (B) Average TTC-stained stroke volumes in mice treated with MRS1523 alone or with AST-004 and MRS1523. (C,D) Average

TTC-stained stroke volumes in mm3 (C) or as a % of vehicle treated (D) in mice treated with MRS2365 with or without MRS1523.

higher than untreated mice (Figure 4). This may be due to

the low blood barrier permeability of this compound or

low unbound brain fraction available to interact with A3R.

These data suggest that A3R agonism by itself, may not be

sufficient for cerebroprotection as both MRS5698 and Cl-

IB-MECA have substantially higher affinity for A3R than

does AST-004, but this higher affinity does not translate to

higher efficacy.

AST-004 exerts its cerebroprotective
e�ects through astrocyte energy
metabolism

Earlier studies by our group indicated MRS2365

cerebroprotection was the result of enhanced mitochondrial

energy metabolism in astrocytes (Zheng et al., 2010, 2013).

To test whether the cerebroprotection efficacy of AST-004, a
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FIGURE 4

Cerebroprotective e�cacy of A3R agonists MRS5698 and

Cl-IB-MECA in photothrombosis-induced stroke infarctions.

Average TTC-stained stroke volumes as labeled. Black dashed

line shows mean stroke volume for untreated mice. Red dashed

line shows mean stroke volume for AST-004 treated mice as

presented in Figure 1B. Statistics relative to vehicle control in

Figure 1B. Data were pooled from two experiments (n = number

of mice per treatment) and plotted as mean +/– SEM.

MRS2365metabolite, was similarly dependent onmitochondrial

metabolism, we pre-treated mice with the astrocyte specific

mitochondrial toxin, fluoroacetate (FAc, 0.004 mg/kg) (Fonnum

et al., 1997). Consistent with the data presented above, treatment

of mice with AST-004 alone significantly reduced the mean

lesion volume to 48.09 +/– 6.98% (n = 10, p < 0.001) of

control (100 +/– 11.01%, n = 9), 24 h post-stroke. In mice

treated with FAc, however, AST-004 did not significantly

reduce lesion sizes (83.08 +/– 14.66%, n = 10) (Figure 5A).

Mice treated with vehicle and FAc exhibited an average lesion

size of 89.75 +/– 18.33% (n = 12), not significantly different

from control mice. We conclude from these data that the

cerebroprotective efficacy of AST-004 is dependent on astrocyte

mitochondrial metabolism.

Photothrombotic stroke increases mRNA
levels for Adora3 and Gfap in the areas
surrounding the lesion

Numerous reports have indicated A3R expression is

upregulated in the context of hypoxia and inflammation

(Morschl et al., 2008; Godini et al., 2018; Torres et al., 2019).

To determine if similar changes occur with our model of stroke,

we isolated brain tissue surrounding the lesion 24 h post-stroke

for qPCR measurements. We examined mRNA levels for both

adora3 and gfap, as a marker for astrogliosis, and compared the

relative levels between ipsilateral and contralateral samples. We

found a 70% increase in ipsilateral levels of adora3mRNA (1.70

+/– 0.13, p < 0.0001, n = 8) compared to contralateral brain

tissue in untreated mice (0.96 +/– 0.06, n = 8) (Figure 6A). We

also found ipsilateral levels of gfap mRNA (4.85 +/– 0.49, p <

0.0001, n = 8) increased nearly 5-fold relative to contralateral

tissue (1.08+/– 0.19, n= 8), consistent with reactive astrogliosis

occurring in non-treated injured mice (Figure 6B). We found

similar changes in mRNA levels for both adora3 and gfap in

mice treated with AST-004. Adora3 mRNA levels increased to

1.87 +/– 0.19 on the ipsilateral side compared to 0.86 +/– 0.05

on the contralateral side (p < 0.0001, n= 8). Gfap mRNA levels

increased to 5.98+/– 0.85 ipsilateral compared to 1.30+/– 0.23

on the contralateral side (p < 0.002, n= 8).

