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Exercise-induced adaptations in
the kynurenine pathway:
implications for health and
disease management
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Xuebin Qin3 and Juliana Pereira Borges1*
1Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports,
University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil, 2Postgraduate Program in Clinical and
Experimental Physiopathology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de
Janeiro, RJ, Brazil, 3Department of Microbiology and Immunology, Tulane National Primate Research
Center and Tulane University School of Medicine, Covington, LA, United States
Background: Tryptophan (TRP) metabolism through the kynurenine (KYN)
pathway is influenced by inflammatory mediators, generating metabolites that
regulate immune and inflammatory responses. Exercise has been proposed as
a modulator of this pathway, but its role in health benefits and chronic disease
management remains unclear.
Objective: This systematic review examines exercise-induced adaptations in the
KYN pathway and their potential implications for health and disease management.
Additionally, we identify key methodological considerations for future research.
Methods: A structured search of PubMed/Medline, Web of Science, and Scopus
was conducted up to October 2024 to identify clinical trials investigating the
effects of exercise training on the KYN pathway.
Results: Of 2,795 articles initially found, 13 clinical trials involving 592
participants met the inclusion criteria. Most studies reported exercise-induced
adaptations in the KYN pathway, particularly in cancer survivors. These
adaptations appeared to be influenced by exercise intensity and duration.
However, several methodological limitations were noted, and no trials
included patients with metabolic or cardiovascular diseases.
Conclusions: Here, we show that exercise training modulates the KYN pathway
in both healthy and diseased populations, highlighting its potential for disease
prevention and management. However, further randomized-controlled trials
are needed to clarify its mechanisms and clinical applications, particularly in
metabolic and cardiovascular diseases.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42022351481, PROSPERO (CRD42022351481).

KEYWORDS

disease management, tryptophan, chronic disease, kynurenic acid, metabolism,
exercise, kynurenine, health promotion

1 Introduction

Tryptophan (TRP) is an essential amino acid derived entirely from dietary sources

required for protein biosynthesis. Discovered by Hopkins and Cole (1) in 1901 and

structurally characterized by Ellinger and Flamand (2) in 1907, TRP has since been

shown to participate in several metabolic pathways (3). However, only a small
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percentage of ingested TRP participates in protein biosynthesis;

more than 95% is broken down via the kynurenine (KYN)

pathway (4–6), producing various metabolites that have

significant roles in regulating immune responses, inflammation,

neuronal functions, and gut homeostasis (7–9). These

metabolites, collectively referred to as KYN, include kynurenine

(KYN), kynurenic acid (KYNA), and quinolinic acid (QUINA)

(10), and are involved in the production of nicotinic acid, a

precursor for nicotinamide adenine dinucleotide (NAD) (3),

which is crucial for cellular energy metabolism (11). Except for

hepatocytes, few cells have enzymatic apport to fully degrade

TRP to NAD. This makes KYN metabolites important mediators

of crosstalk between cells or organs, as they can be exchanged

between tissues to exert various biological effects (12, 13).

One of the key regulators of the KYN pathway are two

enzymes: indoleamine 2,3-dioxygenase (IDO1) and tryptophan

2,3-dioxygenase (TDO). IDO1 is expressed in a wide range of

tissues, including the brain, lungs, heart, kidneys, and intestines,

while TDO is primarily active in the liver (14). Both enzymes

catalyze the initial step of TRP catabolism, converting TRP into
FIGURE 1

Body-Brain axes and its interaction with the kynurenine pathway. This figure
body-brain axes. Tryptophan (TRP) metabolism is initiated by the enzyme
(IDO), leading to the formation of N-formylkynurenine, which is further co
metabolic routes: the neuroprotective pathway (in green), where kynurenin
a metabolite with anti-inflammatory and neuroprotective properties, and th
(KMO) converts KYN into 3-hydroxykynurenine (3HK). 3HK is further meta
acid (QUINA), a neurotoxic compound involved in excitotoxicity and n
production and shifting the balance towards the neuroprotective pathway
this metabolism. The muscle-brain axis is involved in exercise-induced
kynurenine metabolism through microbiota-derived signals and immune m
metabolism, as pro-inflammatory cytokines such as TNF-α, IL-6, and
metabolites. Together, these interactions influence neuroinflammation, neu
kynurenine formamidase; KYNU, kynureninase; 3HAO, 3-hydroxyanthranil
nicotinamide adenine dinucleotide; AhR, aryl hydrocarbon receptor; GPR35
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formylkynurenine (14), which is further metabolized to KYNA

via kynurenine aminotransferases (KAT) or to

3-hydroxykynurenine (3HK) via kynurenine 3-monoxygenase

(KMO), and eventually to QUINA (14, 15). Figure 1 illustrates

the KYN pathway.

The activity of IDO1 and TDO increases in response to

cytokine signaling, particularly during inflammatory responses

(16, 17). Consequently, the KYN pathway is tightly regulated by

cytokines, which can either enhance or suppress its activity

depending on the body’s inflammatory state (18). In chronic

conditions, sustained elevation of inflammatory cytokines leads

to excessive activation of this pathway (19–21). This

overactivation leads to an increase in the production of

neurotoxic metabolites, such as 3HK and QUINA (see Figure 1).

