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Modern sensing technologies and data analysis methods usher in a new era for
sports training and practice. Hidden insights can be uncovered and interactive
training environments can be created by means of data analysis. We present a
system to support volleyball training which makes use of Inertial Measurement
Units, a pressure sensitive display floor, and machine learning techniques to
automatically detect relevant behaviours and provides the user with the
appropriate information. While working with trainers and amateur athletes, we
also explore potential applications that are driven by automatic action
recognition, that contribute various requirements to the platform. The first
application is an automatic video-tagging protocol that marks key events
(captured on video) based on the automatic recognition of volleyball-specific
actions with an unweighted average recall of 78.71% in the 10-fold
cross-validation setting with convolution neural network and 73.84% in leave-
one-subject-out cross-validation setting with active data representation
method using wearable sensors, as an exemplification of how dashboard and
retrieval systems would work with the platform. In the context of action
recognition, we have evaluated statistical functions and their transformation
using active data representation besides raw signal of IMUs sensor. The second
application is the “bump-set-spike” trainer, which uses automatic action
recognition to provide real-time feedback about performance to steer player
behaviour in volleyball, as an example of rich learning environments enabled by
live action detection. In addition to describing these applications, we detail the
system components and architecture and discuss the implications that our
system might have for sports in general and for volleyball in particular.

KEYWORDS

smart sports, digital sports technologies, sports telematics, telematics applications,

training methods, action recognition

1 Introduction

The integration of Sensing and Interaction technology has become increasingly pivotal

in sports training and education, catering to athletes across all levels, from amateurs to

Olympians. Coaches, trainers, and athletes alike rely on technological advancements

to meticulously track and enhance their performance (1–4). This synergy between

sports data and interaction technology yields a plethora of applications, offering
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invaluable insights for refining training methodologies [e.g., (5–7)].

Furthermore, it lays the groundwork for innovative interactive

sports exercises [e.g., (8–10)].

Interactive systems such as Dashboard-style retrieval systems

stand out as a prevalent design choice, facilitating streamlined

access to video summaries via database queries (11). These

systems aim to enrich videos with supplementary information,

ranging from overviews and visual annotations to data-driven

tables and graphs, thereby enabling deeper insights (12–14). The

underlying database may house manually tagged events or those

detected through (semi-)automated means (3, 15–18), harnessing

the potential of data-driven insights to inform decision-making

processes. While traditionally aiding coaches and trainers, these

systems also offer automation possibilities (10, 19, 20), facilitating

post-training and game analysis interactions.

Human pose estimation and performance analysis plays a

crucial role in technology enhanced sports training. In recent

years, researchers have made significant strides in human pose

estimation, tracking, and recognition. Notably, Puwein et al. (21)

proposed a method that jointly estimates camera and human

poses from multi-camera videos with wide baselines. Zhao et al.

(22) introduced the Semi-Supervised Discriminant Analysis with

Global Constraint (SDG) algorithm, enhancing pose estimation

accuracy using both labeled and unlabeled data. Jalal et al. (23)

focused on 3D pose estimation from RGB-D video sequences,

leveraging a generative structured framework. Additionally, SVMs

(24) play a crucial role in pose recognition. Complex human

activity recognition (25, 26) and Kinect-based systems (27) and

visual word extraction (28) further contribute to this evolving

field. These insights inform practical applications and inspire

ongoing research efforts.

When used in real time during the training activity, real time

visualisation of the athlete’s performance can be used to steer

their execution of an exercise, by representing the summarized

measurements directly, or in a comparison with ideal schedules

or past self or peer performance [e.g., (29, 30)].

Sports interaction technology can also be used in real time

during training to adapt the training session, that is, to modify

the training or steer the player’s behavior to enhance the instant

training experience. These interactive systems use specialized

hardware [e.g., (31)] where the moving body and the data

derived from it form the interface through which athletes interact

with digital-physical exercise systems, by providing the input

triggers to which the system should respond in interaction.

This leads to rich learning environments that allow for better

motor learning.

All of these types of applications of sports data and interaction

technologies, ranging from post-hoc analysis to online, real-

time interaction, build upon an underlying layer of sensor

data processing. Furthermore, each of these types of application

sets its own requirements for the sensor data processing in

terms of speed and accuracy as well as in terms of the type

of recognition errors that may be considered acceptable

or problematic.

Our aim is to provide an integrated platform that combines the

various requirements to offer access to data analytics and
Frontiers in Sports and Active Living 02
longitudinal modelling for post-hoc analysis as well as

functionalities for real-time online sensor based interaction to

create new forms of sports training.

The work presented in this paper is one of the outcomes

of the Smart Sports Exercises (SSE) project. The project aimed

to extend the state of the art by combining sensor data,

machine learning and pressure sensitive in-floor displays to

create new forms of volleyball training and analysis. The sensors

are used to model the behaviour of volleyball players for analysis

and to design interventions to provide tailored feedback (32, 33).

User experience should be enhanced in these systems through

instant multimodal and interactive feedback (2, 34–36). To this

end, the project utilizes a layered approach to first detect and

classify individual volleyball player actions from raw sensor data.

The detected and classified actions serve as input for the next

layer which recognises multiplayer actions such as volleyball

rallies or the so called “volleyball complexes” [cf. (37)] in order

to model (group) behaviour across volleyball matches and

training sessions (38) and to generate relevant feedback for

players and coaches.

The current paper presents an extension of our previous work

(3) in which we presented a system that automatically classifies

volleyball actions performed by players during their regular

training sessions, supplementing video recordings to allow

coaches and players to easily search for the information or event

of interest (e.g., all the serves by a particular player). While

providing the results in real time, the earlier system was designed

for sports data analysis and feedback and not for technology

enhanced sports training. Here we go beyond that earlier work

and describe the design and components of an end-to-end

pipeline which can use different module configurations to create

a sensor driven, interactive, volleyball training environment while

also allowing us to collect data to allow efficient post-hoc

exploration of events of interest for coaches and trainers and

other participants.

