- 1Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China
- 2Key Laboratory of Tropical Atmosphere-Ocean System, Sun Yat-sen University, Ministry of Education, Zhuhai, China
- 3CAS Center for Excellence in Comparative Planetology/CAS Key Laboratory of Geospace Environment/Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei, China
- 4Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- 5Collaborative Innovation Center of Astronautical Science and Technology, Hefei, China
Whistler-mode waves play a critical role in shaping the Earth’s radiation belts, and their spatiotemporal distribution is vital for forecasting and modeling geospace weather. Previous works have extensively investigated the influences of geomagnetic activities, such as storms and substorms, on the modification of whistler-mode waves, but the direct impacts of solar wind disturbances have received relatively less attention. Recently, increasing research has highlighted the prompt impacts of solar wind dynamic pressure pulses on magnetospheric whistler-mode waves. This paper reviews the current progress in this field, specifically the prompt responses of chorus waves and plasmaspheric hiss to the solar wind dynamic pressure pulses. It will summarize the underlying mechanisms and pose some outstanding questions.
1 Introduction
Whistler-mode waves are very low-frequency (VLF) right-handed circularly polarized electromagnetic emissions that are commonly observed in the magnetosphere (Laakso and Blomberg, 2005; Anderson and Vasko, 2018). Depending on their spatial location, whistler-mode waves are divided into chorus (outside high-density plasmasphere) and plasmaspheric hiss (inside high-density plasmasphere or plume). Chorus waves typically exhibit a structured and discrete emission pattern, with a frequency range of 0.1–0.8 fce (equatorial electron cyclotron frequency) (Tsurutani and Smith, 1974; Tsurutani and Smith, 1977; Meredith et al., 2001; Santolík et al., 2003; Gao et al., 2017). In contrast, plasmaspheric hiss is typically observed as an incoherent and structureless band, with a frequency range from ∼0.1 kHz to several kilohertz (Russell et al., 1969; Thorne et al., 1973; Hayakawa and Sazhin, 1992; Summers et al., 2008). Once plasmaspheric hiss leaks out of the plasmasphere, it is referred to as exohiss (Russell et al., 1969; Thorne et al., 1973). Note that low frequency chorus below 0.1 fce (Meredith et al., 2014; Cattell et al., 2015; Gao et al., 2016) and coherent plasmaspheric hiss with fine structures (Summers et al., 2014; Tsurutani et al., 2015; Su et al., 2018; Liu et al., 2020a) have also been reported. The fundamental role of whistler-mode waves in radiation belt dynamics has made them a subject of considerable interest in the space-physics community. Through cyclotron resonance, whistler-mode waves contribute to the acceleration and loss of radiation belt electrons (Summers et al., 2002; Horne et al., 2005; Reeves et al., 2013; Thorne et al., 2013b; Su et al., 2014a; c; Xiao et al., 2014; Lyons and Thorne, 1973; Abel and Thorne, 1998; Albert, 1994; Su et al., 2011; Nishimura et al., 2013; Kasahara et al., 2018; Thorne et al., 2013a; Ni et al., 2014; Breneman et al., 2015; Zhu et al., 2015; Li et al., 2017; Ma et al., 2017; Zhang et al., 2019; Liu et al., 2020b). Through landau resonance, plasmaspheric hiss is able to accelerate suprathermal electrons (Woodroffe et al., 2017; Li et al., 2019; Wang et al., 2020), and probably transfer energy toward the ionospheric plasma (Wang et al., 2020). Thus, a detailed understanding of the spatiotemporal distribution of whistler-mode waves is of great importance for forecasting and modeling geospace weather.
