Skip to main content

ORIGINAL RESEARCH article

Front. Astron. Space Sci. , 05 March 2025

Sec. Extragalactic Astronomy

Volume 12 - 2025 | https://doi.org/10.3389/fspas.2025.1560380

Searching for nearby diffuse dwarf galaxies in the COSMOS field

Dong Dong Shi
Dong Dong Shi1*Xian Zhong Zheng
Xian Zhong Zheng2*Zhizheng PanZhizheng Pan3Yu LuoYu Luo4Hongxia DengHongxia Deng1Qunzhi HuaQunzhi Hua1Xinyu LuoXinyu Luo1Qiming WuQiming Wu1
  • 1Center for Fundamental Physics, School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, China
  • 2Tsung-Dao Lee Institute and Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
  • 3Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangsu, China
  • 4Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha, China

It remains challenging to systematically survey nearby diffuse dwarf galaxies and address the formation mechanism of this population distinguishing from regular ones. We carry out a pilot search for these galaxies in the COSMOS field using the deep HST/F814W imaging data. We report three diffuse dwarf galaxies satisfying the criteria: (1) redshift z<0.2, (2) effective radius re>1.0, and (3) central surface brightness μ0>24 mag arcsec−2. Two of the three galaxies, COSMOS-UDG1 and COSMOS-UDG2, are recognized as ultra-diffuse galaxies (UDGs) with redshift z=0.130 and 0.049, respectively. The third galaxy, COSMOS-dw1, is spectroscopically confirmed as a dwarf galaxy at z=0.004. We derive the physical properties through fitting their spectral energy distributions (SEDs) extracted from deep multiwavelength observations. COSMOS-dw1 has a stellar mass of 5.62.7+2.5×106 M, harboring neutral hydrogen gas of mass 4.90±0.90×106 M, hinting that this galaxy may be in the nascent stages of quenching. The estimated dynamical mass of 3.4×107M further suggests that COSMOS-dw1 is predominantly of dark matter. COSMOS-UDG1 and COSMOS-UDG2 exhibit comparable stellar masses of 2×108 M. Notably, COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. Conversely, COSMOS-UDG2 and COSMOS-dw1 have similar stellar metallicities, yet COSMOS-UDG2 is older than COSMOS-dw1. All three galaxies adhere to the stellar mass-metallicity relation (MZR) for dwarf galaxies in the local Universe, implying they belong to the dwarf galaxy population.

1 Introduction

The extremely low surface brightness (LSB) galaxies in the Universe provide crucial insights into galaxy formation and evolution, particularly concerning the role of dark matter and the mechanisms shaping diverse galaxy morphologies (e.g., Impey and Bothun, 1997; Bullock and Boylan-Kolchin, 2017). Ultra-diffuse galaxies (UDGs) are distinguished by their extremely low central surface brightness μ(g,0)>24 mag arcsec-2, large half-light radius (re>1.5 kpc) comparable to that of typical L* galaxies and relatively low stellar mass (<108 M), which is two orders of magnitude smaller than that of L* galaxies (van Dokkum et al., 2015a). It remains unclear whether these extreme properties arise from distinct formation processes compared to normal galaxies.

UDGs have been found in a variety of environments, including galaxy clusters (e.g., van Dokkum et al., 2015a; Koda et al., 2015; Mihos et al., 2015; Muñoz et al., 2015; Martínez-Delgado et al., 2016; van der Burg et al., 2016; Román and Trujillo, 2017a; Janssens et al., 2017; Lee et al., 2017; Lee et al., 2020; Iodice et al., 2020; Wittmann et al., 2017; Janssens et al., 2019; Gannon et al., 2022; Venhola et al., 2022; La Marca et al., 2022a; b), groups (e.g., Smith Castelli et al., 2016; Merritt et al., 2016; Ordenes-Briceño et al., 2016; Trujillo et al., 2017; Román and Trujillo, 2017b; Shi et al., 2017; van der Burg et al., 2017; Müller et al., 2018; Greco et al., 2018b; Somalwar et al., 2020; Zaritsky et al., 2023; Jones et al., 2023) and the fields (e.g., Bellazzini et al., 2017; Leisman et al., 2017; Bennet et al., 2018; Prole et al., 2019; Barbosa et al., 2020; Fielder et al., 2024; Montes et al., 2024), as well as within cosmic void (Román et al., 2019) and associated with the large-scale structures (e.g., Román and Trujillo, 2017a; Shi et al., 2017). Accumulating observational evidence reveals that UDGs exhibit a diverse range of properties. They can be red and blue in color (e.g., Koda et al., 2015; Román and Trujillo, 2017a; Román and Trujillo, 2017b; Shi et al., 2017; Leisman et al., 2017), gas-poor and gas-rich in H I gas content (e.g., Trujillo et al., 2017; Kadowaki et al., 2017; Bellazzini et al., 2017; Papastergis et al., 2017; Spekkens and Karunakaran, 2018; Karunakaran et al., 2020; Karunakaran et al., 2024), and have prolate and oblate in geometry/intrinsic ellipticity distribution (Burkert, 2017). Some UDGs contain a high fraction of globular clusters (GCs) (e.g., Beasley et al., 2016; Beasley and Trujillo, 2016; Peng and Lim, 2016; van Dokkum et al., 2016; van Dokkum et al., 2017; van Dokkum et al., 2018b; Toloba et al., 2018; Lim et al., 2018; Marleau et al., 2024; Forbes et al., 2025), and many host a compact nucleus in their central regions (e.g., Yagi et al., 2016; Janssens et al., 2017; Lambert et al., 2024; Khim et al., 2024). These observations suggest that the UDG population, selected based on observational criteria, may be composed of different populations formed through different pathways. For instance, UDGs Dragonfly 44 and Dragonfly X1 are likely overwhelmingly dominated by dark matter and are considered as “failed” galaxies with massive halo (>5×1011 M) (van Dokkum et al., 2015a; van Dokkum et al., 2016; van Dokkum et al., 2017), and UDGs VCC 1287 and Dragonfly 17 are seen as “failed” Large Magellanic Cloud (LMC) or M33 with low halo mass (<1011 M) (Beasley and Trujillo, 2016; Peng and Lim, 2016; Amorisco et al., 2018). In contrast, several UDGs have been reported to be tidally disrupted dwarf galaxies, also known as tidal debris or disturbed UDGs (Mihos et al., 2015; Mihos et al., 2017; Merritt et al., 2016; Greco et al., 2018a; Fielder et al., 2024). These typically exhibit lower dark matter halos compared to what is expected for their stellar mass (van Dokkum et al., 2018a; Toloba et al., 2018; Ogiya, 2018). The UDGs, NGC1052-DF2 and DF4, contain little or no dark matter (van Dokkum et al., 2018a; van Dokkum et al., 2018b, van Dokkum et al., 2019; Shen et al., 2021; van Dokkum et al., 2022), although the controversy still remains (Trujillo et al., 2019; Montes et al., 2020).

Multiple formation scenarios have been proposed to account for the extended nature of UDGs. Galaxy collisions in dense environments are suggested as a mechanism for forming UDGs (Baushev, 2018), often leading to prolate rather than oblate morphologies (Burkert, 2017). Carleton et al. (2019) proposed that tidal stripping and heating are primary drivers of UDG formation in the dense environments. In less-dense environments, such as poor clusters and galaxy groups, the interaction of the interstellar medium (ISM) with the intra-cluster medium (ICM) is believed to play a pivotal role in shaping UDGs (Levy et al., 2007). On the other hand, Amorisco and Loeb (2016) contended that UDGs are predominantly dwarf galaxies with extremely high spins. Leisman et al. (2017) and Spekkens and Karunakaran (2018) reported that gas-rich UDGs tend to reside in halos of high angular momentum traced by H I line width, supporting the high-spin scenario (Amorisco and Loeb, 2016; Rong et al., 2017). Furthermore, gas outflow driven by strong feedback from supernovae and massive star winds in a star-forming galaxy is suggested to cause the expansion of dark matter and stellar disk, ultimately reshaping the galaxy into a faint and extended form (Di Cintio et al., 2017; Chan et al., 2018). In addition, Sales et al. (2020) suggested that UDG population is a mixture of normal LSB galaxies typically found in the low-density environments, along with a distinct population whose expansive size and LSB are a result of the impact of cluster tides (e.g., Tremmel et al., 2020).

More observational efforts are eagerly demanded to determine the physical properties of UDGs for a better understanding of their origin. Notably, spectroscopic observations are crucial for revealing the properties of stellar populations, metallicity and kinematics. However, it is very expensive to obtain good-quality spectroscopic data for UDGs even with 10 m-class telescopes. To date, only 100 UDGs have been spectroscopically observed, and most of them are cluster UDGs (e.g., van Dokkum et al., 2015b; van Dokkum et al., 2016; Martínez-Delgado et al., 2016; Trujillo et al., 2017; Kadowaki et al., 2017; Gu et al., 2018; Ferré-Mateu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022; Buzzo et al., 2024a; Gannon et al., 2024; Shen et al., 2024). These cluster UDGs are mainly dominated by old and metal-poor populations (Kadowaki et al., 2017; Ferré-Mateu et al., 2018; Ruiz-Lara et al., 2018; Iodice et al., 2023). On the other hand, some UDGs (e.g., DGSAT 1 and UGC 2162) in low-density environments seem to consist of relatively young and high-metallicity stellar populations (Martínez-Delgado et al., 2016; Trujillo et al., 2017; Pandya et al., 2018). Moreover, some blue UDGs appear to be gas-rich galaxies so that the 21 cm line can be used to measure the distance of UDGs and test their formation mechanisms (Trujillo et al., 2017; Papastergis et al., 2017; Bellazzini et al., 2017; Leisman et al., 2017; Shi et al., 2017; Spekkens and Karunakaran, 2018). Additionally, only a few UDGs has been observed for measuring their stellar kinematics through spectroscopy (e.g., Chilingarian et al., 2019; van Dokkum et al., 2019; Iodice et al., 2023), revealing that their dark matter content and velocity profile are diverse (e.g., Emsellem et al., 2019; Kravtsov, 2024). Most UDGs have a large dark matter fraction than dwarf galaxies with similar luminosities, but several UDGs contain little or no dark matter (van Dokkum et al., 2018a; van Dokkum et al., 2018b; van Dokkum et al., 2019; Shen et al., 2021; van Dokkum et al., 2022). Buttitta et al. (2025) mapped the stellar kinematics of some UDGs in the Hydra-I cluster, finding that seven UDGs are in a mild rotation and five UDGs show no evidence of rotation. Recently, some works explored the stellar populations of UDGs using the multiwavelength SED fitting, and concluded that their properties are diverse (e.g., Pandya et al., 2018; Gu et al., 2018; Buzzo et al., 2022; Buzzo et al., 2024a). Therefore, further investigation of the physical properties of these diffuse galaxies is imperative.