The contributions of this paper include the following:

• a description of a modular and easy-to-use sensing and

interaction technology pipeline for volleyball training;

• the showcasing of said pipeline through the development of a

Bump, Set, Spike exercise scenario to enhance volleyball

training with wearable sensors and experimental in-floor

display hardware;

• experimentation with deep learning techniques to detect and

classify volleyball actions instantly (online) from within the

proposed platform, and

• a discussion of implications of our results for sensor data

processing in context of sports interaction technology.

The rest the paper is organized as follows. Section 2 describes

the related work. The architecture of the modular system is

described in Section 3. The system is implemented and

experimentation is performed using the Bump, Set, Spike game

described in Section 4. The experimentation with deep learning

and results are described Section 6. Section 6.5 discusses the

results and its applications while Section 7. ends with conclusive

remarks and future directions.
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2 Related work

Sports data technology can roughly be characterised along the

data science lifecyle as applied to sports data:

Collect ! Maintain ! Clean & Process ! Analyze & Model

! Communicate & Use1

Measurements of sports behaviours and activities are part of the

first few steps, involving a wide range of platforms such as smart

watches, Inertial Measurement Units (IMU), camera based

tracking systems, Local Positioning Systems, manually obtained

game statistics and player self reports, and various other body

worn and environmental sensors. The middle steps comprise,

among other things, storage of measured and processed data in a

transparent and interoperable way and the various ways to

recognize and mathematically model the data, including

modeling patterns in individual athletes behaviours and team

patterns of behaviours. The last step concerns the interaction,

disclosing the data, and retrieval and sense making of the

content, to support athlete and coach in better understanding

their performance and making decisions to improve training

regimes and competition strategies.

In this section, we first delve into the utilization of various

sensors, with a particular emphasis on IMUs, for detecting events

of interest in sports activities. Subsequently, we shift our

attention to the communication and utilization stage. Here, we

explore dashboards, retrieval systems, and sports interaction

technology, all of which play crucial roles in enhancing play and

learning experiences. Lastly, we delve into the context within

which these activities occur—namely, sports learning and

performance. This topic places significant emphasis on the

aspects we must measure and model to enhance athletic outcomes.
2.1 Automatic detection of events of
interest in sports as a necessary foundation

All applications for the use of sports data discussed in this

paper depend at least partially on automated analysis of the

sports content.

Many published papers are concerned with ways to measure

and model individual behaviour (among others, for position

tracking and action recognition, performance and fatigue

detection, and action quality recognition) e.g., a recent survey on

human movement quality assessment (40). These papers focus

on the measurement and tracking devices that can be used in

various sports [e.g., (41, 42)], including highly customized
1loosely based on https://datascience.berkeley.edu/about/what-is-data-

science/ and the CRISP-DM process model for data mining by Wirth and

Hipp (39).
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measurement systems, for example for climbing holds (43) or

bowling grips (44). Other papers focus on what is detected or

analysed with the resulting measurements. This is done through

many different methods and sensors, camera based, environment

embedded sensors, or body worn sensors (45). Especially

wearable IMUs [e.g., (46)] are becoming increasingly popular for

sports related action analysis because of their reasonable price as

well as portability (47). While researchers have proposed

different configurations in terms of number and placement of

sensors (48), it is ideal to keep the number of sensors to

minimum due to issues related to cost, setup effort and player

comfort (48–51).

In recent years, Human Activity Recognition (HAR) has gained

prominence across various domains, including medicine,

education, entertainment, and visual surveillance. Researchers

have explored both traditional machine learning techniques and

modern deep learning architectures for classifying human

activities. Notable studies include (52) comprehensive survey,

which discussed dataset characteristics and action recognition

methods. (53) proposed a deep learning-based framework using

Harris corner points and histograms for interaction recognition.

Kamal et al. (54) focused on 3D human body detection and

tracking, utilizing spatiotemporal features and a modified Hidden

Markov Model (M-HMM). The supervised framework proposed

by Chattopadhyay and Das (55) excelled in recognizing

interactions between performers. Lastly (56, 57) emphasized the

importance of labeled body parts in depth silhouettes for

accurate 3D activity detection using self-organized maps. These

contributions collectively advance our understanding of HAR

and pave the way for future research.

For sports training, IMUs are a popular type of measurement

device, being used for, among other purposes: detecting skiing

jumps (58), turns (59) and general movements (15); snowboard

aerial acrobatics (60); volleyball serve type (61), spike skill (62)

or general action type (3, 34); horse riding quality through hip

asymmetry (63); discriminating several common domestic

activities from several common sports activities (1); calculating

soccer shot/pass statistics (64); detecting swimming breast stroke

phases (65); training session activities and possible injuries (66);

(table) tennis strokes and actions (18, 47, 67, 68) and serve

quality (69); lunge and deadlift biomechanics (70, 71); skateboard

tricks (72); rugby activities (73); field hockey activities (74);

movement in arm swings in golf (75) and baseball (76); and

basketball movements, activities, and poses (77, 78).

Other types of sensing devices are also used to detect events in

sports. For instance, Chi et al. (79) employs piezos to detect scoring

hits in taekwondo. Video technology has proven valuable across a

wide range of tasks, from segmenting and classifying tennis strokes

(80) to identifying skateboarding tricks (81). Additionally, the

ubiquity of smartphones enables their use in identifying sports-

related activities in soccer, hockey (82), and basketball (83).