3HK and QUINA exert neuronal excitotoxicity due to its agonist

activity at N-methyl-D-aspartate receptors (NMDAR) (22). These

metabolites contribute to inflammation, immune tolerance,

oxidative stress, and neuronal apoptosis (3, 12, 23, 24), and are

implicated in the pathogenesis of several diseases, including

neurodegenerative disorders (such as Alzheimer’s, Parkinson’s,
illustrates the kynurenine (KYN) pathway and its interaction with different
s tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase
nverted into kynurenine (KYN). From this point, KYN follows two main
e aminotransferases (KAT I-IV) convert KYN into kynurenic acid (KYNA),
e neurotoxic pathway (in red), in which kynurenine 3-monooxygenase
bolized into 3-hydroxyanthranilic acid (3HAA) and then into quinolinic
euroinflammation. Exercise promotes KAT expression, favoring KYNA
. Additionally, the figure highlights key body-brain axes that influence
KAT expression, enhancing KYNA levels. The gut-brain axis regulates
odulation. The immune-brain axis plays a crucial role in shifting TRP

IFN-γ stimulate IDO activity, favoring the production of neurotoxic
rodegenerative processes, and exercise-induced neuroprotection. KFO,
ic acid oxygenase; QPRT, quinolinate phosphoribosyltransferase; NAD,
, G protein-coupled receptor 35.
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and multiple sclerosis) (3, 25, 26) and cancers (24, 27, 28), both of

which show elevated KYN levels. Additionally, aging is associated

with alterations in the KYN pathway, as increased levels of KYN

were observed in older muscle tissues (29). Elevated KYN levels

are also correlated with several metabolic disorders, including

obesity, dyslipidemia, insulin resistance, and diabetes (30, 31). In

contrast, TRP levels are inversely associated with cardiovascular

disease incidence (32, 33).

Despite the harmful effects of KYN metabolites like QUINA

(34, 35), the KYN pathway also produces neuroprotective agents,

such as KYNA (36, 37). KYNA acts by antagonizing NMDAR

and α7 nicotinic acetylcholine receptors (α7nAChR) (38, 39),

protecting neurons from excitotoxicity and oxidative damage

(40). KYNA also exerts anti-inflammatory effects through its

interaction with G protein-coupled receptor 35 (GPR35) in

adipocytes, which inhibits TNF-α release by macrophages under

inflammatory conditions (41–43). Additionally, KYNA mediates

anti-inflammatory responses (44, 45) by activating the aryl

hydrocarbon receptor (AhR), which promotes the differentiation

of T helper 17 (Th17) cells into regulatory T cells (Treg) (46).

These mechanisms suggest that KYNA plays a critical role in

maintaining the balance between neurotoxicity and

neuroprotection within the KYN pathway (47, 48).

The peripheral KYN pathway also influences the central

nervous system (39). While KYN, 3HK, and other metabolites

can cross the blood-brain barrier, KYNA and QUINA are

generally restricted to peripheral tissues (49). This restriction

raises the possibility that altering the balance of KYN

metabolism in peripheral tissues, for instance by increasing

KYNA production, may help reduce the neurotoxic effects of

elevated KYN levels in the brain. Given that TRP, KYN,

and 3HK can pass through the blood-brain barrier, strategies

aimed at rerouting the KYN pathway toward KYNA production

could theoretically provide a therapeutic approach to

mitigating neurodegenerative diseases and other central nervous

system disorders (39, 50).

Lifestyle-based interventions have recently been suggested to

modulate TRP metabolism, aiding in the prevention and

treatment of diseases with inflammatory mechanisms (39, 44).

Exercise training, in particular, has been shown to increase the

expression of KAT, redirecting the KYN pathway towards its

protective branch in skeletal muscle in humans (51, 52) and mice

(41, 51, 53). Evidence from pre-clinical models shows that this

re-routing enhances lipid metabolism, and thermogenesis, and

reduces weight gain, inflammation, insulin resistance, and glucose

intolerance (41, 54), although energy metabolism was largely

unaffected in KMO knockout mice (55). Additionally, clinical

evidence supports the beneficial role of physical exercise on the

KYN pathway in cancer (56, 57) and central nervous system

disorders, such as major psychological disorders (39, 58–60).

Conversely, studies in healthy individuals (61) and older adults at

risk of dementia have failed to identify changes in KYN pathway

and benefits after exercise training (60). Collectively, these

findings suggest that the benefits of exercise may be more

pronounced in certain populations or disease states. There is also

growing interest in the role of exercise-induced adaptations of
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the KYN pathway in chronic diseases associated with

inflammation, such as metabolic disorders (62, 63).