In this work, we systematically search for extremely LSB galaxies in the COSMOS field. The availability of pre-existing deep multiwavelength observations, spanning from the ultraviolet (UV) to the radio, enables us to delve into the properties of these galaxies in detail. In Section 2, we describe the selection of the three diffuse galaxies and the photometric data. Section 3 presents the photometry and analysis. finally, we discuss and summarize our results in Section 4. We adopt a cosmology with ΩM=0.3, ΩΛ=0.7 and H0=70 km s−1 Mpc−1, and the AB magnitude system throughout this work.

2 Target selection and data

We carry out a search for UDGs within the central 36×14 region of the COSMOS field, where HST/ACS F606W (V606) and F814W (I814) observations are available from the 3D-HST/CANDELS survey (van Dokkum et al., 2013; Momcheva et al., 2016). We made use of the 3D-HST redshift and photometric catalog of 33,879 objects (the v4.1.5 release) based on the I814 detection to select UDG candidates. We limit redshift at z<0.2, and apply the selection criteria of μ(I814,0)>24.0 mag arcsec-2 and effective radius re>1.5 kpc to the catalog, yielding a sample of 20 objects as the UDG candidates. We visually examine the I814 images of these targets to get rid of false sources (e.g., blending and compact sources, contamination light from the outer of saturate stars). Finally, we obtained three diffuse galaxies, named as COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2. Their I814 images are shown in Figure 1. Of them, COSMOS-dw1 is not included in the 3D-HST catalog. It was found when visually checked the I814 images. We cross correlated these objects with the COSMOS2015 catalog (Laigle et al., 2016), finding that the three objects are all included. We note that COSMOS-dw1 has been confirmed by LRIS on Keck I, and the spectroscopic redshift (spec-z) is 0.0041 (Polzin et al., 2021). The spec-z of COSMOS-dw1 in radio observations with Five-hundred-meter Aperture Spherical radio Telescope (FAST) and MeerKAT GHz Tiered Extragalactic Explorations (MIGHTEE) HI survey is 0.004 (Pan et al., 2024; Heywood et al., 2024). No spec-z is available for the rest two objects (although COSMOS-UDG1 was observed through the Very Large Telescope (VLT)/VIMOS spectrograph, there is still no spec-z due to the low Signal-to-Noise Ratio (SNR) spectrums (Lilly et al., 2007)). The COSMOS2015 catalog provides photo-z of the three objects as 0.005 ± 0.0034, 0.158 ± 0.008, 0.044 ± 0.011, respectively.

Figure 1
www.frontiersin.org

Figure 1. The HST/ACS F814W stamps of three COSMOS diffuse galaxies: COSMOS-dw1 (left), COSMOS-UDG1 (middle), and COSMOS-UDG2 (right). The size of the stamps is 90×90. The inner box shows a region of 30×30 for COSMOS-dw1, and 15×15 for COSMOS-UDG1 and COSMOS-UDG2.

The publicly-available multi-band mosaic science images of COSMOS are used to examine the broad properties of the selected UDGs, including Far-UV (FUV) and Near-UV (NUV) images from the Galaxy Evolution Explorer (GALEX) (Zamojski et al., 2007), u and i-band images obtained with Canada-France-Hawaii Telescope (CFHT) (McCracken et al., 2010), Subaru gp,rp,ip,zp and 12 intermediate-band optical images (Taniguchi et al., 2007), deep Y,J,H, and Ks-band images from UltraVISTA (McCracken et al., 2012), IRAC 3.6 μm, 4.5 μm, 5.8 μm, 8 μm data from the COSMOS Spitzer survey (Sanders et al., 2007), and 20 cm data obtained with Very Large Array (VLA) (Schinnerer et al., 2007). More details about these archive data in COSMOS are summarized in Laigle et al. (2016). The left panels of Figures 24 show the representative multiwavelength images of the three galaxies.

Figure 2
www.frontiersin.org

Figure 2. Left:The examples of multiwavelength science images of COSMOS-dw1. The size of each stamp is 30×30. The red circle in each stamp is the target. Right: The SED fitting of COSMOS-dw1. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-dw1, and the green points are the model photometry.

Figure 3
www.frontiersin.org

Figure 3. Left:The examples of multiwavelength science images of COSMOS-UDG1. The size of each stamp is 15×15. The red circle in each stamp is the target. Right: The SED fitting of COSMOS-UDG1. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-UDG1, and the green points are the model photometry.

Figure 4
www.frontiersin.org

Figure 4. Left:The examples of multiwavelength science images of COSMOS-UDG2. The size of each stamp is 15×15. The red circle in each stamp is the target. Right: The SED fitting of COSMOS-UDG2. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-UDG2, and the green points are the model photometry.

3 Photometry and analysis

3.1 Aperture-matched photometry

We construct aperture-matched SEDs from the FUV to the NIR for our three UDG targets. The three targets are very extended and removal of the blending fluxes from nearby sources is key to measuring their fluxes. The left panels in Figures 24 are the examples of mosaics in these three galaxies. Below we describe our processes to derive the aperture-matched photometry from the multi-band imaging data.

For each of our three targets, we cut stamp images of 30×30 centered at the target from mosaic science images for further analysis. We extract the empirical Point Spread Functions (PSF) from the mosaic science images using the software PSF Extractor (PSFEx, version 3.9.1, Bertin, 2011). SExtractor (Bertin and Arnouts, 1996) is used to detect sources and extract their photometric and geometric parameters, including coordinates, magnitude, effective radius re, axis ratio (b/a) and position angle (PA). The detection configuration is optimized for individual stamp images. All sources in one stamp image are simultaneously fitted with 2-D Sérsic models using GALFIT (Peng et al., 2002; Peng et al., 2010). The best-fit Sérsic models of detected sources are subtracted from the stamp image and the central target is left. Doing so we obtained clean images of the target. These clean images are used to match PSFs between different bands and derive aperture-matched photometry. The total magnitude in ip is estimated using the growth curve derived from the ip-band clean image.

We notice that the total magnitude in HST I814 is systematically lower than that in ip for all three UDGs. The discrepancy still exists even we measure the total magnitude from the I814 image degraded from a pixel scale of 0.03 to 0.15 (the pixel scale of ip). We point out that this discrepancy is caused by the background subtraction in I814 data reduction, for which the box size chosen for background estimate is preferentially optimized for faint and compact sources, but too small for extended UDGs. This leads to an oversubtraction of the outskirts of UDGs and therefore the total magnitude to be lower. The magnitude discrepancy is at a level of 0.2 mag and have marginal effects on the estimate of their geometric parameters. We adopt the parameters from the GALFIT best-fit Sérsic models of I814 images and list total magnitude of V606, I814, re, Sérsic index n, b/a of our three galaxies in Table 1.

Table 1
www.frontiersin.org

Table 1. The properties of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2. The parameters listed from top to bottom rows, refer to coordinates, redshift, magnitude in F606W/F814W, color, central surface brightness in F606W/F814W, effective radius in angular and physical size, Sérsic index (n), axis ratio (b/a), stellar mass log(M*/M), SFR (M yr-1), stellar age (Gyr), log(τ/Gyr), stellar metallicity log(Z/Z) and HI mass, respectively. Note that we correct the extinction, K-correction and cosmological dimming effects.

The Subaru optical images we used are already PSF-matched. We use a fixed aperture of radius two times the ip-band effective radius re,ip to derive the aperture-matched fluxes from the clean images in the gp,rp,ip, and zp and other 12 intermediate bands. For other images, we match the images of a given band and the ip-band to the identical spatial resolution, and then derive aperture-matched flux ratio between the two bands. In practice, we convolve one image with the PSF of the other image and vice versa to match two images to the same spatial resolution. This method works well for our targets because they are extended and relatively bright. Aperture photometry on the PSF-matched images with the same circular aperture (i.e., radius = 2×re,I814) gives aperture-matched flux ratio of the two bands. We derived flux ratios of CFHT u and i, UltraVISTA Y,J,H, and Ks to Subaru ip, flux ratios of FUV/NUV to u, and flux ratios of IRAC 3.6 μm/4.5 μm to Ks. These flux ratios based on aperture-matched photometry describe the observed SED over these bands. The observed SED is then normalized to the total magnitude of ip. Taken together, we obtained the FUV-to-NIR SEDs for our three UDG targets, as shown in the right panels of Figures 24.

We also examine the dust emission of our three galaxies using the deepest 850 μm map obtained with SCUBA-2 on board James Clerk Maxwell Telescope (JCMT) through the S2COSMOS survey (Casey et al., 2013; Geach et al., 2016; Michałowski et al., 2017), finding no detection at a level of 3 σ=1.2 mJy. These suggest a very low rate of obscured star formation among our sample objects.

3.2 Modeling of the observed SEDs

Using the software Easy and Accurate Redshifts from Yale (EAZY) (Brammer et al., 2008), we can estimate photometric redshift (photo-z) from the multiwavelength photometric data. The default library of galaxy templates in EAZY is adopted. The input parameters (e.g., templates, input file, output files and redshift grid) are set in the configuration file. The redshift range we have set is from 0 to 2, incremented by 0.001 each step. Therefore, the photo-z for COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 are 0.010, 0.130 and 0.049, which are fully consistent with the photo-z provided by COSMOS2015 catalog. However, considering that COSMOS-dw1 already has a spectral redshift (spec-z=0.0041), we use the spec-z in following SED fitting. The results are listed in Table 1.