Moreover, scholars like (84) leverage the Catapult system to delve

deeply into the precise capture of athletes’ movements in team

sports, employing Local Positioning Systems (LPS). In a similar

vein, Kesicki and Lewicki (85) utilize GPS tracking to assess the

physical fitness of football players.
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Other works are about measuring and modelling group

behaviour in sports. For example, Loureiro et al. (86), Drikos

(87), Hurst et al. (88) and Laporta et al. (89) modelled patterns

of group interaction in volleyball teams in various ways based on

manual annotation; Bagautdinov et al. (8) use a neural network

approach to detect individual activity to infer joint team activities

in the context of volleyball games; Beenhakker et al. (38) built on

that to show how such models can be made useful for Sports

ITech purposes but also showed how the usefulness depends very

much on the quality of the underlying action recognition; and

Lamas et al. (90) created a computational system to model and

simulate team strategies as patterns of individual athlete actions.

Various detection and modeling solutions employ diverse

approaches, differing in their online or offline nature and real-

time capabilities, as well as computational requirements.

Moreover, specific parameterizations of a method can influence

the algorithm’s typical errors. For instance, one may prioritize

minimizing false negatives over false positives, tolerate occasional

single errors as long as overall statistical accuracy remains intact,

or concentrate on distinguishing between specific subsets of

categories more than others. These choices largely hinge on the

intended application of the detection algorithms. The subsequent

sections delineate two primary application categories of sports data.
2.2 Dashboards and sports data retrieval
systems

Dashboards and retrieval systems offer the athlete or coach

quick access to sports data — and through the data often also to

salient recordings of past training situations — to base training

programs, match strategies, and other decisions on, often to

optimize the athlete’s performance. Stein et al., who published

extensively on visual sports data analytics, discuss how this step

is about making sense of the data, from analysing the data to re-

representing it and disclosing it in a way that contributes real

insight. This is not only about ways to find out what situations

and events happened, but very importantly also about gaining

insight in when and why these happened (91).

Dashboard and retrieval systems may focus on the (elite) sports

context or may be embedded in the context of sports pedagogical

processes (92, 93). For example, a video recording analysis can

show different events of interest which may help to get insightful

tactical play and player engagement (92). Video-edited game

analysis is a common method for post-game performance

evaluation (93). Accessing events of interest in sports recordings

is of particular interest for sports fans [e.g., a baseball fan

wishing to watch all home runs hit by their favourite player

during the 2013 baseball season (17)] as well as for coaches [e.g.,

a coach searching for video recordings related to the intended

learning focus for a player or the whole training session (93)].

Koekoek et al. developed an application named Video Catch to

manually tag sports actions during matches and training sessions

(93), which can then be used as input to discussions of strategy,

learning plans, or technique. However, these examples require

events to be manually tagged which not only requires time and
Frontiers in Sports and Active Living 04
effort but also distracts a trainer’s attention from training to

tagging. Other systems therefore aim to automatically tag events

to avoid manual effort and allow trainers to keep a singular focus.

The basic setup of dashboard and retrieval systems is often that

they offer access to video summaries of sports activities based on

queries to a database which has been filled through manual and

automated analysis of what happened in a match or training.

Papers may focus on the architectural considerations of sports

data retrieval and dashboard systems, such as requirements

related to the real-timeness, high data throughput, and

distributed nature of having multiple data-sourcing processes;

architectural aspects of the processing pipeline, and GUI design

considerations [e.g., (15, 17, 18)], or on the indexing and

retrieval itself. A somewhat older, but still relevant survey of

trends in video retrieval in sports is given by Kokaram et al. (11).

Other work focuses on the design and evaluation of the

sensemaking that a coach or analyst carries out with the help of

this database of video and data, to turn data into insights and

decisions – building on automated but also manual analysis and

annotation of sports data. The extensive availability of

commercial systems for manual annotation of sports data

recordings that are coupled to video retrieval interfaces confirms

from sports practice the need for access to objective match data

via dashboards and video retrieval interfaces. Sensemaking

systems for sports data often support the capture of video and

other data, allow for coding the data (manually and

automatically), augment the video with visual information to

make the video more informative at a glance, offer access to the

data to derive new insights and allow users to annotate and

enrich the data and video for more insight. To enrich the video

recordings, systems allow the analyst to draw over the video

(trajectories, highlights, etc); to overlay the videos of multiple

occurrences of the same action or show time aligned side by side

videos of different moments to compare them visually; visualise

the formation, the spatial relation between positions of players in

movement through lines, distances, planes and angles; gathering

all instances of a certain type of event in one overview; etc. To

this end also novel visualisation are researched to give insight-at-

a-glance for further exploration. See Perin et al. (12) for a survey;

for example Polk et al. (13) describe in detail how three novel

visualisation forms allowed two coaches to quickly formulate

novel insights regarding their own players; Correia et al. (94)

describe how VR can enrich the video material further.

Interfaces for easier access to the data do not only revolve around

novel forms of visualisation but also around novel forms of querying

the large datasets. For example, Shao et al. (14) describes a sketch-

based retrieval of field situations in soccer. This allows the query

input side to go “plain beyond database queries”, which allows an

analyst to ask fairly complex questions in a novel and intuitive way

(in their case: asking for a type of spatial situation, rather than a

list of recognized events). Then, the results need to be

communicated, and presented to players and others to transfer the

insights yielded. Most commercial systems support generating rich

illustrated reports with data, visualisations, and video materials.

The next step in the process is to support the decision-making

on top of the generated reports. Many systems are set up to leave
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this step to the coaches/analysts. For example, Polk et al. (13)

discuss how “[our] results indicate that useful insights can

quickly be discovered [via novel visualisations] and ad hoc

hypotheses based on these insights can conveniently be tested

through linked match videos [and smart database access]”, and

Koekoek et al. describe extensively how their video interface

should be incorporated by teachers into the overall sports

teaching processes including discussion and reflection on the

gathered content (93). The decision-making can also partially be

automated, which is especially crucial when the feedback is to be

provided during the sports activity rather than afterwards.

SAETA (10) offers decision support for maximizing an athlete’s

effort while minimizing fatigue based on machine learning on

measurements from the athlete and from the environment.