Storms and substorms are remarkable geomagnetic activities caused by solar wind disturbances (McPherron et al., 1986; Gonzalez et al., 1989; Gonzalez et al., 1999; Sergeev et al., 2012). Their important role in modifying whistler-mode waves has been extensively investigated (Wilson et al., 2011; Agapitov et al., 2013; Li et al., 2013b; Tsurutani et al., 2018; Shi et al., 2019; Liu et al., 2020a; Meredith et al., 2020; Meredith et al., 2021). However, previous works commonly highlight the influences of electron injection in the course of storms and substorms. In fact, there might be variations in the magnetospheric plasma environment during the initial phase of a storm (Gosling et al., 1967; Tsurutani et al., 1995; Gonzalez et al., 1999; Samsonov et al., 2007) which could also impact whistler-mode waves. Moreover, regarding solar wind disturbances that are incapable of triggering storms or substorms, there is a relative lack of studies on their influence on whistler-mode waves. One of the most frequently observed solar wind disturbances at 1 AU is the solar wind dynamic pressure pulses (Wu et al., 1993; Dalin et al., 2002; Neugebauer, 2006; Zuo et al., 2015). They are characterized by abrupt jumps or depressions in solar wind dynamic pressure, corresponding to the positive or negative pressure pulse, respectively. Solar wind dynamic pressure pulses are usually associated with interplanetary shocks or other discontinuities (Hudson, 1970; Dalin et al., 2002; Neugebauer, 2006; Zuo et al., 2015). The fast-forward interplanetary shock (simply termed interplanetary shock in the following), which is the most common type of interplanetary shock, can be treated as a positive pressure pulse (Kennel et al., 1985). As important manifestations of solar wind-magnetosphere coupling, the prompt impacts of solar wind dynamic pressure pulses on the magnetospheric current systems (Zesta et al., 2000), particle fluxes (Lee et al., 2004; Zong et al., 2009; Li et al., 2013a), and auroral activities (Zhou et al., 2009; Zhou et al., 2017) have been investigated. Given the geoeffective nature of solar wind dynamic pressure pulses, it is reasonable to expect the prompt responses of magnetospheric whistler-mode waves to these disturbances.
This paper reviews the recent progress in the prompt responses of magnetospheric whistler-mode waves to solar wind dynamic pressure pulses. Here the “prompt response” refers to variations in whistler-mode waves occurring within several minutes (depending on solar wind velocity) after the arrival of pressure pulses at the magnetopause. Advanced magnetospheric missions such as the Van Allen Probes (Mauk et al., 2013) and THEMIS (Angelopoulos, 2008), which carry various instruments including the Electric and Magnetic Field Instrument Suite and Integrated Science suite (EMFISIS) (Kletzing et al., 2013), the Energetic particle, Composition and the Thermal plasma suite (ECT) (Spence et al., 2013), the Electric Field and Waves (EFW) (Wygant et al., 2013), the Search Coil Magnetometer (SCM) (Le Contel et al., 2008), and the Electric Field Instrument (EFI) (Bonnell et al., 2008), have provided high-quality and comprehensive data, allowing for a detailed investigation into the underlying mechanisms.
2 Prompt responses of chorus waves
Anisotropic energetic electrons from a few to tens of keV provide the free energy for the excitation of chorus waves (Kennel and Engelmann, 1966; LeDocq et al., 1998; Li et al., 2009; Su et al., 2014b). Though the generation mechanism of chorus waves has not been fully revealed, current works have proposed a widely accepted scenario: the background thermal noise grows linearly to a specific threshold wave amplitude for the further amplification through nonlinear process (Omura et al., 2008; Katoh and Omura, 2013; Tao, 2014; Nakamura et al., 2016; Omura, 2021). By modifying the linear and nonlinear wave growth processes, solar wind dynamic pressure pulses can cause the prompt response of chorus waves.
The modification of equatorial energetic electron fluxes by pressure pulses can alter the chorus wave intensity. Fu et al. (2012) reported a chorus intensification in response to an interplanetary shock using THEMIS observations. The shock compression increased the magnetic field strength and triggered PC4-5 ultra-low-frequency (ULF) waves, which further enhanced the temperature anisotropy of energetic electrons through local betatron acceleration and radial diffusion processes. These increased the maximum linear growth rate by 50%, resulting in chorus intensification. Peng et al. (2020) also reported such compression-related chorus intensifications associated with adiabatic acceleration of energetic electron fluxes using MMS observations. In contrast, Liu et al. (2017a) reported a sudden disappearance of chorus waves triggered by an interplanetary shock. The shock produced a drastic increase in dynamic pressure which compressed the dayside magnetopause earthward to about L = 7, abruptly eliminating the preexisting dayside chorus waves and the associated source electrons.