We constrain the star formation histories (SFHs) of these three galaxies using the SED fitting technique. The fitting is performed using Prospector (Leja et al., 2017; Leja et al., 2019), which uses the Flexible Stellar Population Synthesis (FSPS) package with fully Bayesian Bayesian Markov chain Monte Carlo (MCMC) code (Conroy et al., 2009). We use the default Stellar Population Synthesis (SPS) parameters in FSPS. For the SED modeling, we adopt the Chabrier (2003) IMF and the Calzetti et al. (2000) dust attenuation law. The delayed exponentially declining SFH (SFRt×exp(t/τ)) is used, where t is time from the formation. The redshift is fixed by spec-z or photo-z.

The best-fit models of these three galaxies with Prospector are shown in the right panels of the Figures 24. For COSMOS-dw1, we obtain stellar mass M*=5.62.7+2.5×106 M, the same as calculated in Polzin et al. (2021). The estimated stellar metallicity, star formation rate (SFR) and stellar age of COSMOS-dw1 is log (Z/Z) =1.470.39+0.63, 0.001 M yr-1 and 4.102.5+5.24 Gyr, respectively. Polzin et al. (2021) claim that COSMOS-dw1 is an isolated quenched low-mass galaxies with strong Balmer absorption lines in the local group, but the specific stellar age and metallicity are not given. Our results support that COSMOS-dw1 has very little star formation at present. For COSMOS-UDG1, we obtain stellar mass M*=2.53.4+1.9×108 M, stellar metallicity log (Z/Z) =0.740.86+0.54, stellar age 1.701.43+4.41 Gyr. The parameter of stellar mass, stellar metallicity and stellar age in COSMOS-UDG2 is M*=2.21.1+0.9×108 M, log (Z/Z) =1.440.40+0.65 and 5.583.12+5.10 Gyr, respectively. We find that these three galaxies exhibit diverse properties. COSMOS-UDG1 and COSMOS-UDG2 have similar stellar masses, but COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. COSMOS-UDG2 and COSMOS-dw1 have similar stellar metallicities, but COSMOS-UDG2 is older than COSMOS-dw1.

In Figure 5, we show the stellar mass–metallicity relation (MZR) for these three COSMOS galaxies, compared to the relation found for the dwarfs (Kirby et al., 2013) and giant galaxies in the local Universe (Gallazzi et al., 2005). The MZR with large scatter appears to be continuous from low to high masses. Despite the large uncertainties of metallicity and stellar mass, COSMOS-dw1 obeys the MZR at the low mass end, COSMOS-UDG1 and COSMOS-UDG2 follow the MZR defined by normal dwarf galaxies. This suggests that stellar mass plays an important role in determining stellar metallicities, regardless of the size of a galaxy.

Figure 5
www.frontiersin.org

Figure 5. The stellar mass-metallicity relation. The black solid points are the early-type galaxies (ETGs) in Virgo (Liu et al., 2016), dwarf galaxies in and around the Local group are shown in gray solid squares (McConnachie, 2012), and local group dIrrs/dSphs from Kirby et al. (2013) are shown in dark blue solid points, the blue solid line shows the least-squares line, and the dotted lines are the rms about the best fit. MZR relation could extend to the massive galaxies (Gallazzi et al., 2005), as shown the gray solid curves. The purple solid line is the MZR relation of star-forming galaxies with stellar masses ranging between 108.5 and 1011 M at z=0.0270.25 (Zahid et al., 2017). Other UDGs from literatures are presented for comparisons (e.g., Kadowaki et al., 2017; Gu et al., 2018; Pandya et al., 2018; Ruiz-Lara et al., 2018). The red, blue and brown solid points stands for the COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2, respectively.

4 Discussion and summary

We present the physical properties of three nearby diffuse galaxies identified in the central region of the COSMOS field, which is covered by the 3D-HST/CANDELS survey. The primary uncertainty in our analysis is the distances of the three diffuse galaxies. The photometric redshifts derived from the broadband SEDs affirm that these objects are nearby, with redshifts z<0.15. Nevertheless, given uncertainties associated with photo-z, we cannot rule out the possibility that they might be located closer (e.g., in the Local Group), especially for COSMOS-dw1. COSMOS-dw1 has been confirmed by optical spectroscopy and radio observations to have a redshift of 0.004 (Polzin et al., 2021; Pan et al., 2024). For COSMOS-UDG1 and COSMOS-UDG2, we determine their photo-zs to be 0.130 and 0.049, respectively, using multiwavelength data. The physical properties of these three galaxies appear to be strikingly different.

Obtaining accurate distance estimates for the ultra-faint and diffuse objects in local Universe is critical to derive correct galaxy physical properties. Polzin et al. (2021) applied the surface brightness fluctuation (SBF) method to COSMOS-dw1 and measured a distance of 22±3 Mpc, which aligns with its radial velocity of 1222±64 km s1. However, recent work by Foster et al. (2024) used the SBF method to derive distance estimates for the 20 nearby dwarf galaxies detected in the COSMOS field, with COSMOS-dw1 being one of them. The SBF distance is estimated to be 56.36.7+10.4 Mpc (Foster et al., 2024), which is three times higher than estimated provided by Polzin et al. (2021). Although Foster et al. (2024) can recover a similar result (23±5 Mpc) as Polzin et al. (2021) by modifying certain methodologies, SBF distance estimates for the rest galaxies will be severely underestimated (1030 Mpc) after the same modified method is applied to the whole sample. If we adopt the distance of 56.36.7+10.4 Mpc, the estimated stellar mass M* of COSMOS-dw1 would be an order of magnitude higher than previously estimated, and its effective radius would be three times larger than estimated in the Table 1. Therefore, we emphasize that there are certain discrepancies in the distances derived using the SBF method.

COSMOS-dw1 exhibits a blue color with V606I814=0.11±0.05, and has been detected in radio observations to possess HI gas. The HI mass is MHI=4.90±0.90×106 M, with the line width W50 is 18.2 km s-1, as reported by (Pan et al., 2024). The gas fraction MHI/M* is 0.87±0.43, indicating that this galaxy is not gas-poor and still retains a significant amount of atomic gas despite exhibiting quiescent optical spectra (Polzin et al., 2021, top panel of Figure 2). Given the isolation, COSMOS-dw1 is unlikely to have undergone strong environmental effects (Polzin et al., 2021). Furthermore, the stellar age of COSMOS-dw1 is estimated to be 4.1 Gyr, suggesting this galaxy formed at z0.38.

The dynamical mass Mdyn is estimated using the formula Mdyn=3.5×105reW502 M from Spekkens and Karunakaran (2018), where re is effective radius kpc and W50 is the line width in units of km s-1. COSMOS-dw1 has W50=18.2kms1 (Pan et al., 2024). Therefore, we calculate the dynamical mass of COSMOS-dw1 to be 3.36±0.12×107M. Additionally, we estimate the baryonic mass of COSMOS-dw1 as Mbar=1.33MHI+M*=1.21±0.29×107M (Piña et al., 2019). Assuming the cosmological baryon fraction is 0.16, we derive the virial mass of the dark matter halo to be 7.59±1.78×107M, which is 23 times higher than the calculated dynamical mass.

The MZR of galaxies offers profound insights into their star formation and chemical enrichment histories. The relatively low scatter in this relation, particularly at the low-mass end (e.g., Kirby et al., 2013), poses a challenge to explain. This relationship is intricately tied to the complex dynamics involving reionization, star formation, gas inflow, outflow, and recycling processes (e.g., Ma et al., 2016).

Recently, numerous researches have unveiled the stellar population properties of some UDGs through optical spectra and multiwavelength photometric data in different environments. These studies have demonstrated the diverse stellar populations of UDGs across different environments. Specifically, UDGs in clusters (e.g., Coma and Virgo) identified by optical spectroscopy are intermediate-to-old age (>610 Gyr) and metal-poor (e.g., Kadowaki et al., 2017; Ferré-Mateu et al., 2018; Gu et al., 2018; Ruiz-Lara et al., 2018; Villaume et al., 2022; Buzzo et al., 2022; Ferré-Mateu et al., 2023; Gannon et al., 2024; Buzzo et al., 2024a; Buzzo et al., 2024b). In contrast, some star-forming UDGs in low-density environments are significantly more metal-rich and younger (<5 Gyr) compared to their quiescent counterparts (e.g., Martínez-Delgado et al., 2016; Trujillo et al., 2017; Rong et al., 2020). Using multiwavelength photometric data, several studies have further revealed that UDGs found in clusters are older than those in the field (Pandya et al., 2018; Buzzo et al., 2022). Additionally, some field UDGs showcase stellar populations of intermediate age on average (7 Gyr), with some being metal-poor and others metal-rich (Barbosa et al., 2020).

We examine the environments around the three galaxies, and find that COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 do not have obvious luminous companions, suggesting that all three galaxies reside in the low-density environments. In comparison to UDGs in galaxy clusters (e.g., Kadowaki et al., 2017; Gu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022), COSMOS-UDG1 shows younger age and higher metallicity, whereas COSMOS-UDG2 is younger but metal-poor. These observations imply that the relative young ages of COSMOS-UDG1 and COSMOS-UDG2 may be associated with their low-density environment (Martínez-Delgado et al., 2016; Trujillo et al., 2017; Pandya et al., 2018). A possible explanation is that COSMOS-UDG1 have relatively massive halos, more metals can be locked, and finally reproduce the metal-rich galaxies. Besides, the non-universal initial mass function (IMF) may provide the constrains (Ferré-Mateu et al., 2013). Interestingly, the gray squares in Figure 5 show the Sagittarius (Sr) dwarf spheroidal (dSph) galaxy, a satellite galaxy in the Milky way, exhibits a relatively high metallicity ([Fe/H]0.4) despite stellar mass is comparable to those of UDGs (Chou et al., 2007; McConnachie, 2012), which is consistent with the results of COSMOS-UDG1.

COSMOS-UDG1 and COSMOS-UDG2 belong to the dwarf galaxies with large size, and their diffuse nature potentially may be governed by internal mechanisms. UDGs are the extended dwarf galaxies with high spin angular momentum (Amorisco and Loeb, 2016; Rong et al., 2017), and strong feedback from supernova or massive stars driven gas outflow, dark matter halo and stellar disks expansion, and reproduce low luminosity and extended galaxies (Di Cintio et al., 2017; Chan et al., 2018). Furthermore, some UDGs may be tidal disturbed dwarf galaxies and some present tidal feature associated with galaxy mergers (Merritt et al., 2016; Greco et al., 2018a). From the deep multiwavelength imaging, the three COSMOS galaxies we identified appear to be no tidal structures. The multiwavelength photometric data can help constrain the properties of these three galaxies, and we look forward to spatially resolving these diffuse galaxies in subsequent work to understand their formation mechanisms.