Vales-Alonso et al. (20) and López-Matencio et al. (19) use

wireless sensor networks to measure and analyse many aspects of

athlete performance; on the basis of that their system gives

advice on how to fulfil a goal such as keeping a constant heart

rate while running, depending on track conditions, slope, and

runner profile and performance. Van Delden et al. (30) present

their system for providing real-time feedback to rowers based on

sensor measurements.

These systems are all interactive, and clearly contribute much

to sports science and practice. However, these are only the

dashboard-oriented systems; in the next section we look more

broadly at other types of sports interaction technology.
2.3 Sports interaction technology for
training exercises and match performance

Sensor based interaction technologies for innovative sports

practices is on the rise. There are mainly two approaches for

measured sensor data to contribute to training. On the one hand,

the dashboard and retrieval based approaches discussed before

allow coaches and athletes to gain more insight into their

performance, and thus make better-informed decisions regarding

modifications to their match strategies and exercise regime. On

the other hand, there are interactive training systems that offer

completely new kinds of digital-physical exercises, for improved

learning, performance, or engagement of athletes [e.g., (32, 95–99)].

Regarding the latter, the diversity of possibilities is wide.

Instances of digital-physical exercises include Football Lab, an

interactive soccer-training system (95). In this system, a player is

placed in a small soccer field where the ball is passed to sensor

placed re-bounders. During the game the players are rewarded

according to their number of passes. Furthermore, Holsti et. al.

propose a trampoline training game which combines a real

training environment with a virtual world (100). In this scheme,

players’ action on a trampoline is tracked with a depth camera

and projected to the fantasy world allowing a player to see her/

his virtual character on the screen. TacTowers is an interactive

training equipment which aims to improve psychomotor abilities

of athletes, such as handball players (99). In the game

environment, players are trained to read each other intentions, to

predict the outcome while reacting accordingly.
Frontiers in Sports and Active Living 05
Typically speaking, sports interaction technology involves the

so-called sense-think-act cycle of HCI (101). The system senses

input, such as relevant sports actions or behaviours, and decides

upon contextually relevant responses for the activity. It delivers

responses through multimodal interfaces such as displays,

wearable sensors or other novel smart environments.

Take FootballLab (102) as an example in which a football field

is surrounded by four smart goals equipped with sensors to track

the hit position of the ball, and with speakers and lights to

provide the feedback. This setting is designed to encourage

players to practice soccer related exercises through gamification.

Sports interaction technology often targets different combinations

of performance, engagement and learning.

Focusing on performance; biofeedback systems are prominent

examples of such systems. They are designed to provide feedback

on performance characteristics which are difficult for coaches to

observe without the use of technology e.g., the timing of a

volleyball smash or cross-over technique in speed skating (103).

They also empower athletes to draw their conclusions by

providing them with additional information that augments the

feedback they receive from coaches (103–106).

Sports interaction technology can also help in training for

sports events, which occur infrequently during normal play but

are important in terms of performance. The FootballLab (102)

allows players to train “passing” at a rate much higher than

what would be possible during normal play; many other

examples of interaction technology to enhance performance

training exist (107–109).

Measuring the behaviour and performance of individual

athletes not only provides valuable insights but also facilitates

adaptive personalization. This capability is pivotal for

maintaining a balanced gameplay experience among players with

varying skill levels. Adaptive balancing strategies, such as

implementing handicaps or dynamically adjusting difficulty levels

(5, 7, 110, 111), enable people of different ages and skill sets to

engage in harmonious play (112). Moreover, extending this

approach can enhance team coordination, offering potential

applications beyond individual gameplay.
2.4 Motor learning

Motor learning refers to the process through which individuals

acquire new motor skills or enhance existing ones by practicing and

assimilating knowledge. As a result, their movements become more

automatic and efficient. In recent times, data retrieval tools,

dashboards, and interactive sports installations have gained

popularity due to their ability to accelerate motor learning and

enhance performance. These systems, tailored for specific

purposes, target various concepts within motor learning to foster

motor competence.

2.4.1 Modelling
Model-based practices are central to motor learning in sports

and physical education (113, 114). An archetypal example of a

model-based practice is the PE-teacher demonstrating how a
frontiersin.org
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certain action should be performed. This type of demonstration is

referred to as “expert modelling” or “mastery modelling”. Another

form of modelling is “learner modelling” in which the pupils learn

by modelling their own behaviour (self-modelling) or modelling

the behaviour of a peer (peer modelling) (115). Both approaches

uniquely contribute to motor learning. Expert models are an easy

way to help learners fathom the nature and form of specific

movements, whereas learner models promote self-efficacy among

learners (115, 116).

To support model-based practices, various (interactive)

technologies have been developed. A popular approach is to use

augmented or interactive mirrors to accommodate modelling (117–

120). Interactive mirrors are perfectly suited to highlight errors in

movement and show what the ideal posture, form or movement

execution should look like. Besides this, a unique advantage of

interactive mirrors over traditional mirrors is that interactive mirrors

allow learners to review their performance after movement execution.

With advancements in OpenCV (121) and MediaPipe (122), the

creation of augmented mirrors is easier than ever before. Augmented

mirrors are, however, limited in their application. Augmented

mirrors are typically employed in dance (119, 120), aerobics (117), or

martial arts (118), but appear to have limited value in more dynamic

sports like Basketball, American Football or Volleyball.

Another popular approach to support model-based practices is

video capture (93, 97). Coaches and PE-teachers make increasingly

more use of (pocketable) cameras to support their training practices;

recording video of past performances to accommodate self, peer or

expert modelling. Finding and capturing the right moment can,

however, be a laborious task - one that redirects the focus of the coach

from the learner towards the technology (123). Automatic video

tagging - as championed in this paper - might alleviate these issues.

2.4.2 Rich learning environments
While automatic action recognition for automatic video-tagging

would have undeniable benefits for model-based learning practices,

automatic action recognition could also benefit the creation of rich

learning environments. Motor learning and skill acquisition are the

result of the dynamic interaction between athlete, task and

environment (124, 125). Interactive technology can be used to

specifically shape the task (99, 102, 126, 127) and the environment

(5, 32, 128) in which learning occurs. The better the task and

environment are tailored to the characteristics of the learner, the

more relevant and rich learning opportunities can be presented.