As well as impacting the local energetic electron populations, solar wind dynamic pressure pulses can also affect the background magnetic field configuration and consequently the nonlinear growth process of chorus. Zhou et al. (2015) analyzed 20 interplanetary shock events which occurred between 1 January 2008 and 31 December 2014 with simultaneous observations of chorus waves made by three THEMIS satellites, and found that the chorus intensification events preferentially occurred at high L shells (greater than 8) and on the dayside (MLT from 6 to 18). Utilizing the TS04 geomagnetic mode (Tsyganenko and Sitnov, 2005), they showed that the background magnetic field configurations became more homogeneous (a smaller background magnetic field gradient) following shock compression, which is favorable for the nonlinear growth of chorus (Omura et al., 2008; Katoh and Omura, 2013). Zhou et al. (2015) claimed there were no significant changes in the energetic electron distribution to be responsible for the chorus intensifications, contrary to the interpretation of Fu et al. (2012). Liu et al. (2017b) reported a sudden disappearance of chorus waves triggered by a negative pressure pulse using THEMIS observations. The negative pulse caused no significant changes in the background plasma populations associated with the generation of chorus waves, but an increase in background magnetic field inhomogeneity. Liu et al. (2017b) proposed that the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the nonlinear growth of chorus, which can be interpreted as an “inverse” process of that described in Zhou et al. (2015).
Recently, a statistical study was conducted by Jin et al. (2022) to investigate the immediate impacts of dynamic pressure pulses, both positive and negative, on inner magnetospheric chorus waves. The study analyzed Van Allen Probes data from 2012 to 2019 and demonstrated that a stronger pulse has a greater likelihood of changing the chorus amplitude particularly on the dayside. Specifically, positive pulses were associated with an enhancement in chorus amplitudes, while negative pulses resulted in a weakening of these waves. The disappearance of chorus waves triggered by positive pulses due to the losses of source electrons to the magnetopause (Reeves et al., 2003; Ukhorskiy et al., 2006; Turner et al., 2012) has not been observed in the inner magnetosphere in this work. As supported by direct observations, these pulses alter the linear growth of waves by modifying energetic electron distributions. On the other hand, geomagnetic field modeling indicates no significant changes in the background magnetic field inhomogeneity controlling the nonlinear growth threshold of waves. The inconsistency between this result and previous works (Zhou et al., 2015; Liu et al., 2017b) which investigated chorus waves in the outer magnetosphere (8
3 Prompt responses of plasmaspheric hiss
The generation mechanism of plasmaspheric hiss remains a topic of intense debate. Two main categories of candidate mechanisms have been proposed: 1) internal generation, which involves the linear or nonlinear amplification of ambient electromagnetic noise by unstable energetic electrons inside the plasmasphere (Thorne et al., 1979); 2) external origination, which involves the entry of lightning-associated whistlers or source chorus to the plasmasphere (Church and Thorne, 1983; Draganov et al., 1992; Green et al., 2005; Bortnik et al., 2008; Bortnik et al., 2009; Chen et al., 2009; Li et al., 2015). An identification of plasmaspheric hiss with different generation mechanisms is based on the wave Poynting fluxes, where the internally-generated hiss has poleward uni-directional Poynting fluxes near its source region before undergoing magnetospheric reflections, and the externally-originated hiss has bi-directional Poynting fluxes. Studying the prompt impacts of solar wind dynamic pressure pulses on plasmaspheric hiss provides an opportunity to examine the wave generation mechanisms.