We summarize our results as follows:

(1) We conducted a search for a low-mass LSB galaxies (COSMOS-dw1) and two new UDGs (COSMOS-UDG1 and COSMOS-UDG2) within the central region of the COSMOS field, and examine their properties using the existing multiwavelength data. We present their UV-to-IR SEDs built through our careful PSF- and aperture-matched photometry. The spec-z or photo-z in COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 is 0.004, 0.130 and 0.049, respectively.

(2) SED fitting reveals that these three galaxies exhibit different physical properties. COSMOS-dw1 is a quenched low-mass galaxy with a stellar mass of 5.62.7+2.5×106 M. The stellar age and metallicity log (Z/Z) of COSMOS-dw1 is 4.102.5+5.24 Gyr and 1.470.39+0.63, respectively. COSMOS-UDG1 and COSMOS-UDG2 have similar stellar masses (108M), yet COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. COSMOS-UDG2 and COSMOS-dw1 exhibit comparable stellar metallicities, but COSMOS-UDG2 is older than COSMOS-dw1. When compared to cluster UDGs (e.g., Kadowaki et al., 2017; Gu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022), COSMOS-UDG1 shows younger age and higher metallicity, whereas COSMOS-UDG2 is younger and metal-poor. This hints that the relatively young ages of COSMOS-UDG1 and COSMOS-UDG2 may be associated with their low-density environment.

(3) Interestingly, COSMOS-dw1 contains atomic gas with an HI mass of 4.90±0.90×106 M, and gas fraction (MHI/M*) is 0.87±0.43. This indicates that this galaxy may be in the initial stage of quenching. The estimated dynamical mass is about 3.4×107M, implying that COSMOS-dw1 is dominated by dark matter (>60%).

(4) Despite the significant uncertainties in metallicity measurements, COSMOS-dw1 aligns with the MZR at the low mass end, while COSMOS-UDG1 and COSMOS-UDG2 broadly follow the MZR established by typical dwarf galaxies. This suggests that stellar mass may be a crucial factor in determining stellar metallicities.

Taken together, the detection of low-luminosity LSB galaxies and UDGs in the COSMOS field indicate that UDGs can indeed be found in random fields. These extreme LSB galaxies identified so far are just the tip of the iceberg. In the future, more unknown LSB galaxies and UDGs could be discovered through multiwavelength imaging facilitated by space- (e.g., Euclid, CSST and Roman) (e.g., Zhan, 2011; Montes et al., 2023; Euclid Collaboration et al., 2024) and ground-based (e.g., LSST and WFST) telescopes with a wide field-of-view capabilities (e.g., Robertson et al., 2017; Shi et al., 2018; Martin et al., 2022; Breivik et al., 2022; Wang et al., 2023). By combining these observations with spectroscopic analysis, the real natures of UDGs and LSB structures can be fully unveiled.

5 Appendix: The parameter measurements of three UDGs

Here, we have measured the structure parameters of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 using both 1D Sérsic and 2D Sérsic fitting methods. The structure properties obtained are summarized in Table 2. Figures 68 depict the 1D surface brightness profiles and 2D Sérsic fitting results for COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2, respectively. In the upper panels of Figures 7, 8, the blue and red points and curves represent the results from the F606W and F814W filters, respectively. The bottom panels of these figures show, from left to right, the original image, the model, and the residual image for each galaxy. The axial ratios (b/a) of these three diffuse galaxies are greater than 0.5, indicating that they exhibit an ellipsoidal shape. Their Sérsic indices n=0.530.91 suggest that they are similar to typical disk galaxies. From the deep imaging, we find that the three COSMOS galaxies do not exhibit tidal features.

Table 2
www.frontiersin.org

Table 2. The structure properties of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2.

Figure 6
www.frontiersin.org

Figure 6. The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-dw1. The size of each stamp is 48×48.

Figure 7
www.frontiersin.org

Figure 7. The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-UDG1. The size of each stamp is 15×15.

Figure 8
www.frontiersin.org

Figure 8. The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-UDG2. The size of each stamp is 15×15.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Author contributions

DS: Methodology, Writing–original draft, Writing–review and editing, Funding acquisition, Visualization, Investigation, Software. XZ: Funding acquisition, Supervision, Writing–review and editing, Visualization. ZP: Writing–review and editing, Formal Analysis, Visualization. YL: Visualization, Writing–review and editing. HD: Visualization, Writing–review and editing. QH: Visualization, Writing–review and editing. XL: Visualization, Writing–review and editing. QW: Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work is supported by the National Key Research and Development Program of China (2023YFA1608100), Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (2024yjrc104), the National Science Foundation of China (12303015 and 12173088), and the National Science Foundation of Jiangsu Province (BK20231106).

Acknowledgments

We thank the referees for the valuable and helpful comments and suggestions, which improve our manuscript. We acknowledgment support from Anhui University of Science and Technology and China Manned Space Project.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Amorisco, N. C., and Loeb, A. (2016). Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Ultradiffuse galaxies high-spin tail Abund. dwarf galaxy Popul. 459, L51–L55. doi:10.1093/mnrasl/slw055

CrossRef Full Text | Google Scholar

Amorisco, N. C., Monachesi, A., Agnello, A., and White, S. D. M. (2018). The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data, Mon. Not. R. Astron. Soc., 475, 4235–4251. doi:10.1093/mnras/sty116

CrossRef Full Text | Google Scholar

Barbosa, C. E., Zaritsky, D., Donnerstein, R., Zhang, H., Dey, A., Mendes de Oliveira, C., et al. (2020). One hundred SMUDGes in S-plus: ultra-diffuse galaxies flourish in the field, Astrophys. J. Suppl. Ser., 247, 46. doi:10.3847/1538-4365/ab7660

CrossRef Full Text | Google Scholar

Baushev, A. N. (2018). Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation. Galaxy collisions as a Mech. ultra diffuse galaxy (UDG) Form. 60, 69–73. doi:10.1016/j.newast.2017.10.008

CrossRef Full Text | Google Scholar

Beasley, M. A., Romanowsky, A. J., Pota, V., Navarro, I. M., Martinez Delgado, D., Neyer, F., et al. (2016). An overmassive dark halo around an ultra-diffuse galaxy in the virgo cluster Astrophys. J. Lett., 819, L20. doi:10.3847/2041-8205/819/2/L20

CrossRef Full Text | Google Scholar

Beasley, M. A., and Trujillo, I. (2016). Globular clusters indicate that ultra-diffuse galaxies are dwarfs, Astrophys. J., 830, 23. doi:10.3847/0004-637X/830/1/23

CrossRef Full Text | Google Scholar

Bellazzini, M., Belokurov, V., Magrini, L., Fraternali, F., Testa, V., Beccari, G., et al. (2017). Redshift, metallicity size two Ext. dwarf Irregul. galaxies a link between dwarf Irregulars ultra diffuse galaxies? 467, 3751–3758. doi:10.1093/mnras/stx236

CrossRef Full Text | Google Scholar

Bennet, P., Sand, D. J., Zaritsky, D., Crnojević, D., Spekkens, K., and Karunakaran, A. (2018). Evidence for ultra-diffuse galaxy “formation” through galaxy interactions. “Formation” through Galaxy Interact. 866, L11. doi:10.3847/2041-8213/aadedf

CrossRef Full Text | Google Scholar

Bertin, E. (2011). “Automated morphometry with SExtractor and PSFEx,”. . Editors I. N. Evans, A. Accomazzi, D. J. Mink, and A. H. Rots (Astronomical Society of the Pacific Conference Series), 442, 435.

Google Scholar

Bertin, E., and Arnouts, S. (1996). SExtractor: software for source extraction, Astron. Astrophys. Suppl. Ser., 117, 393–404. doi:10.1051/aas:1996164

CrossRef Full Text | Google Scholar

Brammer, G. B., van Dokkum, P. G., and Coppi, P. (2008). Eazy: a fast, public photometric redshift code. ApJ 686, 1503–1513. doi:10.1086/591786

CrossRef Full Text | Google Scholar

Breivik, K., Connolly, A. J., Ford, K. E. S., Jurić, M., Mandelbaum, R., Miller, A. A., et al. (2022). From data to software to science with the rubin observatory LSST. arXiv e-prints. doi:10.48550/arXiv.2208.02781

CrossRef Full Text | Google Scholar

Bullock, J. S., and Boylan-Kolchin, M. (2017). Small-scale challenges to the λcdm paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387. doi:10.1146/annurev-astro-091916-055313

CrossRef Full Text | Google Scholar

Burkert, A. (2017). The geometry and origin of ultra-diffuse ghost galaxies. Galaxies 838, 93. doi:10.3847/1538-4357/aa671c

CrossRef Full Text | Google Scholar

Buttitta, C., Iodice, E., Doll, G., Hartke, J., Hilker, M., Forbes, D. A., et al. (2025). “Looking into the faintEst WIth MUSE (LEWIS): exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster II,” in Stellar kinematics and dynamical masses. arXiv e-prints , arXiv:2501.16190. doi:10.48550/arXiv.2501.16190

CrossRef Full Text | Google Scholar

Buzzo, M. L., Forbes, D. A., Brodie, J. P., Romanowsky, A. J., Cluver, M. E., Jarrett, T. H., et al. (2022). The stellar populations of quiescent ultra-diffuse galaxies from optical to mid-infrared spectral energy distribution fitting, Mon. Not. R. Astron. Soc., 517, 2231–2250. doi:10.1093/mnras/stac2442

CrossRef Full Text | Google Scholar

Buzzo, M. L., Forbes, D. A., Jarrett, T. H., Marleau, F. R., Duc, P.-A., Brodie, J. P., et al. (2024a). Constraining the stellar populations of ultra-diffuse galaxies in the MATLAS survey using spectral energy distribution fitting, Mon. Not. R. Astron. Soc., 529, 3210–3234. doi:10.1093/mnras/stae564