AST-004 is cerebroprotective in rats after
transient middle cerebral artery occlusion

Given the efficacy of AST-004 in our photothrombotic

mouse model of stroke, we also tested whether our A3R

agonist was an effective treatment in a transient rat model

of stroke. For these experiments, we induced stroke using

middle cerebral artery occlusion (MCAO) for 90min followed

by reperfusion. AST-004 was intravenously injected at the start

of reperfusion followed by constant rate infusions to maintain

targeted concentrations through the course of the evaluation

period. Three doses of AST-004, a full log difference from each

other, were tested. Twenty-four hours post-stroke, we evaluated

the functional activities of rats using the modified neurological

rating scale (mNRS) (Longa et al., 1989). For this assay, no

neurologic deficit is scored 0, a failure to extend the left forepaw

is scored 1, circling to the left is scored 2, falling to the left

is scored 3. Rats that do not walk spontaneously are scored 4

and rats that die are scored 5. For untreated rats, 83% scored

between 3 and 5 with a mean mNRS of 3.67 +/– 0.36 (n =

12) (Figures 7A,B). For rats treated with the mid-dose of AST-

004, only 25% scored between 3 and 5, resulting a significantly

lower mean mNRS score of 2.25 +/– 0.30 (n = 12, p < 0.006).

Average mNRS scores for the low-dose and high-dose of AST-

004 were 3.42 +/– 0.38 (n = 12) and 3.00 +/– 0.48 (n = 12),

respectively. Neither of these mNRS scores were significantly

different from untreated rats. Immediately after mNRS scoring,

brains were harvested, coronally sliced into 2mm sections, then

stained with TTC as described for mouse brains. The infarct

volume for untreated rats, 24 h post-stroke, was 254.9+/– 33.58

mm3 (n = 9) (Figures 7A,C). We found AST-004 treatments at

the mid-dose (M) significantly (p < 0.005) reduced the mean

stroke size to 125.3+/– 36.75 mm3 (n= 12). The average lesion

size in rats treated with the low-dose (L) of AST-004 was 263.8

+/– 44.53 mm3 (n= 12) and for rats treated with the high-dose

of AST-004, the average lesion size was 213.8+/– 43.90 mm3 (n

= 12). Neither of these averages were significantly different from

untreated rats. Essentially identical findings were observed when
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FIGURE 5

Fluoroacetate, an astrocyte specific mitochondrial toxin, blocks AST-004 neuroprotection. (A) Histogram plot of average TTC-stained stroke

volumes in mice treated with either vehicle, AST-004, fluoroacetate (FAc) or fluoroacetate, and AST-004 (FAc/AST-004) expressed as a

percentage of the average control volume. Data were pooled from mice receiving strokes using Photothrombosis methods #1 and #2. (B)

Stroke volume data presented in (A) using only Photothrombosis method #1. (C) Stroke volume data presented in (A) using only

Photothrombosis method #2.

infarct volume measurements were replotted as a percentage of

the uninjured hemisphere size (Figures 7A,D).

Discussion

Our group previously demonstrated significant

cerebroprotection after brain injuries using P2Y1R agonists

MRS2365 and 2-MeSADP (Zheng et al., 2010, 2013; TalleyWatts

et al., 2013). Subsequent work showed these phosphorylated

nucleotides were rapidly metabolized in vivo and that the active

cerebroprotective compounds were likely the metabolites of

MRS2365 and 2MeSADP, AST-004 and 2-methylthioadenosine,

respectively (Liston et al., 2020). We confirmed AST-004

treatments were cerebroprotective after TBI in mice (Bozdemir

et al., 2021) and tMCAO in non-human primates (Liston et al.,

2022). Binding studies showed AST-004 was primarily an A3R

agonist with some affinity for A1Rs (Liston et al., 2020).

Here, we validated the cerebroprotective efficacy of AST-004

following photothrombotic stroke in mice, a permanent model

of ischemia, as well as following tMCAO in rats, a transient

model of ischemia. Efficacy in both permanent and transient

ischemia could be of significant clinical importance patients that

achieve blood clot removal from either thrombectomy and/or

thrombolysis, the current standard of care, and for patients

who do not. We also found no sex-dependent effects of this

AST-004. This is an important finding considering the often-

reported differential effects drugs can have on men and women

in clinical settings.Women are known to have a higher incidence

of stroke, larger infarcts, and worse outcomes, whichmay be due,

in part, to the fact women live longer than men (Girijala et al.,

2017). However, when similarly treated, for example with tissue

plasminogen activator (tPA), the difference in outcome measure

is significantly reduced (Ahnstedt et al., 2016; Berglund et al.,

2017). The higher incidence of strokes in women may also be

affected by the loss of estrogen after menopause (Franconi et al.,
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FIGURE 6

Ipsilateral mRNA levels of Adora3 and Gfap are significantly increased 24h post-stroke. (A) Relative quantity of Adora3 mRNA in tissue

surrounding photothrombotic lesion site. (B) Relative quantity of Gfap mRNA in tissue surrounding photothrombotic lesion site. Mice were

sacrificed 24h post-stroke, their brains removed, mRNA extracted and prepped for qRT-PCR as described in text. (C) Amplification plots for

Gapdh, used as a control, in the tissues surrounding the photothrombotic lestions.