For the externally-originated plasmaspheric hiss, variations of source chorus triggered by solar wind pressure pulses can subsequently cause corresponding responses within the plasmasphere. As introduced in the previous section, an intense interplanetary shock can eliminate energetic electrons and chorus waves on the dayside outer magnetosphere (Liu et al., 2017a), and a negative solar wind dynamic pressure pulse can cause the disappearance of chorus waves by enhancing the dayside magnetic field inhomogeneity (Liu et al., 2017b). In both cases, the plasmaspheric hiss ceased as a result of the quenching of source chorus. A similar event to that of Liu et al. (2017a) has been lately reported by Chakraborty et al. (2021). It also should be mentioned that, by using the conjunctive observations from three satellites of Van Allen Probes and THEMIS, Liu et al. (2017b) observed for the first time the simultaneous disappearances of chorus, plasmaspheric hiss, and exohiss over a vast region on the dayside, providing direct observational evidence for the link between different types of magnetospheric whistler-mode waves.
Another important factor affecting the externally-originated plasmaspheric hiss is the propagation of source chorus into the plasmasphere. Su et al. (2015) gave the first report on the shock-induced disappearances of plasmaspheric hiss observed by the Van Allen Probes. The hot electron fluxes were expected to be increased through adiabatic process after shock, which could favor the excitation of chorus. However, the increased hot electron fluxes also enhanced the Landau damping for obliquely propagating chorus waves, thus leading to the quenching of plasmaspheric hiss by damping the chorus before it can enter the plasmasphere. Later, Yue et al. (2017) conducted a statistical study on the prompt responses of whistler-mode waves to fast forward shocks using the Van Allen Probes and THEMIS missions. The statistical results showed that chorus waves were intensified following shock arrival at all MLTs, which is consistent with the results for positive pressure pulses in Jin et al. (2022). In contrast, plasmaspheric hiss mainly disappeared/weakened on the dayside and intensified on the nightside, which cannot be explained solely by the variations of source chorus. Such different dependences of chorus and plasmaspheric hiss on the solar wind dynamic pressure have also been reported recently by Tang et al. (2023). Through simple ray tracing modeling, Yue et al. (2017) found that a more stretched magnetic field configuration on the nightside caused by shock compression favors the entry of chorus waves with more field-aligned wave normal into the plasmasphere, which are generally the majority of observed chorus waves in the equatorial region (Burton and Holzer, 1974; Goldstein and Tsurutani, 1984; Santolík et al., 2014a; Santolík et al., 2014b; Hartley et al., 2019). It also should be noticed that the occurrence of oblique chorus waves increases close to the plasmapause on the nightside (Li et al., 2016), which may make this less favorable. Generally, these results qualitatively explain the enhancements of plasmapsheric hiss on the nightside. Yue et al. (2017) proposed that the weakening of plasmaspheric hiss on the dayside can be attributed to the enhanced Landau damping from the observed enhancements in suprathermal electron flux (Su et al., 2015). Another possibility could be related to the abrupt erosion of the plasmapause caused by the shock compression. It has been shown that the presence of azimuthal density gradients associated with plasmaspheric plumes allows for a broader range of chorus wave normal angles to propagate into the plasmasphere (Chen et al., 2009; Hartley et al., 2019; Hartley et al., 2022). As such, the absence of azimuthal density gradient or plume after shock compression might reduce the amount of source chorus that can propagate into the plasmasphere and evolve into plasmaspheric hiss.