CrossRef Full Text | Google Scholar

Buzzo, M. L., Forbes, D. A., Jarrett, T. H., Marleau, F. R., Duc, P.-A., Brodie, J. P., et al. (2024b). The multiple classes of ultra-diffuse galaxies: can we tell them apart? Mon. Not. R. Astron. Soc. 536, 2536–2557. doi:10.1093/mnras/stae2700

CrossRef Full Text | Google Scholar

Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., and Storchi-Bergmann, T. (2000). The dust content and opacity of actively star-forming galaxies. Galaxies 533, 682–695. doi:10.1086/308692

CrossRef Full Text | Google Scholar

Carleton, T., Errani, R., Cooper, M., Kaplinghat, M., Peñarrubia, J., and Guo, Y. (2019). The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating, Mon. Not. R. Astron. Soc., 485, 382–395. doi:10.1093/mnras/stz383

CrossRef Full Text | Google Scholar

Casey, C. M., Chen, C.-C., Cowie, L. L., Barger, A. J., Capak, P., Ilbert, O., et al. (2013). Characterization of scuba-2 450m and 850m selected galaxies in the cosmos field. MNRAS 436, 1919–1954. doi:10.1093/mnras/stt1673

CrossRef Full Text | Google Scholar

Chabrier, G. (2003). Galactic stellar and substellar initial mass function. Publ. Astronomical Soc. Pac. 115, 763–795. doi:10.1086/376392

CrossRef Full Text | Google Scholar

Chan, T. K., Kereš, D., Wetzel, A., Hopkins, P. F., Faucher-Giguère, C. A., El-Badry, K., et al. (2018). The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925. doi:10.1093/mnras/sty1153

PubMed Abstract | CrossRef Full Text | Google Scholar

Chilingarian, I. V., Afanasiev, A. V., Grishin, K. A., Fabricant, D., and Moran, S. (2019). Internal dynamics and stellar content of nine ultra-diffuse galaxies in the coma cluster prove their evolutionary link with dwarf early-type galaxies*. Galaxies 884, 79. doi:10.3847/1538-4357/ab4205

CrossRef Full Text | Google Scholar

Chou, M.-Y., Majewski, S. R., Cunha, K., Smith, V. V., Patterson, R. J., Martínez-Delgado, D., et al. (2007). A 2MASS all-sky view of the Sagittarius dwarf galaxy. V. Variation of the metallicity distribution function along the Sagittarius stream. V. Var. Metallicity Distribution Funct. along Sagittarius Stream 670, 346–362. doi:10.1086/522483

CrossRef Full Text | Google Scholar

Conroy, C., Gunn, J. E., and White, M. (2009). The propagation of uncertainties in stellar population synthesis modeling. i. the relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. ApJ 699, 486–506. doi:10.1088/0004-637X/699/1/486

CrossRef Full Text | Google Scholar

Di Cintio, A., Brook, C. B., Dutton, A. A., Macciò, A. V., Obreja, A., and Dekel, A. (2017). NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Form. ultra-diffuse galaxies by outflows 466, L1–L6. doi:10.1093/mnrasl/slw210

CrossRef Full Text | Google Scholar

Emsellem, E., van der Burg, R. F. J., Fensch, J., Jeřábková, T., Zanella, A., Agnello, A., et al. (2019). The ultra-diffuse galaxy NGC 1052-DF2 with MUSE: I. Kinematics of the stellar body. Kinemat. stellar body 625, A76. doi:10.1051/0004-6361/201834909

CrossRef Full Text | Google Scholar

Euclid Collaboration Mellier, Y., Acevedo Barroso, J. A., Achúcarro, A., Adamek, J., et al. (2024). Euclid. I. Overview of the Euclid mission. arXiv e-prints , arXiv:2405.13491. doi:10.48550/arXiv.2405.13491

CrossRef Full Text | Google Scholar

Ferré-Mateu, A., Alabi, A., Forbes, D. A., Romanowsky, A. J., Brodie, J., Pandya, V., et al. (2018). Origins of ultradiffuse galaxies in the Coma cluster – II. Constraints from their stellar populations. Constraints their stellar populations 479, 4891–4906. doi:10.1093/mnras/sty1597

CrossRef Full Text | Google Scholar

Ferré-Mateu, A., Gannon, J. S., Forbes, D. A., Buzzo, M. L., Romanowsky, A. J., and Brodie, J. P. (2023). The star formation histories of quiescent ultra-diffuse galaxies and their dependence on environment and globular cluster richness, Mon. Not. R. Astron. Soc., 526, 4735–4754. doi:10.1093/mnras/stad3102

CrossRef Full Text | Google Scholar

Ferré-Mateu, A., Vazdekis, A., and de la Rosa, I. G. (2013). The impact of a non-universal Initial Mass Function on the star formation histories of early-type galaxies. Mon. Not. R. Astron. Soc. 431, 440–454. doi:10.1093/mnras/stt193

CrossRef Full Text | Google Scholar

Fielder, C., Jones, M. G., Sand, D. J., Bennet, P., Crnojević, D., Karunakaran, A., et al. (2024). All puffed up: exploring ultra-diffuse galaxy origins through galaxy interactions, Astron. J., 168, 212. doi:10.3847/1538-3881/ad74f6

CrossRef Full Text | Google Scholar

Forbes, D. A., Buzzo, M. L., Ferre-Mateu, A., Romanowsky, A. J., Gannon, J., Brodie, J. P., et al. (2025). Mon. Not. R. Astron. Soc., 536, 1217–1225. doi:10.1093/mnras/stae2675

CrossRef Full Text | Google Scholar

Foster, L. M., Taylor, J. E., and Blakeslee, J. P. (2024). Testing the surface brightness fluctuation method on dwarf galaxies in the COSMOS field, Mon. Not. R. Astron. Soc., 527, 1656–1673. doi:10.1093/mnras/stad3235

CrossRef Full Text | Google Scholar

Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., and Tremonti, C. A. (2005). The ages and metallicities of galaxies in the local universe. Mon. Notices R. Astronomical Soc. 362, 41–58. doi:10.1111/j.1365-2966.2005.09321.x

CrossRef Full Text | Google Scholar

Gannon, J. S., Ferré-Mateu, A., Forbes, D. A., Brodie, J. P., Buzzo, M. L., and Romanowsky, A. J. (2024). A catalogue and analysis of ultra-diffuse galaxy spectroscopic properties. Mon. Notices R. Astronomical Soc. 531, 1856–1869. doi:10.1093/mnras/stae1287

CrossRef Full Text | Google Scholar

Gannon, J. S., Forbes, D. A., Romanowsky, A. J., Ferré-Mateu, A., Couch, W. J., Brodie, J. P., et al. (2022). Ultra-diffuse galaxies in the perseus cluster: comparing galaxy properties with globular cluster system richness, Mon. Not. R. Astron. Soc., 510, 946–958. doi:10.1093/mnras/stab3297

CrossRef Full Text | Google Scholar

Geach, J. E., Dunlop, J. S., Halpern, M., Smail, I., van der Werf, P., Alexander, D. M., et al. (2016). The scuba-2 cosmology legacy survey: 850 m maps, catalogues and number counts. MNRAS 465, 1789–1806. doi:10.1093/mnras/stw2721

CrossRef Full Text | Google Scholar

Greco, J. P., Greene, J. E., Price-Whelan, A. M., Leauthaud, A., Huang, S., Goulding, A. D., et al. (2018a). Publ. Astron. Soc. Jpn. Nihon. Tenmon. Gakkai., 70, S19. doi:10.1093/pasj/psx051

CrossRef Full Text | Google Scholar

Greco, J. P., Greene, J. E., Strauss, M. A., Macarthur, L. A., Flowers, X., Goulding, A. D., et al. (2018b). Illuminating low surface brightness galaxies with the hyper suprime-cam survey. Survey 857, 104. doi:10.3847/1538-4357/aab842

CrossRef Full Text | Google Scholar

Gu, M., Conroy, C., Law, D., van Dokkum, P., Yan, R., Wake, D., et al. (2018). Low metallicities and old ages for three ultra-diffuse galaxies in the coma cluster, Astrophys. J., 859, 37. doi:10.3847/1538-4357/aabbae

CrossRef Full Text | Google Scholar

Heywood, I., Ponomareva, A. A., Maddox, N., Jarvis, M. J., Frank, B. S., Adams, E. A. K., et al. (2024). Mightee-hi: deep spectral line observations of the cosmos field. Mon. Notices R. Astronomical Soc. 534, 76–96. doi:10.1093/mnras/stae2081

CrossRef Full Text | Google Scholar

Impey, C., and Bothun, G. (1997). Low surface brightness. Galaxies 35, 267–307. doi:10.1146/annurev.astro.35.1.267

CrossRef Full Text | Google Scholar

Iodice, E., Cantiello, M., Hilker, M., Rejkuba, M., Arnaboldi, M., Spavone, M., et al. (2020). The first detection of ultra-diffuse galaxies in the Hydra I cluster from the VEGAS survey. first Detect. ultra-diffuse galaxies Hydra I Clust. VEGAS Surv. 642, A48. doi:10.1051/0004-6361/202038523

CrossRef Full Text | Google Scholar

Iodice, E., Hilker, M., Doll, G., Mirabile, M., Buttitta, C., Hartke, J., et al. (2023). Looking into the faintEst WIth MUSE (LEWIS): exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster. I. Project description and preliminary results. 679, A69. doi:10.1051/0004-6361/202347129

CrossRef Full Text | Google Scholar

Janssens, S., Abraham, R., Brodie, J., Forbes, D., Romanowsky, A. J., and van Dokkum, P. (2017). Ultra-diffuse and ultra-compact galaxies in the frontier fields cluster abell 2744, Astrophys. J. Lett., 839, L17. doi:10.3847/2041-8213/aa667d

CrossRef Full Text | Google Scholar

Janssens, S. R., Abraham, R., Brodie, J., Forbes, D. A., and Romanowsky, A. J. (2019). The distribution of ultra-diffuse and ultra-compact galaxies in the frontier fields, Astrophys. J., 887, 92. doi:10.3847/1538-4357/ab536c

CrossRef Full Text | Google Scholar

Jones, M. G., Verdes-Montenegro, L., Moldon, J., Damas Segovia, A., Borthakur, S., Luna, S., et al. (2023). Disturb. diffuse, or just missing? A Glob. study H I content Hickson compact groups 670, A21. doi:10.1051/0004-6361/202244622