Football Lab (126) is an interactive football installation that allows

its players to practice passing. Five minutes of play in Football Lab

equals 90 min of game-play in terms of passes. Thus, interactive

environments can be shaped to hyper-sample valuable skills.

Automatic action recognition taps into that potential. Through

automatic action recognition, desirable behaviours can be

stimulated and inexpedient behaviour can be dissuaded (32).
3 System architecture

We present a novel platform built to gather data during sports

activities in such a way that the data can be stored and accessed
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later, for sports data analytics, but also be analysed on the spot

to detect salient events, provide real-time feedback on the

athlete’s performance, and shape the interaction between athlete

and a rich learning environment for the betterment of motor

learning, as discussed in the previous section.

The Smart Sports Exercises system is designed to be modular

and extensible. The main architecture is based on a Model View

Controller (MVC) pattern (129). The controller module as the

name suggests acts as a controller between UI-facing modules

i.e., the view and the functional or business logic modules i.e.,

models. The system is configurable to allow different

configurations in terms of sensors and interfaces and other

functionalities suitable for the application scenario.

Figure 1 shows an overview of the system. Features can be

extracted from sensors and processed using online machine

learning approaches. Different modules can be configured to

allow for suitable interactive sports training and/or store the

events of interest in the repository to be available for later

analysis and feedback. The machine learning models, finally, can

be trained offline using stored recordings of sensor data.
3.1 Configuration

The Configuration module determines what modules are to be

used in a session and what settings they would have e.g., whether

the display floor is being used or not. As the system is designed

to be as modular as possible, the configuration module allows the

system to be used in different settings with minimum effort in

terms of setup. New sensors and their corresponding modules

can be added by adding settings to a configuration file that

determines what sensors and module configuration to use.
3.2 User interface

The user interface components are of two categories. One

is a control panel which users can use to control different

functionalities. It allows the users to start and stop certain functions

e.g., reading data from IMUs and/or floor, whether the user wants

to use the Floor display or not, and to display information such as

Action Recognition performed etc (see Figure 2A).

The other UI(s) are to be used for player training and game

play to be displayed on the experimental pressure sensitive

display floor Figure 2B) displays a sample game for volleyball

players to train “stepping” and “jumping” by using the markers.

The red circle shows the player(s) location on pressure sensitive

display floor. Figure 2C displays the sample game “Bump Set

Spike” (Section 4) to be displayed on the display floor.
3.3 IMU reader

The current IMU reader makes use of “Next Gen IMUs” by

X-IO Technologies for detecting the relevant player actions. The

sensor reading component reads live data from the Inertial
frontiersin.org
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FIGURE 1

SSE System Block Diagram: During the sensing phase, data is collected from sensors such as Inertial Measurement Units (IMUs) and/or pressure-
sensitive floor. In the subsequent processing phase, appropriate modules process this data. Finally, users such as players and coaches can view
and interact with the processed information.
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FIGURE 2

UI screens. (A) Control panel on the PC monitor to be used for configuring the display floor UI. (B) UI to be displayed on the experimental display floor
for player training. The example guides a player on where to step and jump. The red circle shows the player(s) location on the floor. (C) UI for the
Bump, Set, Spike game to be displayed on the display floor. Progressively complex visuals give cues to the player for the volleyball actions performed.

FIGURE 3

Progressively complex visuals used in the Bump Set Spike Training System.
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Measurement Units via UDP (User Datagram Protocol). The IMU

Reader module reads the stream and filters the data and puts it in

queues to be read by the detection and recognition modules.

The details of data processing for the IMU signals are described

in Section 6.1.
3.4 Event logging

Recognized player actions are stored in a data repository.

Currently the Solr platform (130) is used for this purpose. Once

a player action e.g., “smash” is recognized; it is stored in the solr

repository and/or multicasted using UDP. The exact data

structure is described previously in Salim et al. (3). The data

contains processed information such as event name e.g., “smash”

or “jump” and the timestamp of when the event was recognized.

The events are used by the events of interest exploration app

described in a previous paper (3) and/or by games modules

developed by students using the Unity game engine. The Unity

game modules read the data by listening to a UDP port.
3.5 Action recognition

For most applications of the SSE platform, the action

recognition component focuses on the detection of player actions

with the ball, based on the data from IMUs that the players wear

on their wrists. These events are then communicated and /or

stored in the repository based on the configuration. The

recognized event such as “smash” is shown on the different UI(s)

e.g., A text message is shown on the control panel (Figure 2A)

that a “smash” was recognized. The game modules listening on

the UDP port upon receiving the event process the information

according to their implementation e.g., the sample game displays

a pattern on the floor (Figure 2C).
4 Implementation of bump set spike
game

To illustrate how the architecture works in practice for a

specific real-time interactive rich training environment we discuss

a showcase training game for practicing Bump-Set-Spike, in

which the game mechanics are driven forward by automatically

detected volleyball actions from the athletes.

Bump (Forearm Pass), Set (Overhead Pass) and Spike (Smash)

are three elementary actions in volleyball – in sequence, these

actions form the foundation for an effective attack. Learning to

correctly perform these actions is essential for a player at any

level and as such it is often the starting point for any volleyball

training program. However, especially for younger players, not

only is it hard to execute these actions correctly, it is also often

not the focus of their play: beginning players from the younger

age groups often focus more on “keeping their side clean”, i.e.,

hitting the ball away over the net as soon as it appears on their side.
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One common solution to this, often employed in Dutch youth

volleyball training, is to give a team extra score points when they

win a rally using a Bump-Set-Spike attack. Although this

encourages the proper use of the attack pattern, it is a somewhat

heavy-handed approach: the team that is already better at using

this pattern –and therefore already has some advantage over the

other team– is rewarded with extra points which leads to

additional advantage over the other team.