2012; Pabbidi et al., 2018). Lesion sizes in ovariectomized rodent

models are significantly larger, consistent with cerebroprotective

effects of estrogens (Suzuki et al., 2009). In our experiments,

the average lesion size in untreated female mice trended (p <

0.078) smaller than untreated male mice. Hence, it is possible

our female mice benefited from endogenous actions of estrogen.

Importantly, when normalized by the mean lesion size for

vehicle treated mice, AST-004 significantly decreased lesion size

in both females and males.

AST-004 is a lower affinity A1R/A3R agonist that exhibits

significant efficacy as shown here and reported previously

(Bozdemir et al., 2021; Liston et al., 2022). The cerebroprotective

benefits of AST-004 were completely blocked by the A3R

antagonist MRS1523, suggesting A1R agonism is not required.

Moreover, MRS2365 cerebroprotection was completely blocked

by the A3R antagonist, confirming MRS2365 served as a

prodrug for AST-004 efficacy. Receptor binding models indicate

significant efficacy is observed at estimated brain receptor

occupancy levels as low as 5% in a non-human primate

model of stroke (Liston et al., 2022). In light of these results,

we tested AST-004 efficacy at doses an order of magnitude

lower and higher than previously reported in mice (Bozdemir

et al., 2021). All AST-004 concentrations were cerebroprotective

against stroke, and the lower and higher doses were not

significantly different from the mid-dose in mice. In rats, we

observed a pronounce U-shaped dose response for both infarct

size and the observed neurological deficits. Hormesis, or a

“U-Shaped” biphasic dose-response has been observed with

many CNS-active agents (Hammarberg et al., 2003; Calabrese,

2008). Importantly, no hormesis was observed in primate

stroke efficacy studies, in which a clear AST-004 dose- and

concentration-related effect was observed on inhibition of stroke

lesion growth (Liston et al., 2022).

The observed hormesis in the rat stroke studies, not seen

in either mouse or non-human primate studies under our

experimental conditions, could be due to the dual affinities

of AST-004 for A1Rs and A3Rs. Agonism of both adenosine

receptor subtypes can be cerebroprotective in models of
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FIGURE 7

Dose-response of AST-004 treatments for MCAO stroke infarctions in rats. (A) Coronal sections of rat brains with MCAO infactions for vehicle

(saline injected) and AST-004 (mid dose) treated mice. (B) Histogram of mNRS scores of animals at each dose of AST-004 tested. (C) Average

TTC-stained stroke volumes in rats treated with either vehicle or AST-004 at the concentrations labeled: 0.04 mg/kg (L), 0.4 mg/kg (M), and 3

mg/kg (H). (D) Indirect measurement of lesion volume through comparative measurements of contralateral hemisphere at doses of AST-004

labeled. Data were collected from male mice and plotted as mean +/– SEM.

ischemic stroke (Cunha, 2001, 2005; Zamani et al., 2013;

Tregub et al., 2014; Solino et al., 2018). However, A1R agonism

has also been associated with cardiovascular effects including

bradycardia and hypotension (Koeppen et al., 2009; Borea

et al., 2018). Hypotension has been demonstrated to lead

to higher stroke volumes and worse clinical outcomes in

ischemic stroke as well as TBI. It is possible that a balance of

AST-004 A1R and A3R agonism in rats results in significant

efficacy, but at high doses, the peripheral cardiovascular

effects of A1R agonism reduce this cerebroprotection. Again,

this appears to be a rat-specific phenomenon, since we did

not observe any evidence of hormesis or blood pressure

effects over a broad dose range in a recent primate stroke

efficacy study (Liston et al., 2022). More research is required
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to test the role of A1R agonism at higher doses in our

stroke models.

Despite the significantly higher and more specific affinity

of MRS5698 and Cl-IB-MECA for the A3R, those compounds

had only similar or lower efficacy than AST-004 in the

mouse photothrombotic stroke model. This may be due to

the pharmacokinetic effects of the significant physicochemical

differences between these compounds. AST-004 is a hydrophilic,

polar small molecule whereas both MRS5698 and Cl-IB-MECA

have substantially higher lipophilicity. These physicochemical

differences lead to substantially higher plasma protein and

brain tissue binding for MRS5698 (Tosh et al., 2015) and Cl-

IB-MECA with correspondingly lower unbound fractions of

compound required for distribution and receptor engagement

compared to AST-004 (unpublished data). Thus, despite their

high affinity for A3R, there are extremely low unbound fractions

of these compounds in the brain for A3R agonism. In addition,

previous data have suggested that both MRS5698 and Cl-IB-

MECA may be excellent substrates for efflux transporters such

as P-glycoprotein, potentially further limiting their distribution

into the brain (Tosh et al., 2015; Abel et al., 2019). AST-004 is

not a substrate for P-glycoprotein (unpublished data).