CrossRef Full Text | Google Scholar

Kadowaki, J., Zaritsky, D., and Donnerstein, R. L. (2017). Spectroscopy of ultra-diffuse galaxies in the coma cluster, Astrophys. J. Lett., 838, L21. doi:10.3847/2041-8213/aa653d

CrossRef Full Text | Google Scholar

Karunakaran, A., Motiwala, K., Spekkens, K., Zaritsky, D., Donnerstein, R. L., and Dey, A. (2024). Systematically measuring ultradiffuse galaxies. VII. The H i survey overview. VII. H I Surv. Overv. 975, 91. doi:10.3847/1538-4357/ad77cf

CrossRef Full Text | Google Scholar

Karunakaran, A., Spekkens, K., Zaritsky, D., Donnerstein, R. L., Kadowaki, J., and Dey, A. (2020). Systematically measuring ultradiffuse galaxies in H i: results from the pilot survey, Astrophys. J., 902, 39. doi:10.3847/1538-4357/abb464

CrossRef Full Text | Google Scholar

Khim, D. J., Zaritsky, D., Lambert, M., and Donnerstein, R. (2024). Properties of nuclear star clusters in low surface brightness galaxies. Galaxies 168, 45. doi:10.3847/1538-3881/ad4ed3

CrossRef Full Text | Google Scholar

Kirby, E. N., Cohen, J. G., Guhathakurta, P., Cheng, L., Bullock, J. S., and Gallazzi, A. (2013). The universal stellar mass-stellar metallicity relation for dwarf. Galaxies 779, 102. doi:10.1088/0004-637X/779/2/102

CrossRef Full Text | Google Scholar

Koda, J., Yagi, M., Yamanoi, H., and Komiyama, Y. (2015). Astrophys. J., 807, L2. doi:10.1088/2041-8205/807/1/L2

CrossRef Full Text | Google Scholar

Kravtsov, A. (2024). On the dark matter content of ultra-diffuse galaxies. Open J. Astrophysics 7, 117. doi:10.33232/001c.127487

CrossRef Full Text | Google Scholar

Laigle, C., McCracken, H. J., Ilbert, O., Hsieh, B. C., Davidzon, I., Capak, P., et al. (2016). The cosmos2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies, Astrophys. J. Suppl. Ser., 224, 24. doi:10.3847/0067-0049/224/2/24

CrossRef Full Text | Google Scholar

La Marca, A., Iodice, E., Cantiello, M., Forbes, D. A., Rejkuba, M., Hilker, M., et al. (2022a). Galaxy populations in the Hydra I cluster from the VEGAS survey. II. ultra-diffuse galaxy Popul. 665, A105. doi:10.1051/0004-6361/202142367

CrossRef Full Text | Google Scholar

La Marca, A., Peletier, R., Iodice, E., Paolillo, M., Choque Challapa, N., Venhola, A., et al. (2022b). Galaxy populations in the Hydra I cluster from the VEGAS survey: I. Optical properties of a large sample of dwarf galaxies. Opt. Prop. a large sample dwarf galaxies 659, A92. doi:10.1051/0004-6361/202141901

CrossRef Full Text | Google Scholar

Lambert, M., Khim, D. J., Zaritsky, D., and Donnerstein, R. (2024). Systematically measuring ultra-diffuse galaxies (SMUDGes). VI. Nuclear star clusters. Vi. Nucl. Star. Clust. 167, 61. doi:10.3847/1538-3881/ad0f25

CrossRef Full Text | Google Scholar

Lee, J. H., Kang, J., Lee, M. G., and Jang, I. S. (2020). The nature of ultra-diffuse galaxies in distant massive galaxy clusters: a370 in the hubble frontier fields, Astrophys. J., 894, 75. doi:10.3847/1538-4357/ab8632

CrossRef Full Text | Google Scholar

Lee, M. G., Kang, J., Lee, J. H., and Jang, I. S. (2017). Detection of a large population of ultradiffuse galaxies in massive galaxy clusters: abell S1063 and abell 2744, Astrophys. J., 844, 157. doi:10.3847/1538-4357/aa78fb

CrossRef Full Text | Google Scholar

Leisman, L., Haynes, M. P., Janowiecki, S., Hallenbeck, G., Józsa, G., Giovanelli, R., et al. (2017). (Almost) dark galaxies in the ALFALFA survey: isolated H i-bearing ultra-diffuse galaxies. Galaxies 842, 133. doi:10.3847/1538-4357/aa7575

CrossRef Full Text | Google Scholar

Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P., Speagle, J. S., Brammer, G., et al. (2019). An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Survey 877, 140. doi:10.3847/1538-4357/ab1d5a

CrossRef Full Text | Google Scholar

Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G., and Byler, N. (2017). Deriving physical properties from broadband photometry with prospector: description of the model and a demonstration of its accuracy using 129 galaxies in the local universe, Astrophys. J., 837, 170. doi:10.3847/1538-4357/aa5ffe

CrossRef Full Text | Google Scholar

Levy, L., Rose, J. A., van Gorkom, J. H., and Chaboyer, B. (2007). The effect of cluster environment on galaxy evolution in the pegasus I cluster, Astron. J., 133, 1104–1124. doi:10.1086/510723

CrossRef Full Text | Google Scholar

Lilly, S. J., Le Fèvre, O., Renzini, A., Zamorani, G., Scodeggio, M., Contini, T., et al. (2007). zCOSMOS: a large VLT/VIMOS redshift survey covering 0 <z< 3 in the COSMOS field, Astrophys. J. Suppl. Ser., 172, 70–85. doi:10.1086/516589

CrossRef Full Text | Google Scholar

Lim, S., Peng, E. W., Côté, P., Sales, L. V., den Brok, M., Blakeslee, J. P., et al. (2018). The globular cluster systems of ultra-diffuse galaxies in the coma cluster, Astrophys. J., 862, 82. doi:10.3847/1538-4357/aacb81

CrossRef Full Text | Google Scholar

Liu, Y., Peng, E. W., Blakeslee, J., Côté, P., Ferrarese, L., Jordán, A., et al. (2016). Evidence for the rapid formation of low-mass early-type galaxies in dense. Environments 818, 179. doi:10.3847/0004-637X/818/2/179

CrossRef Full Text | Google Scholar

Ma, X., Hopkins, P. F., Faucher-Giguère, C.-A., Zolman, N., Muratov, A. L., Kereš, D., et al. (2016). The origin and evolution of the galaxy mass–metallicity relation, Mon. Not. R. Astron. Soc., 456, 2140–2156. doi:10.1093/mnras/stv2659

CrossRef Full Text | Google Scholar

Marleau, F. R., Duc, P.-A., Poulain, M., Müller, O., Lim, S., Durrell, P. R., et al. (2024). Dwarf galaxies in the MATLAS Survey: hubble Space Telescope observations of the globular cluster systems of 74 ultra-diffuse galaxies. Dwarf galaxies MATLAS Surv. Hubble Space Telesc. observations Globul. Clust. Syst. 74 ultra-diffuse galaxies 690, A339. doi:10.1051/0004-6361/202449617

CrossRef Full Text | Google Scholar

Martin, G., Bazkiaei, A. E., Spavone, M., Iodice, E., Mihos, J. C., Montes, M., et al. (2022). Preparing for low surface brightness science with the Vera C. Rubin Observatory: characterization of tidal features from mock images. Rubin Observatory Charact. tidal Featur. mock images 513, 1459–1487. doi:10.1093/mnras/stac1003

CrossRef Full Text | Google Scholar

Martínez-Delgado, D., Läsker, R., Sharina, M., Toloba, E., Fliri, J., Beaton, R., et al. (2016). Astron. J., 151, 96. doi:10.3847/0004-6256/151/4/96

CrossRef Full Text | Google Scholar

McConnachie, A. W. (2012). Astron. J., 144, 4. doi:10.1088/0004-6256/144/1/4

CrossRef Full Text | Google Scholar

McCracken, H. J., Capak, P., Salvato, M., Aussel, H., Thompson, D., Daddi, E., et al. (2010). The COSMOS-WIRCam NEAR-INFRARED imaging survey. I.BzK-SELECTED passive and STAR-FORMING galaxy candidates ATz- 1.4. BzK-Selected Passive Star-Forming Galaxy Candidates A. T. z gsim 1.4 708, 202–217. doi:10.1088/0004-637X/708/1/202

CrossRef Full Text | Google Scholar

McCracken, H. J., Milvang-Jensen, B., Dunlop, J., Franx, M., Fynbo, J. P. U., Le Fèvre, O., et al. (2012). UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. UltraVISTA a new ultra-deep near-infrared Surv. COSMOS 544, A156. doi:10.1051/0004-6361/201219507

CrossRef Full Text | Google Scholar

Merritt, A., van Dokkum, P., Danieli, S., Abraham, R., Zhang, J., Karachentsev, I. D., et al. (2016). The dragonfly nearby galaxies survey. II. Ultra-Diffuse Galaxies near Elliptical Galaxy NGC 833, 168. doi:10.3847/1538-4357/833/2/168

CrossRef Full Text | Google Scholar

Michałowski, M. J., Dunlop, J. S., Koprowski, M. P., Cirasuolo, M., Geach, J. E., Bowler, R. A. A., et al. (2017). The scuba-2 cosmology legacy survey: the nature of bright submm galaxies from 2 deg2 of 850-m imaging. MNRAS 469, 492–515. doi:10.1093/mnras/stx861

CrossRef Full Text | Google Scholar

Mihos, J. C., Durrell, P. R., Ferrarese, L., Feldmeier, J. J., Côté, P., Peng, E. W., et al. (2015). Astrophys. J., 809, L21. doi:10.1088/2041-8205/809/2/L21

CrossRef Full Text | Google Scholar

Mihos, J. C., Harding, P., Feldmeier, J. J., Rudick, C., Janowiecki, S., Morrison, H., et al. (2017). The burrell schmidt deep Virgo survey: tidal debris, galaxy halos, and diffuse intracluster light in the Virgo cluster. Astrophys. J. 834, 16. doi:10.3847/1538-4357/834/1/16