We propose the Bump-Set-Spike game to address this problem,

using a more subtle reward strategy in which proper execution of the

attack pattern is rewarded with more beautiful visualisations

projected on the floor rather than with any in-game advantage

(see Figure 3). This game concept was introduced earlier as one of

the conceptual designs in the SSE project (32) and was based on

the concept of enticement by van Delden et al. (131).

In order to implement this game within the SSE platform,

several things are needed. First, a specific combination of sensor

modules needs to be configured to gather in-game sensor data

and distribute it to the other modules in the system. Second,

tailored volleyball action detection modules need to be included,

focusing specifically on adequate real-time detection and

classification of the bump, set and spike actions. To this end,

models have specifically been trained to recognize forearm

passes, smashes, and overhead passes from other actions

(see Section 6 for more detail). Third, the game interaction

module needs to respond to detected actions to turn on or off

the “beautiful visualisation rewards”. Finally, in-game detected

events as well as the original stream of sensor data can be stored

in the database for possible future more detailed game analytics

as well as for future further training of the action detection

module itself.
5 Modifying the system configuration
for a different game

Based on the system setup for the Bump-Set-Spike game, only

minor modifications are needed to facilitate a different game, for

training a better Smash-Jump timing. When jumping for a

smash in volleyball, the best timing is to hit the ball at the

highest point in the jump, when the player briefly hangs still in

the air. It is hard to see for yourself whether your timing is right

when you are still learning to do this; to help train this, one

could make a game that provides feedback on the relative timing

of the jump and the smash and rewards a good execution of the

combined action. Here we briefly show how such a training

scenario requires only minor adaptations to be able to run it on

the SSE platform.
5.1 From action classification to simplified
smash detection

First, for this game, we need to detect the precise timing of the

moment when the hand hits the ball for the smash. The volleyball

impact is detected using an IMU worn on the dominant wrist of
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the player. The approach is similar to Kautz et al. (132). If the

z-axis of the accelerometer is below the threshold of -5.1 it is

indicative of impact being made by the volleyball. One

disadvantage of this approach is that it would also detect an

impact if the player claps or high-fives a fellow player. However

it did not pose any problem since the deep learning model for

action recognition recognized such cases as noise (i.e., non

volleyball events).
5.2 Jump (timing) detection

The (timing of the) jump is detected by using the signal worn

at the back or around the waist. The jump is detected when the

z-axis of the accelerometer gives a reading below the threshold

of �4. This gives us the end of the jump i.e., the player has

jumped and the feet have landed on the ground. From this

point backwards in the signal window, we calculate the time

point when the player was at the highest point in his/her jump.

This is done using the gyroscope signal. The highest point in

the jump is detected when the gyroscope x-axis signal changes

sign. e.g., if the gyroscope x-axis signal was positive at the end

of the jump it would become negative at the high time point of

the jump and vice versa.
5.3 Game control

Using the two specialised detection components described

above, the game logic can be built that offers feedback and

rewards to the player depending on how well they time the

smash to coincide with the highest point in the jump. Due to

the inter-component communication facilities in the SSE

platform, this involves catching the messages from the

detectors, and then triggering appropriate animations on a

screen or on the interactive LED video floor.
6 Action recognition modelling and
evaluation

Now that we have explained previously, how game scenarios

can be implemented, we go deeper into how good action

detection works in those setups. We do this on data that was

collected earlier with the same sensors in the same setting. Note

that data was gathered in training sessions without interaction

and regular practice sessions. Yet, by looking at those results we

can say something about the expected performance of those

modules in our games, and we can speculate on the implications

of using those games in actual training settings.
2http://web3.bilkent.edu.tr/enterface19/—-last accessed March 2024
6.1 IMU dataset

The dataset utilized for our modeling and experimental

analyses aligns with the one employed in the study by
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Salim et al. (3). For this dataset, eight female volleyball

players wore Inertial Measurement Units (IMUs) on both

wrists during their regular training sessions. The primary

objective was to capture natural gameplay scenarios, ensuring

that the collected data accurately represented real-world

training conditions.

However, it’s important to note that the dataset exhibits a

significant class imbalance. For instance, in the binary

classification task of action vs. non-action recognition, we

encounter a substantial disparity: 1,453 s of action data

compared to a much larger 24,412 s of non-action data (35).

This imbalance poses challenges for training robust machine

learning models, as it can lead to biased predictions.

To establish ground truth labels, video recordings were

synchronized with the IMU data. These videos serve as a

reference for annotating specific volleyball actions. Three

students, all participants of the eNTERFACE 2019 workshop,2

undertook the annotation task using Elan software (133). Given

the distinctiveness of volleyball actions performed by players,

inter-annotator agreement was remarkably high—there was no

ambiguity regarding the labeled actions.

The quality of annotation was assessed through a majority

vote mechanism. If all annotators consistently labeled a

particular action, it was accepted as the ground truth. In cases

where an annotator might have missed or mislabeled an action,

the majority consensus prevailed. This rigorous evaluation

process ensures the reliability and accuracy of our annotated

dataset, which serves as a valuable resource for advancing

action recognition research in volleyball.

Training and Testing of the Convolutional Neural Network

(CNN) model was performed on the signals from the IMUs

sensor worn by players on their wrists. The sampling rate was 40

Hz. The following signals were used from the IMUs:

• 3D Accelerometer x, y, z

• 3D Gyroscope x, y, z

• 3D Magnetometer x, y, z

• 1D Barometer

The window size used is one second, i.e., 40. In short, the input

to the CNN was a window of 40� 20.
6.2 Statistical functions for classification

We have applied basic statistical functions (mean and standard

deviation of features and their first-order derivates over the

window of one second (i.e., 40 samples � 20 short-time features)

resulting in 80 features to represent the window of one

second for classification. In this experiment, no frames/windows

are discarded.
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UAR ¼ 1
jCj

XjCj

i¼1

TPi
TPi þ FNi

where

UAR represents the Unweighted Average Recall.

jCj denotes the number of classes.