AST-004 cerebroprotection was blocked by the astrocyte

specific mitochondrial toxin, fluoroaceteate. Fluoroacetate is

preferentially transported into astrocytes by monocarboxylic

acid transporter isoforms that are not present in neurons.

Its toxic metabolite, fluorocitrate, inhibits the tricarboxylic

acid cycle (Fonnum et al., 1997). These data are consistent

with previous work showing cerebroprotection with the pro-

drug MRS2365 was dependent on astrocyte mitochondrial

metabolism (Zheng et al., 2010, 2013). In addition, our group

demonstrated cerebroprotection by these pro-drugs could be

blocked by knocking out the astrocyte specific IP3R type 2 or

by disrupting astrocyte specific mitochondrial function (Zheng

et al., 2010, 2013). Together, these data suggest AST-004 acts

by stimulating IP3-mediated Ca2+ release, leading to enhanced

Ca2+ sensitive enzyme activity in astrocyte mitochondria. We

note that A3Rs can effectively couple to either Gq/11 or Gi/o

subtypes of G proteins (Gilman, 1987; Abbracchio et al., 1995).

A3Rs are normally expressed at very low levels in the

brain (Jacobson et al., 1993; Ji et al., 1994; Lopes et al.,

2003; Gessi et al., 2008). Following photothrombotic stroke, we

found a significant increase in brain A3R transcripts, which

may aid long-term recovery after brain injury. The availability

of additional A3Rs could minimize inherent problems with

desensitization from either high levels of endogenous adenosine,

which occurs after trauma (Bell et al., 1998) or in the presence of

an exogenous A3R agonist. Regardless, it is clear mice null for

A3Rs exhibit significantly worse outcomes after ischemic injury

(Cheng et al., 1993; Fedorova et al., 2003; Chen et al., 2006).

Interestingly, treatment of mice with AST-004 did not reduce

the observed increases in either adora3 or gfap mRNA levels by

the 24 h timepoint post-stroke. Our group previously reported

significant AST-004 mediated reductions in GFAP protein levels

3 days post-injury as well as reductions in gfap mRNA levels 7

days post-injury (Bozdemir et al., 2021). The data presented here

suggest early cerebroprotective increases in mRNA immediately

post-injury are not affected by AST-004. Rather, levels of

adora3 and gfap mRNA appear to subside only after AST-

004 mediated healing occurs. Mechanistically, activation of

A3Rs is known to inhibit proinflammatory cytokines (Tosh

et al., 2014; Wahlman et al., 2018; Jacobson et al., 2020).

Patients with autoimmune inflammatory diseases exhibit high

expression of A3Rs in peripheral inflammatory cells and in

bloodmononuclear cells (Bar-Yehuda et al., 2007; Ochaion et al.,

2009). A3Rs are overexpressed in the hypoxic core of tumors

and have anti-cancer effects (Fishman et al., 2002; Madi et al.,

2004). Protein and mRNA levels of A3Rs were also observed

to increase after subarachnoid hemorrhage in rats (Li et al.,

2020). It is unclear whether our energy-dependent mechanism

of cerebroprotection is linked to these anti-inflammatory effects

of A3R agonism. Production of reactive oxygen species (ROS)

by mitochondria stimulate an inflammatory response (Fishman

et al., 2012). Future studies are needed to test whether ROS

production is reduced by AST-004 treatments. Independent,

but complimentary mechanisms are also possible. Choi and co-

workers reported A3R agonists reduced the lesion volume in

rats after MCAO, which significantly decreased recruitment of

inflammatory cells to the lesion site (Choi et al., 2011).

Overall, we have shown that AST-004 treatments provide

significant cerebroprotection in two rodent models of stroke,

including treatment of both transient and permanent occlusions.

Pharmacological interventions indicate a dependence of this

cerebroprotection on A3R agonism and mitochondrial

metabolism in astrocytes. Together, these pre-clinical studies

confirm the efficacy of AST-004 treatments after brain injuries

and encourage the continued development of this new

therapeutic in clinical trials.
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