CrossRef Full Text | Google Scholar

Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., Skelton, R. E., Whitaker, K. E., Nelson, E. J., et al. (2016). The 3d-hst survey: hubble space telescope wfc3/g141 grism spectra, redshifts, and emission line measurements for -100,000 galaxies. 000 Galaxies 225, 27. doi:10.3847/0067-0049/225/2/27

CrossRef Full Text | Google Scholar

Montes, M., Annibali, F., Bellazzini, M., Borlaff, A. S., Brough, S., Buitrago, F., et al. (2023). Optimizing roman’s high latitude wide area survey for low surface brightness astronomy. doi:10.48550/arXiv.2306.09414

CrossRef Full Text | Google Scholar

Montes, M., Infante-Sainz, R., Madrigal-Aguado, A., Román, J., Monelli, M., Borlaff, A. S., et al. (2020). The galaxy “missing dark matter” NGC 1052-DF4 is undergoing tidal disruption. NGC 1052-DF4 is Undergoing Tidal Disrupt. 904, 114. doi:10.3847/1538-4357/abc340

CrossRef Full Text | Google Scholar

Montes, M., Trujillo, I., Karunakaran, A., Infante-Sainz, R., Spekkens, K., Golini, G., et al. (2024). An almost dark galaxy with the mass of the Small Magellanic Cloud. 681, A15. doi:10.1051/0004-6361/202347667

CrossRef Full Text | Google Scholar

Müller, O., Jerjen, H., and Binggeli, B. (2018). The Leo-I group: new dwarf galaxy and ultra diffuse galaxy candidates. Leo-I group new dwarf galaxy ultra diffuse galaxy candidates 615, A105. doi:10.1051/0004-6361/201832897

CrossRef Full Text | Google Scholar

Muñoz, R. P., Eigenthaler, P., Puzia, T. H., Taylor, M. A., Ordenes-Briceño, Y., Alamo-Martínez, K., et al. (2015). Astrophys. J., 813, L15. doi:10.1088/2041-8205/813/1/L15

CrossRef Full Text | Google Scholar

Ogiya, G. (2018). Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Tidal stripping as a possible Orig. ultra diffuse galaxy lacking dark matter 480, L106–L110. doi:10.1093/mnrasl/sly138

CrossRef Full Text | Google Scholar

Ordenes-Briceño, Y., Taylor, M. A., Puzia, T. H., Muñoz, R. P., Eigenthaler, P., Georgiev, I. Y., et al. (2016). Faint dwarf galaxies in hickson compact group 90, Mon. Not. R. Astron. Soc., 463, 1284–1290. doi:10.1093/mnras/stw2066

CrossRef Full Text | Google Scholar

Pan, H., Jarvis, M. J., Zhu, M., Ma, Y.-Z., Santos, M. G., Ponomareva, A. A., et al. (2024). Deep extragalactic H i survey of the COSMOS field with FAST, Mon. Not. R. Astron. Soc., 534, 202–214. doi:10.1093/mnras/stae2054

CrossRef Full Text | Google Scholar

Pandya, V., Romanowsky, A. J., Laine, S., Brodie, J. P., Johnson, B. D., Glaccum, W., et al. (2018). The stellar populations of two ultra-diffuse galaxies from optical and near-infrared photometry, Astrophys. J., 858, 29. doi:10.3847/1538-4357/aab498

CrossRef Full Text | Google Scholar

Papastergis, E., Adams, E. A. K., and Romanowsky, A. J. (2017). HI content Isol. ultra-diffuse galaxies A sign multiple Form. mechanisms? 601, L10. doi:10.1051/0004-6361/201730795

CrossRef Full Text | Google Scholar

Peng, C. Y., Ho, L. C., Impey, C. D., and Rix, H.-W. (2002). Detailed structural decomposition of galaxy images, Astron. J., 124, 266–293. doi:10.1086/340952

CrossRef Full Text | Google Scholar

Peng, C. Y., Ho, L. C., Impey, C. D., and Rix, H.-W. (2010). Detailed decomposition of galaxy images. II. Beyond Axisymmetric Models 139, 2097–2129. doi:10.1088/0004-6256/139/6/2097

CrossRef Full Text | Google Scholar

Peng, E. W., and Lim, S. (2016). A rich globular cluster system in dragonfly 17: are ultra-diffuse galaxies pure stellar halos?* Astrophys. J. Lett., 822, L31. doi:10.3847/2041-8205/822/2/L31

CrossRef Full Text | Google Scholar

Piña, P. E. M., Fraternali, F., Adams, E. A. K., Marasco, A., Oosterloo, T., Oman, K. A., et al. (2019). Off the baryonic tully–Fisher relation: a population of baryon-dominated ultra-diffuse galaxies. Astrophysical J. Lett. 883, L33. doi:10.3847/2041-8213/ab40c7

CrossRef Full Text | Google Scholar

Polzin, A., van Dokkum, P., Danieli, S., Greco, J. P., and Romanowsky, A. J. (2021). A recently quenched isolated dwarf galaxy outside of the local group environment, Astrophys. J. Lett., 914, L23. doi:10.3847/2041-8213/ac024f

CrossRef Full Text | Google Scholar

Prole, D. J., van der Burg, R. F. J., Hilker, M., and Davies, J. I. (2019). Observational properties of ultra-diffuse galaxies in low-density environments: field UDGs are predominantly blue and star forming, 488, 2143–2157. doi:10.1093/mnras/stz1843

CrossRef Full Text | Google Scholar

Robertson, B. E., Banerji, M., Cooper, M. C., Davies, R., Driver, S. P., Ferguson, A. M. N., et al. (2017). Large synoptic survey telescope galaxies science roadmap. arXiv e-prints. arXiv:1708.01617. doi:10.48550/arXiv.1708.01617

CrossRef Full Text | Google Scholar

Román, J., Beasley, M. A., Ruiz-Lara, T., and Valls-Gabaud, D. (2019). Discovery of a red ultra-diffuse galaxy in a nearby void based on its globular cluster luminosity function, Mon. Not. R. Astron. Soc., 486, 823–835. doi:10.1093/mnras/stz835

CrossRef Full Text | Google Scholar

Román, J., and Trujillo, I. (2017a). Spatial distribution of ultra-diffuse galaxies within large-scale structures. scale Struct. 468, 703–716. doi:10.1093/mnras/stx438

CrossRef Full Text | Google Scholar

Román, J., and Trujillo, I. (2017b). Ultra-diffuse galaxies outside clusters: clues to their formation and evolution, Mon. Not. R. Astron. Soc., 468, 4039–4047. doi:10.1093/mnras/stx694

CrossRef Full Text | Google Scholar

Rong, Y., Guo, Q., Gao, L., Liao, S., Xie, L., Puzia, T. H., et al. (2017). A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations, Mon. Not. R. Astron. Soc., 470, 4231–4240. doi:10.1093/mnras/stx1440

CrossRef Full Text | Google Scholar

Rong, Y., Zhu, K., Johnston, E. J., Zhang, H.-X., Cao, T., Puzia, T. H., et al. (2020). Lessons on star-forming ultra-diffuse galaxies from the stacked spectra of the sloan digital sky survey. Survey 899, L12. doi:10.3847/2041-8213/aba8aa

CrossRef Full Text | Google Scholar

Ruiz-Lara, T., Beasley, M. A., Falcón-Barroso, J., Román, J., Pinna, F., Brook, C., et al. (2018). Spectroscopic characterization of the stellar content of ultra-diffuse galaxies, Mon. Not. R. Astron. Soc., 478, 2034–2045. doi:10.1093/mnras/sty1112

CrossRef Full Text | Google Scholar

Sales, L. V., Navarro, J. F., Peñafiel, L., Peng, E. W., Lim, S., and Hernquist, L. (2020). The formation of ultradiffuse galaxies in clusters, Mon. Not. R. Astron. Soc., 494, 1848–1858. doi:10.1093/mnras/staa854

CrossRef Full Text | Google Scholar

Sanders, D. B., Salvato, M., Aussel, H., Ilbert, O., Scoville, N., Surace, J. A., et al. (2007). S-COSMOS: the spitzer legacy survey of the hubble space telescope ACS 2 deg 2 COSMOS field I: survey strategy and first analysis, Astrophys. J. Suppl. Ser., 172, 86–98. doi:10.1086/517885

CrossRef Full Text | Google Scholar

Schinnerer, E., Smolčić, V., Carilli, C. L., Bondi, M., Ciliegi, P., Jahnke, K., et al. (2007). The vla-cosmos survey. ii. source catalog of the large project. ApJS 172, 46–69. doi:10.1086/516587

CrossRef Full Text | Google Scholar

Shen, Z., Bowman, W. P., van Dokkum, P., Abraham, R. G., Pasha, I., Keim, M. A., et al. (2024). First results from the dragonfly ultrawide survey: the largest 11 quenched diffuse dwarf galaxies in 3100 deg2 with spectroscopic confirmation, Astrophys. J., 976, 75. doi:10.3847/1538-4357/ad84e2

CrossRef Full Text | Google Scholar

Shen, Z., Danieli, S., van Dokkum, P., Abraham, R., Brodie, J. P., Conroy, C., et al. (2021). A tip of the red giant branch distance of 22.1 ± 1.2 Mpc to the dark matter deficient galaxy NGC 1052–DF2 from 40 orbits of hubble space telescope imaging, Astrophys. J. Lett., 914, L12. doi:10.3847/2041-8213/ac0335

CrossRef Full Text | Google Scholar

Shi, D. D., Zheng, X. Z., Zhao, H. B., Lou, Z., Wang, H. R., Qian, Y., et al. (2018). A study of detector response and filter optimization for the wide field survey telescope. Acta Astron. Sin. 59, 22. doi:10.15940/j.cnki.0001-5245.2018.03.001

CrossRef Full Text | Google Scholar

Shi, D. D., Zheng, X. Z., Zhao, H. B., Pan, Z. Z., Li, B., Zou, H., et al. (2017). Deep imaging of the HCG 95 field. I. Ultra-Diffuse galaxies. I. Ultra-diffuse Galaxies 846, 26. doi:10.3847/1538-4357/aa8327

CrossRef Full Text | Google Scholar

Smith Castelli, A. V., Faifer, F. R., and Escudero, C. G. (2016). Stellar systems in the direction of the Hickson Compact Group 44: I. Low surface brightness galaxies. Low. Surf. Bright. galaxies 596, A23. doi:10.1051/0004-6361/201628969