TPi represents the number of true positives for class i:

FNi represents the number of false negatives for class i:

(1)

We applied decision tree (UAR ¼ 57.3% with avg. F1 Score of

61.54% in 10-fold cross-validation and UAR ¼ 48.76% with

avg.F1 Score ¼ 45:98% for leave one subject out cross-validation)

and linear discrimination classifiers (UAR ¼ 63.8% and averaged

F1 Score ¼ 66:6% for 10-fold cross-validation and UAR ¼
62.21% with F1 Score of 59.37% for leave-one subject out cross-

validation). UAR (as shown in Equation 1), standing for

Unweighted Average Recall, represents the average recall value

across all classes in a multiclass classification scenario, reflecting

the model’s proficiency in accurately identifying positive

examples. Meanwhile, the F1 Score, also referred to as the

F1 Score, offers a comprehensive evaluation of a model’s

performance in binary classification by incorporating both

precision and recall, calculated as the harmonic mean of these

two metrics.
6.3 Active data representation for
classification

In this section, we describe our active data representation method

briefly (134–136). The ADR method involves the following steps:

1. Clustering of frames: Self-Organising Maps (SOM) (137) are

employed for clustering of all the frames using 20 short-time

features. The number of clusters was determined through a grid

search hold-out-validation procedure with a hyperparameter

space of m [ {5, 10, . . . , 100}. An example of clustering (i.e.,

feature extraction model) is shown in Figure 4.

2. Generation of the Active Data Representation (ADRAi) vector is

done by first calculating the number of frames in each cluster

over 1 s (Ai), that is, creating a histogram of the number of

frames (nADRAi) present in each of the m clusters for every

window of one second. Then, to model temporal dynamics

we calculate the mean and standard deviation of the rate of

change with respect to the clusters associated with the frames

for each window (cADRAi), where the rate of change is given

by an approximation of the derivative

vADRAi ¼ @cADRAi

@t
,

with respect to time (t).

nADRAinorm ¼ nADRAi

knADRAik1
(2)
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3. Fusion: the ADRAinorm feature set encompasses the features of

nADRAinorm , and vADRAi. Therefore, a feature vector with a

dimensionality of mþ 2 is generated to represent each

instance (Windowofone second) for classification.

4. Classification: The classification experiment is performed by

linear discriminant analysis (LDA) using ADR features. A 10-

fold cross-validation procedure is adopted, and the results are

shown in Figure 5. It is found that m ¼ 55 provides the best

results, which results in a reduction of dimensionality from

800 (20� 40) to 57 features. The model for feature extraction

is shown in Figure 4.
6.4 CNN for classification with impact
detection

The input windows (40� 20) were created by the following

procedure. Once the impact is detected in the signal window

using the impact module (see Section 5.1 for details.), the

window is created by taking the impact frame as a centre and

surrounding frames are taken to create a one-second (40 Hz)

window. It could lead to overlapping windows, as there could be

multiple frames in a window that are detected as impact frames.

Once the window is taken, the corresponding label is checked

from the annotation. If there is an action label found, the window is

considered a volleyball action such as a forearm pass, otherwise,

it is considered a noise sample. A window with a mix label

(noise + action) is discarded.

The signal window is used as input to train the Convolutional

Neural Network (CNN) with Adam optimiser and cross-entropy

loss. Table 1 shows the trained CNN.
6.5 Results and discussion

The classifiers are evaluated using both 10-Fold stratified cross-

validation and Leave One Subject Out (LOSO) methodologies. The

10-Fold cross-validation, used random shuffle where fold contains

data from the same subjects. In LOSO cross-validation the folds do

not contain data from the same subjects. This setting helps in

identifying features/methods that are less invariant to subjects’

characteristics and helps in understanding how method

performance is being affected by incorporating personal data for

training machine learning.

For 10-fold cross-validation, The ADR method is able to

predict the volleyball actions with an accuracy of 96.24%, well

over the blind guess of 25% as shown in Figure 5. The proposed

architecture also achieved an unweighted average recall (UAR) of

74.47% and an averaged F1 Score of 64.26% with a Kappa of

0.471. It is noted that the noise is clearly identified with the

highest recall of 97.0%, precision of 99.3% and F1 Score of

98.1%. The overhead pass and smash actions achieved a recall of

75.0% and 67.1.1% respectively. We obtained low precision rates

for the overhead pass (26.2%) and forearm pass (36.9%),
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FIGURE 4

ADR feature extraction model with m ¼ 55 which provides the result of 74.47% (UAR) for Action Recognition with LDA classifier. The left figure
indicates the number of frames present in each cluster (hexagon i.e., neuron) and the right figure indicates the distance between clusters (blue
dots i.e., neurons) and darker colour indicates greater distance between clusters. The red lines connect neighbouring neurons.
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indicating that these actions are often misclassified as noise by

the classifiers.

For LOSO cross-validation, The ADR method is able to predict

the volleyball actions with an accuracy of 96.03%, well over the

blind guess of 25% as shown in Figure 6. The proposed

architecture also achieved an unweighted average recall (UAR) of

73.84% and an averaged F1 Score of 63.29% with a Kappa of

0.457. It is noted that the noise is identified with the highest

recall of 96.8%, precision of 99.3% and F1 Score of 98.1%. The

overhead pass and smash actions achieved a recall of 74.2% and
FIGURE 5

Action Recognition through ADR: 10-fold stratified cross-validation (with ra
windows discarding.
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65.8% respectively. We obtained low precision rates for the

overhead pass (24.5%) and forearm pass (35.6%), indicating that

these actions are often misclassified as noise by the classifiers.