Given the potential exercise-induced adaptations in the KYN

pathway and their implications for chronic diseases, further

research is needed to elucidate the effects of exercise training and

its mechanisms on KYN pathway, and to determine whether

these effects translate into meaningful clinical benefits for

individuals with different health conditions. This review

systematically examines clinical trials investigating the

adaptations to exercise training on the KYN pathway and its

impact on health and disease. We first explore how physical

exercise influences this pathway, discussing the molecular

adaptations that may contribute to its protective effects in

healthy populations. Next, we provide an overview of the

findings of the exercise-induced adaptations on the KYN

pathway in various chronic conditions. We then summarize

findings, identifying key methodological considerations that may

explain discrepancies in literature. Finally, we outline current

knowledge gaps and propose future research directions to

enhance our understanding of how exercise modulates TRP

metabolism and whether these adaptations translate into

meaningful clinical benefits.
2 Methods

This systematic review was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis Protocols (PRISMA) guidelines (64). The study was

registered in the International Prospective Register of Systematic

Reviews (PROSPERO) under the number CRD42022351481, and

the protocol was strictly followed through all stages of this

review. Studies were selected according to the criteria mentioned

in the below sections.
2.1 Search strategy

Searches were conducted from inception until August 5, 2022,

and updated on October 25, 2024, in MEDLINE (via PubMed),

Web of Science, and Scopus databases. No date restrictions were

applied, and filters were set for human studies and English

language articles. A search strategy using Boolean operators

“AND” and “OR” and terms related to “exercise training” and

“kynurenine pathway” was applied to identify relevant trials (see

Supplementary Appendix 1).
2.2 Study selection

After removing duplicates, two independent investigators (MR

and JB) screened studies in two stages: (1) title and abstract review,

and (2) full-text evaluation. Studies failing to meet inclusion

criteria at any stage were excluded. Reference lists of selected

studies were manually reviewed for additional eligible studies.

Discrepancies were resolved through discussion between
frontiersin.org
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investigators, and if consensus could not be reached, a third

reviewer (KGL) was consulted. Agreement on inclusion was

validated in a random sample of 50 abstracts, yielding a Cohen’s

kappa coefficient of 0.84–0.99 (p < 0.05).
2.3 Eligibility criteria

Only original trials investigating the effects of exercise training

on KYN pathway metabolites were included. Studies were

considered if they met the PICOS criteria, as shown in Table 1.

No minimum exercise prescription was required. However,

authors should have at least reported three of the variables of

exercise training prescription, according to the FIIT principle.

This principle, which stands for Frequency, Intensity, Time, and

Type of exercise, is a fundamental framework used in exercise

prescription and research to describe and standardize exercise

interventions (65). Each component helps ensure that exercise

regimens are clearly defined, reproducible, and comparable

across studies.
2.4 Quality and risk of bias assessment

All included studies were assessed for methodological quality

using the Tool for Assessment of Study Quality and Reporting in

Exercise (TESTEX scale) (66, 67). TESTEX is a widely used

15-point scale (5 points for study quality and 10 for reporting),

specifically designed for exercise studies, addressing criteria not

considered in other quality assessment tools. It was chosen due

to its validation in evaluating exercise intervention trials and its

ability to capture the nuances of exercise prescription fidelity (66).

Additionally, studies were assessed for risk of bias using the

Cochrane Collaboration’s (RoB, Risk of Bias 2) tool (67, 68).

This tool evaluates five domains of bias: Randomization process,

Deviations from intended interventions, Missing outcome data,

Measurement of the outcome, Selection of the reported result,
TABLE 1 Inclusion and exclusion criteria based on PICOS strategy
(population, intervention, comparison, outcome and study).

Category Inclusion criteria Exclusion criteria
Population Adults (≥ 18 years) Pre-clinical models

Interventions Supervised exercise training
reporting at least three of the
FITT principles:

Trials involving dietary or
supplementation interventions
affecting the KYN pathway

Frequency: how often
Intensity: how hard

Time: duration

Type: mode of exercise

Comparison Pre-post intervention, trained
vs. untrained

Outcome Evaluation of at least two KYN
pathway metabolites before
and after intervention

Study Controlled or non-controlled
trials

Acute interventions studies, case
reports, epidemiological studies,
reviews, and editorials

KYN, kynurenine.
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and Overall bias. Assessments were independently conducted by

two authors (MR and JB), and mean scores were assigned for

each evaluation method.
3 Results

Figure 2 displays the PRISMA flowchart summarizing article

selection, while Table 2 presents the methodological quality

scores based on TESTEX. Of the 2,796 articles initially found in

databases and reference list, 1,038 duplicates were removed, and

1,737 were excluded after title and abstract screening, leaving 21

articles for full evaluation. Of those, 13 articles met the inclusion

criteria. Overall, study quality ranged from poor to moderate,

with TESTEX scores between 3 and 11 (median score 7). Two

trials were rated as high quality (73% of items satisfied), 4 as

moderate (50%–72% of items satisfied), and 7 as very low quality

(satisfying less than 50% of the items). The risk of bias

assessment for each study is presented in Supplementary

Appendix 2, with a summary provided in Figure 3. The

assessment revealed that most of the included studies (9 out of

13) had some concerns regarding bias. Three studies were

classified as having a high risk of bias, while only one was

deemed to have a low risk after evaluation.

Table 3 summarizes the characteristics of the included studies,

such as sample, interventions, and outcomes. Of the 13 studies, 5

were randomized controlled trials, and 8 were non-randomized

experiments. Eleven studies (84.6%) were conducted in Europe

(57, 58, 60, 61, 70–76), with the remaining 2 in the Americas

(56, 69). Regarding study populations, only three studies (23%)

involved healthy volunteers (61, 69, 70), while 10 (77%) focused

on patients with chronic conditions, including cancer (56, 57,

71–73), multiple sclerosis (74, 75), emotionally impulsivity (58),

dementia risk (60), and chronic low back pain (76).