CrossRef Full Text | Google Scholar

Somalwar, J. J., Greene, J. E., Greco, J. P., Huang, S., Beaton, R. L., Goulding, A. D., et al. (2020). Hyper suprime-cam low surface brightness galaxies. II. A hubble space telescope study of the globular cluster systems of ultradiffuse galaxies in groups*. A Hubble Space Telesc. Study Globul. Clust. Syst. Ultradiffuse Galaxies Groups 902, 45. doi:10.3847/1538-4357/abb1b2

CrossRef Full Text | Google Scholar

Spekkens, K., and Karunakaran, A. (2018). Atomic gas in blue ultra diffuse galaxies around hickson compact groups. Astrophys. J. 855, 28. doi:10.3847/1538-4357/aa94be

CrossRef Full Text | Google Scholar

Taniguchi, Y., Scoville, N., Murayama, T., Sanders, D. B., Mobasher, B., Aussel, H., et al. (2007). The cosmic evolution survey (COSMOS): Subaru observations of the HST cosmos field. Astrophys. J. Suppl. Ser. 172, 9–28. doi:10.1086/516596

CrossRef Full Text | Google Scholar

Toloba, E., Lim, S., Peng, E., Sales, L. V., Guhathakurta, P., Mihos, J. C., et al. (2018). Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. Astrophys. J. Lett. 856, L31. doi:10.3847/2041-8213/aab603

CrossRef Full Text | Google Scholar

Tremmel, M., Wright, A. C., Brooks, A. M., Munshi, F., Nagai, D., and Quinn, T. R. (2020). The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Mon. Not. R. Astron. Soc. 497, 2786–2810. doi:10.1093/mnras/staa2015

CrossRef Full Text | Google Scholar

Trujillo, I., Beasley, M. A., Borlaff, A., Carrasco, E. R., Di Cintio, A., Filho, M., et al. (2019). A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. matter 486, 1192–1219. doi:10.1093/mnras/stz771

CrossRef Full Text | Google Scholar

Trujillo, I., Roman, J., Filho, M., and Sánchez Almeida, J. (2017). The nearest ultra diffuse galaxy: UGC 2162. Astrophys. J. 836, 191. doi:10.3847/1538-4357/aa5cbb

CrossRef Full Text | Google Scholar

van der Burg, R. F. J., Hoekstra, H., Muzzin, A., Sifón, C., Viola, M., Bremer, M. N., et al. (2017). The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are Relat. more common more massive haloes 607, A79. doi:10.1051/0004-6361/201731335

CrossRef Full Text | Google Scholar

van der Burg, R. F. J., Muzzin, A., and Hoekstra, H. (2016). The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters. 590, A20. doi:10.1051/0004-6361/201628222

CrossRef Full Text | Google Scholar

van Dokkum, P., Abraham, R., Brodie, J., Conroy, C., Danieli, S., Merritt, A., et al. (2016). A high stellar velocity dispersion and -100 globular clusters for the ultra-diffuse galaxy dragonfly. Astrophys. J. Lett. 44, L6. doi:10.3847/2041-8205/828/1/L6

CrossRef Full Text | Google Scholar

van Dokkum, P., Abraham, R., Romanowsky, A. J., Brodie, J., Conroy, C., Danieli, S., et al. (2017). Extensive globular cluster systems associated with ultra diffuse galaxies in the coma cluster. Astrophys. J. Lett. 844, L11. doi:10.3847/2041-8213/aa7ca2

CrossRef Full Text | Google Scholar

van Dokkum, P., Brammer, G., Momcheva, I., Skelton, R. E., and Whitaker, K. E. (2013). 3D-HST data release v3.0: extremely deep spectra in the UDF and WFC3 mosaics in the 3D-HST/CANDELS fields. arXiv e-prints , arXiv:1305.2140. doi:10.48550/arXiv.1305.2140

CrossRef Full Text | Google Scholar

van Dokkum, P., Danieli, S., Abraham, R., Conroy, C., and Romanowsky, A. J. (2019). A second galaxy missing dark matter in the NGC 1052 group. Astrophys. J. Lett. 874, L5. doi:10.3847/2041-8213/ab0d92

CrossRef Full Text | Google Scholar

van Dokkum, P., Danieli, S., Cohen, Y., Merritt, A., Romanowsky, A. J., Abraham, R., et al. (2018a). A galaxy lacking dark matter. , 555, 629–632. doi:10.1038/nature25767

PubMed Abstract | CrossRef Full Text | Google Scholar

van Dokkum, P., Danieli, S., Cohen, Y., Romanowsky, A. J., and Conroy, C. (2018b). The distance of the dark matter deficient galaxy NGC 1052-DF2. Astrophys. J. Lett. 864, L18. doi:10.3847/2041-8213/aada4d

CrossRef Full Text | Google Scholar

van Dokkum, P., Shen, Z., Keim, M. A., Trujillo-Gomez, S., Danieli, S., Dutta Chowdhury, D., et al. (2022). A trail of dark-matter-free galaxies from a bullet-dwarf collision, 605, 435–439. doi:10.1038/s41586-022-04665-6

PubMed Abstract | CrossRef Full Text | Google Scholar

van Dokkum, P. G., Abraham, R., Merritt, A., Zhang, J., Geha, M., and Conroy, C. (2015a). “Forty-seven Milky way-sized,”. Astrophys. J. 798. doi:10.1088/2041-8205/798/2/L45

CrossRef Full Text | Google Scholar

van Dokkum, P. G., Romanowsky, A. J., Abraham, R., Brodie, J. P., Conroy, C., Geha, M., et al. (2015b). Spectroscopic confirmation of the existence of large. Diffuse Galaxies Coma Clust. 804, L26. doi:10.1088/2041-8205/804/1/L26

CrossRef Full Text | Google Scholar

Venhola, A., Peletier, R. F., Salo, H., Laurikainen, E., Janz, J., Haigh, C., et al. (2022). The fornax deep survey with the VST. XII. Low Surf. Bright. dwarf galaxies Fornax Clust. 662, A43. doi:10.1051/0004-6361/202141756

CrossRef Full Text | Google Scholar

Villaume, A., Romanowsky, A. J., Brodie, J., van Dokkum, P., Conroy, C., Forbes, D. A., et al. (2022). Spatially resolved stellar spectroscopy of the ultra-diffuse galaxy dragonfly 44. iii. evidence for an unexpected star formation history under conventional galaxy evolution processes. Astrophysical J. 924, 32. doi:10.3847/1538-4357/ac341e

CrossRef Full Text | Google Scholar

Wang, T., Liu, G., Cai, Z., Geng, J., Fang, M., He, H., et al. (2023). Science with the 2.5-meter wide field survey telescope (WFST). Sci. China Phys. Mech. Astronomy 66, 109512. doi:10.1007/s11433-023-2197-5

CrossRef Full Text | Google Scholar

Wittmann, C., Lisker, T., Ambachew Tilahun, L., Grebel, E. K., Conselice, C. J., Penny, S., et al. (2017). A population of faint low surface brightness galaxies in the Perseus cluster core. Mon. Not. R. Astron. Soc. 470, 1512–1525. doi:10.1093/mnras/stx1229

CrossRef Full Text | Google Scholar

Yagi, M., Koda, J., Komiyama, Y., and Yamanoi, H. (2016). Catalog of ultra-diffuse galaxies in the coma clusters from Subaru imaging data. Astrophys. J. Suppl. Ser. 225, 11. doi:10.3847/0067-0049/225/1/11

CrossRef Full Text | Google Scholar

Zahid, H. J., Kudritzki, R.-P., Conroy, C., Andrews, B., and Ho, I. T. (2017). Stellar absorption line analysis of local star-forming galaxies: the relation between stellar mass, metallicity. Dust Attenuation, Star Form. Rate 847, 18. doi:10.3847/1538-4357/aa88ae

CrossRef Full Text | Google Scholar

Zamojski, M. A., Schiminovich, D., Rich, R. M., Mobasher, B., Koekemoer, A. M., Capak, P., et al. (2007). Deep GALEX imaging of the COSMOS HST field: a first look at the morphology of z - 0.7 star-forming galaxies. 7 Star-forming Galaxies 172, 468–493. doi:10.1086/516593

CrossRef Full Text | Google Scholar

Zaritsky, D., Donnerstein, R., Dey, A., Karunakaran, A., Kadowaki, J., Khim, D. J., et al. (2023). Systematically measuring ultra-diffuse galaxies (SMUDGes). V. The complete SMUDGes catalog and the nature of ultradiffuse galaxies. V. Complete SMUDGes Catalog Nat. Ultradiffuse Galaxies 267, 27. doi:10.3847/1538-4365/acdd71

CrossRef Full Text | Google Scholar

Zhan, H. (2011). Consideration for a large-scale multi-color imaging and slitless spectroscopy survey on the Chinese space station and its application in dark energy research. Sci. Sinica Phys. Mech. and Astronomica 41, 1441–1447. doi:10.1360/132011-961

CrossRef Full Text | Google Scholar

Keywords: galaxy formation, galaxy evolution, COSMOS field, ultra-diffuse galaxies, dwarf galaxies, extragalactic astronomy

Citation: Shi DD, Zheng XZ, Pan Z, Luo Y, Deng H, Hua Q, Luo X and Wu Q (2025) Searching for nearby diffuse dwarf galaxies in the COSMOS field. Front. Astron. Space Sci. 12:1560380. doi: 10.3389/fspas.2025.1560380

Received: 14 January 2025; Accepted: 12 February 2025;
Published: 05 March 2025.

Edited by:

Mauro D’Onofrio, University of Padua, Italy

Reviewed by:

Daniela Bettoni, Osservatorio Astronomico di Padova (INAF), Italy
Chiara Buttitta, Astronomical Observatory of Capodimonte (INAF), Italy

Copyright © 2025 Shi, Zheng, Pan, Luo, Deng, Hua, Luo and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Dong Dong Shi, ZGRzaGlAYXVzdC5lZHUuY24=; Xian Zhong Zheng, eHp6aGVuZ0BzanR1LmVkdS5jbg==

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Research integrity at Frontiers

Man ultramarathon runner in the mountains he trains at sunset

95% of researchers rate our articles as excellent or good

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


Find out more