In 10-Fold cross validation, CNN architecture is able to predict

the volleyball actions with an accuracy of 92.78%, well over the

blind guess of 25% and majority vote of 83.32%. The proposed

architecture also achieved an unweighted average recall (UAR) of

78.71% and an averaged F1 Score of 81.72% with a Kappa

of 0.737. The UAR and averaged F1 Score is the arithmetic

mean of recall and F1 Score of all four classes, respectively. The
ndom shuffle) Results without impact detection method and no frames/

frontiersin.org

https://doi.org/10.3389/fspor.2024.1326807
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


TABLE 1 Convolutional neural network.

Layer type Output shape Param #
Conv1D (None, ntimesteps � 2, 64) 640

Conv1D (None, ntimesteps � 4, 64) 12,352

Dropout (None, ntimesteps � 4, 64) 0

MaxPooling1D (None, (ntimesteps � 4)=2, 64) 0

Flatten (None, (ntimesteps � 4)=2� 64) 0

Dense (None, 100) 200,100

Dense (None, noutputs) 10,100
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results of the cross-validation are shown in Figure 7. It is noted that

the noise is clearly identified with the highest recall of 97.5%,

precision of 94.4% and F1 Score of 95.9%. The overhead pass

and smash actions achieved a recall of 77.7% and 80.1%

respectively. However, we also note that forearm pass has the

lowest recall of 59.6%, indicating that the classification method is

confusing the forearm with the noise class.

The performance of the CNN based classifier degraded when

using LOSO cross-validation (see Figure 8) from a UAR of

78.71% to 57.30% indicating that the CNN and raw features are

variant to subjective characteristics and more suitable for

situations where a coach could enrol actions of a player to

provide input for fine-tuning/retraining a CNN model.

The results from ADR and CNN indicate that CNN

outperforms ADR in 10-fold cross-validation. The ADR and

Statistical funcationls outperform CNN in LOSO cross-validation

setting, indicating that statistical features and the ADR method

are invariant to subjective characteristics.
FIGURE 6

Action Recognition through ADR: leave one subject out cross-validation Resu
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The CNN approach incorporates an impact detection method

to preprocess the data, potentially leading to overlapping frames

during classification, especially considering that the number of

frames is higher for CNN, except for noise frames. In contrast,

the statistical functions and ADR methods process the data as a

continuous one-second signal without overlap and without

discarding any frames/windows, which reduces the risk of

overfitting through dimensionality reduction.

These results show that it is possible to develop some level of

automatic detection of relevant volleyball actions within the context

of our real-time game platform. This suggests that this platform

can be developed further in fruitful directions. However, clearly,

the recognition results are not yet equally good enough for all

types of interaction. The chance that a full sequence of Bump-Set-

Spike will not be recognised because one of its constituent actions

is not detected is too high to make the game work in its originally

intended form: a full sequence has an a priori likelihood of only

67.87% Unweighted Average Recall (UAR), (3, 38) of being

correctly identified. Therefore, until the recognition rates have been

improved enough, it would probably be more effective to reward

the occurrence of Set and Spike actions in isolation, gradually

increasing the complexity and aesthetics of the visualisations

depending on the rate of Set and Spike actions, rather than only

making a significant change to the visualisations upon successful

detection of the full triple set of actions.

In the next section, we will delve deeper into the implications of

these results and discuss how the implementation of game

scenarios should be precisely targeted to align with the expected

performance of the individual real-time recognition modules.
lts without impact detection method and no frames/windows discarding.
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FIGURE 7

Action Recognition through CNN using raw signal: 10-fold cross-validation results with impact detection method.

FIGURE 8

Action Recognition through CNN using raw signal: leave one out cross-validation results with impact detection method.

Salim et al. 10.3389/fspor.2024.1326807
7 Conclusion and future direction

We have described an end-to-end architecture for a modular

system designed to be capable of both real-time (online)

interactive training and data collection for sports training. The

system can be configured to use different hardware e.g., IMUs
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from different manufacturers such as Xsens MTw Awinda (46)

or x-io NG-IMUs (138) in combination with experimental

pressure sensitive display floor.

The proposed architecture was implemented for a practical case

study for interactive training of “Bump Set Spike” for volleyball

players. The implemented system is used by other researchers to
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develop interactive games for sports training and physical education.

Experimentation was also performed on volleyball data collected

while players played volleyball during their regular training

sessions. The trained deep-learning model results are highly

encouraging, and show the applicability of the implemented

system in real-time training scenarios. As with additional data

collection, the model can be updated and due to the modular

nature of the system, it allows easy update of the model or to even

use different models by easily re-configuring the system.

Yet, performance is clearly not perfect. The efficacy of our

detection and classification modules is contingent upon the

precise application of their results. Even if our system’s recall or

precision rates are not optimal, the “Events of Interest

Exploration” system can still provide substantial assistance. This

is because the retrieved training episodes, despite potential

incompleteness or inclusion of irrelevant fragments, can yield

valuable insights. However, in the case of interactive training like

the Bump-Set-Spike module, frequent misfires of visual

embellishments can undermine the system’s purpose.

In general, this implies that the classification components

within the SSE platform need to be adjusted to prioritize false

positives, false negatives, and the confusion of certain classes

over others. The adjustment depends on the specific objectives of

the application [see, for example, Beenhakker et al. (38)].

Specifically for the Bump-Set-Spike example, however, this also

entails considering rewarding individual events rather than the

entire bump-set-spike sequence. This approach helps mitigate

cumulative errors in detecting the complete sequence. Therefore,

the design of the application should be meticulously tailored to

accommodate the performance characteristics of the available

detection and recognition components.

The presented system is designed to serve as a platform not

only for practical use by sports trainers but also for further

interdisciplinary research. For instance, we plan to assess the

system with coaches and players to gauge their interaction with it

and explore ways to enhance the design for creating additional

training games. Additionally, we aim to evaluate the system with

various hardware configurations for interactive sports training.

Lastly, we intend to conduct further experiments utilizing deep

learning techniques to enhance the performance of the models

for action classification.
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