Among the 13 included studies, 11 reported evidences of

exercise-induced adaptations in the KYN pathway (56–58,

69–76). The two studies (60, 61) that failed to observe such

adaptations were conducted in healthy individuals (61)

(representing 33% of all studies in healthy populations), and in

older adults at risk of dementia (60). Exercise-induced

adaptations included changes in muscle KAT content (70),

Peroxisome proliferator-activated receptor-gamma coactivator

(PGC)-1α (56), KYN or TRP (56, 57, 69, 72, 74–76), KYNA (58,

69, 76) and IDO-1 and 2 levels (71, 76).
4 Discussion

We investigated the effects of exercise training on the KYN

pathway and its implications in health and chronic conditions.

Our findings suggest that exercise-induced adaptations in the

KYN pathway differ across populations, with more pronounced

effects observed in individuals with chronic diseases. These

results contribute to the growing evidence that physical exercise

modulates TRP metabolism, promoting neuroprotective and

anti-inflammatory effects. Given the increasing interest in the
frontiersin.org
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FIGURE 2

Flowchart summarizing the search and selection of articles.

TABLE 2 TESTEX assessment of the quality and reporting of studies about adaptations to exercise training on the kynurenine pathway in health
and disease.

Study Study quality criterion Study reporting criterion ∑ (MAX 15)

1 2 3 4 5 6 7 8 9 10 11 12
Sánchez et al. (69) 0 0 0 0 0 0 0 2 1 0 0 0 3

Wyckelsma (70) 0 0 1 0 0 3 1 1 1 0 1 1 9

Kamandulis et al. (61) 1 0 0 0 0 0 0 0 1 1 0 0 3

Robbins et al. (56) 1 1 1 0 0 3 0 2 1 0 1 1 11

Pal et al. (57) 1 0 0 1 0 0 0 2 1 0 0 1 6

Pal et al. (71) 1 1 1 1 0 0 0 2 1 0 0 0 7

Zimmer et al. (72) 1 1 1 1 1 1 0 2 1 0 1 1 11

Herrstedt et al. (73) 1 0 1 1 0 2 0 2 1 0 1 0 9

Joisten et al. (74) 1 0 1 0 1 0 0 2 1 0 0 1 7

Bansi et al. (75) 0 0 0 1 0 0 0 2 1 0 0 0 4

Javelle (58) 1 1 1 0 0 1 1 1 1 0 0 1 8

Kuster (60) 1 0 1 1 1 2 0 1 1 0 0 0 8

Saran (76) 1 0 0 0 0 0 0 0 1 0 0 1 3

∑, Sum of all criterions.

Rangel et al. 10.3389/fspor.2025.1535152
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FIGURE 3

Percentage of studies examining the efficacy of exercise training in modulating the kynurenine pathway with low, some concerns, and high risk of bias
for each feature of the cochrane risk of bias tool.

Rangel et al. 10.3389/fspor.2025.1535152
role of the KYN pathway in various pathophysiological conditions,

our study provides relevant insights into its responsiveness to

exercise interventions.

Limited studies have examined the effect of supervised exercise

training on KYN pathway metabolites in healthy individuals. While

some research suggests beneficial adaptations (69, 70), findings

remain inconsistent (61). In young adults, endurance-based

swimming training showed greater reductions in circulating KYN

and increases in KYNA compared to tactical immersion training,

likely due to differences in oxidative stress and metabolic

demands (69). Studies on older adults demonstrated that

vigorous sprint interval training significantly reduced plasma

QUINA levels and increased the KYNA/QUINA ratio and KAT

content (70). However, when exercise was combined with dietary

antioxidants, these effects were blunted, suggesting that a pro-

oxidant environment may be necessary to drive beneficial shifts

in KYN metabolism (70). Additionally, Boßlau, Wasserfurth (77)

reported that 12 weeks of unsupervised combined training could

redirect the KYN pathway toward KYNA. This shift appears to

be associated with mitigating immune senescence in older adults,

as evidenced by attenuated CD8+ T-cell differentiation.

Collectively, these findings indicate that exercise intensity plays

a critical role in driving KYN pathway adaptations, likely through

its influence on oxidative stress and inflammatory signaling.

Alongside this finding, another study (78) demonstrated that 4

weeks of unsupervised moderate-intensity home-based exercises

failed to improve TRP or KYN pathway in healthy young adults.

The authors speculated that a more vigorous exercise regimen

would likely have promoted changes in the KYN pathway.

However, Kamandulis, Lukonaitiene (61) reported unchanged

KYN metabolites after three weeks of combined resistance and

high intensity interval training (HIIT), despite improvements in

mood profile. Thus, results remain inconsistent, underscoring the

need for further research exploring different exercise modalities,
Frontiers in Sports and Active Living 06
including resistance training and HIIT, to determine their impact

on KYN metabolism in healthy populations.

The KYN pathway plays a crucial role in immune and

neurological regulation (79), and its dysregulation is associated

with numerous diseases, including neurodegenerative disorders

(80), cancer (81), and metabolic syndrome (82). Chronic

inflammation and oxidative stress contribute to pathway

overactivation (83), leading to the accumulation of neurotoxic

metabolites such as QUINA and 3HK (55). Exercise training

appears to counteract these effects by promoting a shift toward

KYNA production (54), which exerts neuroprotective and anti-

inflammatory properties. Our analysis showed that exercise-

induced increases in KYNA and reductions in the KYN/TRP

ratio were more consistent in clinical populations, suggesting that

individuals with systemic inflammation may experience greater

therapeutic benefits from exercise interventions.

Most research investigating exercise-induced KYN pathway

adaptations has focused on cancer survivors, particularly in those

with pancreatic (57), gastro-esophageal junction (73), prostate

(71), and breast cancers (56, 72) (71). Elevated KYN levels are

linked to poor prognosis in cancer patients (84). KYN and its

metabolites suppress T-cell function, promote regulatory T-cell

differentiation, and impair natural killer cell activity (39, 57, 85).

Additionally, NAD + synthesis via the KYN pathway fuels

oncogenic processes, as cancer cells rely heavily on NAD + to

meet increased ATP demands (24).

Exercise has been shown to reduce cancer risk and progression

(86), partly by improving the anti-inflammatory profile and

reducing systemic inflammation (87). Resistance training and

HIIT have demonstrated benefits in modulating KYN

metabolism, likely through exercise-induced activation of PGC-

1α, which increases skeletal muscle KAT content (54) and shifts

the KYN pathway toward KYNA production (21). This helps to

mitigate inflammation by activating GPR35 (41) and the KYNA-
frontiersin.org
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TABLE 3 Summary of studies included in the systematic review.

Study Sample Exercise training (FITT) Outcomes Conclusions

Within
Analysis

Within
Analysis

Between
Analysis

Sánchez et al.
(69)

Healthy military
men:

Frequency: 2 days/wk (dry-
land) + 3∼4 days/wk (tactical
training)

Divers: Swimmers: Divers vs Swimmers Swimming showed a shift in
circulating TRP metabolites in
relation to diving and sedentarism.ExT divers

(n = 20);
TRP↔ TRP↓ TRP ↓

KYN↔ KYN↔ KYN ↑

ExT rescue
swimmers (n = 14);

Intensity: 60%–80% HRmax KYNA↔ KYNA↔ KYNA ↓

Time: 20 min (dry-land) + 90 min
(tactical training), 6 months

3HK↑ 3HK↔ 3HK ↓

Untrained controls
(n = 12)

Type: dry-land (aerobic + strength
exercises) + tactical training (diver’s or
rescue swimmers’)

KYN/TRP↔ KYN/TRP↔

Wyckelsma
et al. (70)

Active male older
adults:

Frequency: 3 days/wk Placebo ±ExT: Antioxidants
±ExT:

Antioxidant
vsPlacebo:

KP metabolism was shifted towards
neuroprotection after three weeks of
ExT in elderly men, and this shift
was blocked by antioxidant
treatment.

Placebo + ExT
(n = 9)

Intensity: 4–6 reps of 30 s all-out
cycling bouts with 4 min of rest

TRP↔ TRP↔ TRP↔

Antioxidant
vitamin C and
E + ExT (n = 11)

KYN↔ KYN↔ KYN↔

Time: ∼30 min, 3 wks KYNA↔ KYNA↔ KYNA↔

Type: sprint interval training 3HK↔ 3HK↔ 3HK↔

QUINA↓ QUINA↔ QUINA↔

PA↔ PA↔ PA↔

KYN/TRP↔ KYN/TRP↔ KYN/TRP↔

KYNA/
QUINA↑

KYNA/
QUINA↔

KYNA/QUINA↔

KAT I↔ KAT I↔ KAT I↔

KAT III↑ KAT III↔ KAT III↔

KAT IV↔ KAT IV↔ KAT IV↔

TDO2↔ TDO2↔ TDO2↔

Kamandulis
et al. (61)

Healthy Adults
(n = 20)

Frequency: 3 or 6 days/wk. KYN↔ NA NA ExT over 3 weeks did not induce
changes in the concentration of
metabolites in the KYN pathway.

Intensity: Resistance: NR; HIIT:
0.75 Nm/kg.

KYNA↔

Time: Resistance: 3 sets of NR
repetitions for 3 exercises; HIIT: 4 to 6
30 s all-out cycling sets at 0.75 Nm/kg
body weight on a bicycle ergometer
with 4 min of rest, 3 wks.

3HK↔

QUINA↔

Type: Resistance or Resistance + HIIT.

Robbins et al.
(56)

Breast cancer
survivors:

Frequency: 3 days/wk ExT: Untrained
Controls:

ExT vs. Untrained: Therapeutic effects of ExT for breast
cancer survivors are mediated
through the activation of PGC-1α,
leading to changes in KYN
metabolism

ExT (n = 22); Intensity: 2 sets x 15 RM + 1 set to
exhaustion (7 major muscle groups)

KYN↓ KYN↔ KYN↓

KYNA↔ KYNA↔ KYNA↔

KYN/KYNA↓ KYN/KYNA↔ KYN/KYNA↓

Untrained controls
(n = 10)

Time: NR, 12 wks PGC-1α↑ PGC-1α↔ PGC-1α↑

Type: strength training

Pal et al. (57)) Breast and prostate
cancer survivors:

SET SET: PET: SET vs. PET: Aerobic training regulates AhR/IDO
axisFrequency: 2 days/wk AhR↔ AhR↔ AhR↔

Standard
endurance training
(SET: n = 9);

Intensity: 97% AT IDO↑ IDO↓ IDO↑

Time: 30 min, 12 wks

Type: cycling

Polarized
endurance training
(PET: n = 12)

PET

Frequency: 1 day/wk MICT + 1 day/
wk HIIT

Intensity: at first lactate threshold
(MICT) or 4 × 4 min at 85%–95%
HRmax with 3 min of rest (HIIT)

Time: individually prescribed (MICT)
or ∼25 min (HIIT), 12 wks

Type: cycling

Pal et al. (71) Pancreatic cancer
survivors:

Frequency: 2 days/wk Supervised
ExT:

Home-based
ExT:

Supervised vs.
Home-based

Supervised strength training
downregulates the KTR (IDO/TDO)
levels and may reduce possibleKYN↔ KYN↑

(Continued)
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TABLE 3 Continued

Study Sample Exercise training (FITT) Outcomes Conclusions

Within
Analysis

Within
Analysis

Between
Analysis

disease progression in pancreatic
cancer patients under chemotherapy

Supervised ExT
(n = 7);

Intensity: 60%–80% 1RM (supervised)
or Borg 14–16 (home-based)

TRP↔ TRP↔ KYN↓

Home-based ExT
(n = 14)

KYN/TRP↔ KYN/TRP↑ TRP↔

Time: NR, 6 months Controls: KYN/TRP↓

Control group
(n = 11)

Type: strength training KYN↔

TRP↔

KYN/TRP↔

Zimmer et al.
(72)

Breast cancer
survivors:

Frequency: 2 days/wk ExT: Healthy
women:

ExT vs. Healthy
women:

Resistance training reduces KYN
levels in breast cancer survivors
under radiotherapyExT (n = 52); Intensity: 3 × 12 RM (60%–80% 1RM) TRP↔ TRP↔

Untrained (n = 44); Time: 60 min, 12 wks KYN↓ KYN↔ TRP↔

KYNA↔ KYNA↔ KYN↔

Healthy women
(n = 24)

Type: strength training QUINA↔ QUINA↓ KYNA↔

KYN/TRP↔ KYN/TRP↔ QUINA↑

KYNA/KYN↓
QUINA/
KYNA↑

KYNA/KYN↔
QUINA/
KYNA↓

KYN/TRP↔

KYNA/KYN↔
QUINA/KYNA↑

Untrained:

TRP↔ ExT vs. Untrained:

KYN↑ TRP↔

KYNA↔ KYN↓

QUINA↔ KYNA↔

KYN/TRP↑ QUINA↔

KYNA/KYN↓
QUINA/
KYNA↔

KYN/TRP↓

KYNA/KYN↔
QUINA/KYNA↔

Herrstedt
et al. (73)

Gastro-esophageal
junction cancer
survivors:

Frequency: 2 days/wk ExT: Untrained: ExT vs. Untrained: Supervised ExT attenuated
inflammatory and neuroexcitatory
metabolites

Intensity: NR TRP↓ TRP↓ KMO↓

ExT (n = 18); Time: 30–45 min, 12 wks KYN↔ KYN↔

Type: cycling, strength training KYNA↔ KYNA↔

Untrained (n = 5) QUINA↔ QUINA↑

3HK↔ 3HK↑

XA↔ XA↔

AA↑ AA↑

Joisten et al.
(74)

Multiple Sclerosis: Frequency: 3 days/wk NR NR MICT vs. HIIT: The KYN/TRP upregulation
following 3 weeks of HIIT suggests
disease-counterregulatory properties
of exercise on immune homeostasis,
which remains to be investigated.

MICT (n = 34); Intensity: 65% Hrmax (MICT) or
5 × 1.5 min at 95–100% Hrmax with
2 min recovery

IL-6↔

HIIT (n = 35) TRP↔

Time: 30 min (MICT) or ∼22 min
(HIIT), 3 wks

KYN↔

QUINA↔

Type: cycling KYNA↔

QUINA/KYN↔

KYNA/KYN↔

QUINA/KYNA↔

KYN/TRP↓

Bansi et al.
(75)

Multiple Sclerosis: Frequency: 3 days/wk SPMS: RRMS: SPMS vs. RRMS: MS subtypes have different KP
responses to ExTSecondary

progressive HIIT
(SPMS HIIT;
n = 11);

Intensity: 5 × 3 min at 85%–90%
HRmax with 1.5 min recovery

TRP↑ TRP↓ TRP↔

KYN↔ KYN↔ KYN↔

KYN/TRP↓ KYN/TRP↑ KYN/TRP↓

Secondary
progressive MICT
(SPMS MICT;
n = 13);

Time: 20 min, 3 wks No differences found
between the training
modalities (HIIT vs.
MICT)

Type: cycling

Relapsing remitting
HIIT (RRMS HIIT;
n = 16);

(Continued)
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TABLE 3 Continued

Study Sample Exercise training (FITT) Outcomes Conclusions

Within
Analysis

Within
Analysis

Between
Analysis

Relapsing remitting
MICT (RRMS
MICT; n = 17)

Javelle et al.
(58)

Emotionally
impulsive humans:

Frequency: 3 days/wk HIIT: Stretching: HIIT vs. Stretching: HIIT reduced the IL-6 levels and the
neurotoxic branch of the KPIntensity: 4 × 4 min at 85%–95%

HRmax with 3 min recovery
KYN/TRP↔ KYN/TRP↔ QUINA/KYN↓

HIIT (n = 28); KYNA/
KYN↔

KYNA/KYN↔ KYNA/QUINA↑

QUINA/
KYN↓

QUINA/
KYN↔

IL-6↓

Control stretching
(n = 25)

Time: 30 min, 8 wks KYNA/
QUINA↑

KYNA/
QUINA↔

Type: aerobic exercise or stretching IL-6↓ IL-6↔

Küster et al.
(60)

Older adults at risk
of dementia:

Frequency: 5 days/wk (2 at center + 3
at home)

ExT: Cognitive
Training:

Cognitive Training
vs. ExT:

Associations of irisin and metabolites
of the KP with BDNF and cognition
on the one hand, and with
psychosocial stress as well as
cognitive or physical training on the
other hand, indicate that these
biological measures may constitute
candidate mediators of lifestyle
influences on cognition and
dementia in old age

KYN↔ KYN↔

ExT (n = 21); Intensity: NR KYNA↔ KYNA↓ KYN↔

3HK↔ 3HK↓ KYNA↔

Cognitive training
(n = 18);

Time: 60 min (center) or 20 min
(home), 10 wks

QUINA↔ QUINA↔ 3HK↓ (Cognitive
group)Untrained

controls:Untrained controls
(n = 25)

QUINA↔

Type: Aerobic, coordination, balance,
stretching, strength training

KYN↔

KYNA↔

3HK↔

QUINA↔

Saran et al.
(76)

chronic low back
pain patients
(n = 35)

Frequency: 5 days/wk After 2 wks of
ExT:

After 4 wks of
Ext:

NA A two-week cycle of physical exercise
decreased the KYN and increased
KYNA content in sweat. Physical
exercises result in a long-term
increase in the KAT activity
responsible for the formation of
KYNA from KYN.

Intensity: 85% HRmax TRP↔

Time: 16–30 min (progressively), 4
wks

TRP↔ KYN↔

Type: cycling, elliptical cross-training KYN↓ KYNA↔

KYNA↑ KAT↑

KAT↑ IDO/TDO↓

IDO/TDO↓

RM, repetition maximum; ExT, exercised trained; reps, repetitions; HRmax, maximal heart rate; AT, anaerobic threshold; MICT, moderate intensity continuous training; HIIT, high intensity

interval training; NA, not apply; NR, not reported; KP, kynurenine pathway; TRP, tryptophan; KYN, kynurenine; KYNA, kynurenic acid; 3HK, 3-Hydroxykynurenine; QUINA, quinolinic acid;
KAT, kynurenine aminotransferase; IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan-2,3-dioxygenase; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha;

AhR, aryl hydrocarbon receptor; XA, xanthurenic acid; AA, anthranilic acid; KMO, kynurenine-3-monooxygenase; IL-6, interleukin-6.
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AhR axis (12). Additionally, increased KAT levels reroute the KYN

pathway, preventing the overproduction of immunosuppressive

intermediate metabolites, such as anthranilic acid (AA),

3-hydroxylanthranilic acid (3HAA) and QUINA, which promote

immune evasion and cancer cell migration (24, 88). Studies in

breast cancer survivors reported reduced KYN levels following 12

weeks of resistance training, with untrained controls exhibiting a

shift toward neurotoxic KYN metabolites (34). Similar benefits

were observed in pancreatic cancer survivors undergoing

chemotherapy, where strength training prevented increases in

KYN levels and the KYN/TRP ratio (23). In gastro-esophageal

junction cancer survivors, concurrent training attenuated

inflammatory and neurotoxic metabolites while reducing

depression and anxiety symptoms (35). Interestingly, Robbins,

Kelleher (56) reported increased PGC-1α activation following

exercise training, suggesting that changes in KYN levels were

driven by exercise-induced PGC-1α activation, as supported by

animal studies (54).
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Regarding the intervention types, Pal, Schneider (71) found

HIIT-based training more effective than moderate-intensity

continuous training (MICT) in modulating KYN pathway

metabolism. Polarized endurance training involving HIIT

sessions reduced IDO levels, whereas standard training increased

them. Although no changes in AhR levels were observed, the

authors suggested that polarized training might downregulate the

AhR/IDO axis, affecting natural killers (NK) cells. This is

relevant since inflammation-induced increases in IDO elevate

KYN, acting as potent AhR agonists in the cancer

microenvironment, promoting IDO expression in a feedback loop

that suppresses innate immune responses by reducing NK cell

function (84). Exercise-induced reductions in IDO, KYN, and

AhR expression may therefore enhance immune responses in

cancer patients (39, 89).

Neurodegenerative disorders and psychiatric conditions,

including depression and schizophrenia, are also linked to KYN

pathway dysregulation (90). Javelle, Bloch (58) demonstrated that
frontiersin.org
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HIIT reduced inflammation and KYN metabolism in emotionally

impulsive individuals, improving impulsivity scores. Exercise also

reduced IL-6 levels, possibly via KYNA’s anti-inflammatory

actions through GPR35 activation (39, 91, 92). In contrast,

Küster et al. (60) found no exercise-induced adaptations in KYN

pathway metabolism among older adults at risk of dementia. In

this study, exercise intensity was not controlled, and only two

exercise sessions per week were conducted, which may have

limited the potential benefits of the exercise training.

Recently, Kupjetz, Patt (93) conducted a randomized controlled

trial comparing the effects of endurance training on KYN pathway

modulation in individuals with multiple sclerosis. Their findings

indicate that both HIIT and MICT similarly reduced most KYN

metabolites over time, with baseline systemic inflammation

influencing exercise-induced changes. Likewise, Joisten, Rademacher

(74) found no significant differences between HIIT vs. MICT for

most metabolites, except for an increase in the KYN/TRP ratio.

Bansi, Koliamitra (75) also compared these exercise modalities and

reported no overall differences, though responses varied by multiple

sclerosis subtype. Notably, patients with relapsing-remitting multiple

sclerosis, a milder form of the disease, showed an increase in the

KYN/TRP ratio compared to those with secondary progressive

multiple sclerosis, contradicting the authors’ hypothesis that exercise

would promote a long-term anti-inflammatory effect. However,

these studies employed a three-week intervention, a relatively short

duration for promoting chronic adaptations. Additionally, neither

study included an untrained control group, making it difficult to

determine whether exercise intervention prevented a worsening of

KYN metabolism (74). These methodological limitations restrict the

generalizability of the findings.

Among all studies examining exercise-induced adaptations in

the KYN pathway for disease, only one was conducted outside of

cancer or central nervous system disorder populations. Saran,

Turska (76) demonstrated that two weeks of aerobic training

decreased KYN and increased KYNA levels in patients with

chronic low back pain, though these differences were not

observed at the end of the protocol (4 weeks). However, the

absence of an untrained control group and lack of control over

menstrual cycle phases (among women who comprised most of

the sample) should be considered. Thus, the promising findings

should be interpreted with caution.

While exercise training appears to induce beneficial shifts in

KYN metabolism across various conditions (94, 95), critical gaps

remain in literature. Notably, no studies have investigated

exercise training’s potential effects on the KYN pathway in

metabolic or cardiovascular diseases (62, 96), despite strong

evidence linking KYN dysregulation to conditions such as

diabetes and atherosclerosis (97–100). Evidence in this regard

only comes from preclinical studies showing positive results

(101). Additionally, inflammation-driven diseases, such as HIV

(102, 103) and long COVID disease (104, 105), warrant further

exploration to determine whether exercise interventions could

mitigate disease-related disruptions in KYN metabolism.

Several inconsistencies remain regarding the optimal exercise

modalities and intensities required to induce meaningful changes

in the KYN pathway (93, 106). High-intensity exercise appears
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more effective than moderate-intensity training, but further

research is needed to establish standardized exercise prescriptions.

Additionally, individual factors such as age, sex, genetic

predisposition, and baseline inflammatory status likely influence

exercise-induced TRP metabolism changes, necessitating a more

personalized approach to exercise interventions.

One of the key limitations in this field is the methodological

variability across studies in healthy and diseased populations.

Differences in sample size, exercise prescription, and biomarker

assessment methods contribute to inconsistent findings. Future

studies should prioritize well-designed randomized controlled

trials (RCTs) with standardized exercise protocols and rigorous

analytical techniques to establish causal relationships between

exercise and KYN pathway modulation. Additionally,

incorporating multi-omics approaches, including transcriptomics

and proteomics, could help identify novel regulatory mechanisms

underlying exercise-induced metabolic adaptations.

From a clinical perspective, our findings underscore the

potential for targeted exercise interventions to mitigate

inflammation and neurotoxicity by modulating the KYN

pathway. Personalized exercise prescriptions based on metabolic

profiling could optimize therapeutic outcomes, and incorporating

KYN biomarkers into clinical assessments may provide valuable

insights into inflammatory and metabolic status (107, 108),

guiding clinical decision-making (109). Moreover, structured

exercise programs could serve as non-pharmacological strategies

for managing chronic diseases characterized by KYN dysregulation.
5 Conclusions and future directions

The evidence suggests that exercise training plays a crucial role

in modulating KYN pathway metabolism, particularly in

individuals with chronic diseases characterized by low-grade

inflammation (23). These conditions often drive KYN

metabolism toward neurotoxic metabolites (12, 39), whereas

exercise training promotes a shift toward the neuroprotective

branch. This effect appears more pronounced in cancer patients

due to elevated IDO activity, while findings in central nervous

system disorders remain inconsistent, possibly due to

methodological variations. Additionally, exercise volume and

intensity seem to be key moderators of these benefits.

Despite promising results, few studies have explored exercise-

induced KYN pathway adaptations in healthy adults. Additionally,

most research has yet to establish direct links between KYN pathway

changes and clinical outcomes (110). Future research should bridge

this gap by integrating mechanistic insights with clinical relevance

endpoints, particularly in metabolic, infectious, and cardiovascular

diseases. Experimental models, including animal studies, could

provide controlled conditions to help clarify dose-response

relationship and underlying pathways. Understanding these

mechanisms will enhance the therapeutic potential of exercise and

refine its application in clinical settings. By addressing these

challenges, future research can solidify the role of exercise in

mitigating inflammation-driven neurotoxicity and advancing targeted

interventions for vulnerable populations.
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