Compared to the externally-originated plasmaspheric hiss, there has been relatively little research on the prompt response of internally-generated hiss to solar wind dynamic pressure pulses. Two plausible explanations for this are: 1) some solar wind dynamic pressure pulses may not be strong enough to affect the plasma environment associated with whistler-mode wave generation in the plasmasphere within synchronous orbit; 2) due to the overlapping of different whistler rays, it is difficult to identify internally-generated plasmaspheric hiss through uni-directional Poynting fluxes. Nonetheless, there is still observational evidence showing the direct impact of dynamic pressure pulses on internally-generated plasmaspheric hiss. Fu et al. (2021) reported a frequency-dependent response of plasmaspheric hiss to an interplanetary shock. Based on wave Poynting fluxes, they found that hiss waves with frequencies below 3.5 kHz
4 Discussion and conclusion
As a new consequence of solar wind-magnetosphere coupling, the prompt responses of magnetospheric whistler-mode waves to solar wind dynamic pressure pulses has attracted increasing interest in recent years. The prominent effects of solar wind dynamic pressure pulse on the magnetospheric plasma environment associated with whistler-mode waves include: 1) influences of magnetopause movements on electron drift paths; 2) adiabatic variations of energetic electron fluxes caused by sudden changes in magnetic field intensity; 3) acceleration of energetic electrons by compression-related ULF waves; 4) the variation of magnetic field configuration due to the movement of field lines; 5) variations of cold plasma density and plasmasphere structure. In general, the influences to the whistler-mode waves can be summarized as: 1) variations of electron populations can modify the linear wave growth process or the Landau damping (Fu et al., 2012; Su et al., 2015; Jin et al., 2022); 2) variations of both electron populations and magnetic field configuration control the nonlinear growth process (Omura et al., 2008; Katoh and Omura, 2013; Omura, 2021); 3) the magnetic field configuration and cold plasma density determine the raypaths of whistler-mode waves (Chen et al., 2009; Yue et al., 2017; Hartley et al., 2019; Hartley et al., 2022). For chorus waves and internally-generated plasmaspheric hiss, their prompt responses to the solar wind dynamic pressure pulse are directly linked to the local linear or nonlinear growth processes. For plasmaspheric hiss originated from chorus waves, their prompt responses are associated with both the intensity of source chorus and the accessibility of source chorus into the plasmasphere.
Recent studies investigating the prompt impacts of solar wind dynamic pressure pulses on magnetospheric whistler-mode waves have enhanced our understanding of the wave spatiotemporal distribution and generation mechanism. However, several questions remain open, for instance, whether there is a frequency dependence in the response of chorus waves to solar wind dynamic pressure pulses? Can we make a further step in clarifying the plasmaspheric hiss generation mechanisms by statistically analyzing their prompt response to solar wind dynamic pressure pulses? Current studies mainly focus on the variations of wave intensity triggered by pressure pulses, are there any variations in wave frequencies? How do solar wind dynamic pressure pulses affect the propagation process of whistler-mode waves by altering the background magnetic field configuration? The impacts of solar wind dynamic pressure pulses on whistler-mode waves can last for how long, and to what extent do these affect radiation belt electron dynamics? In the future, detailed simulations including the event-specific parameters and statistical analyses using more comprehensive data set are required for a better knowledge.
Author contributions
ZS and NL designed the study. NL wrote the manuscript with contributions from ZS. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication. All authors contributed to the article and approved the submitted version.
Funding
This work was supported by the National Natural Science Foundation of China grants 42004140, 42130204, 42188101, and 42274198, the Strategic Priority Research Program of Chinese Academy of Sciences grant XDB 41000000, and the Key Research Program of the Chinese Academy of Sciences grant ZDRE-KT-2021-3.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard, H., et al. (2013). Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements. J. Geophys. Res. 118, 3407–3420. doi:10.1002/jgra.50312
Abel, B., and Thorne, R. M. (1998). Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J. Geophys. Res. 103, 2385–2396. doi:10.1029/97JA02919
Albert, J. M. (1994). Quasi-linear pitch angle diffusion coefficients: Retaining high harmonics. J. Geophys. Res. 99, 23741. doi:10.1029/94JA02345
Anderson, R. R., and Vasko, I. Y. (2018). “Whistler waves and their effects on radiation belt dynamics,” in Radiation belt science and exploration (Amsterdam, Netherlands: Elsevier), 117–135. doi:10.1016/B978-0-12-811788-5.00005-1
Angelopoulos, V. (2008). The THEMIS mission. Space Sci. Rev. 141, 5–34. doi:10.1007/s11214-008-9336-1
Bonnell, J. W., Mozer, F. S., Delory, G. T., Hull, A. J., Ergun, R. E., Cully, C. M., et al. (2008). The electric field instrument (EFI) for THEMIS. Space Sci. Rev. 141, 303–341. doi:10.1007/s11214-008-9469-2
Bortnik, J., Thorne, R. M., and Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452, 62–66. doi:10.1038/nature06741
Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J., et al. (2009). An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324, 775–778. doi:10.1126/science.1171273
Breneman, A., Halford, A., Millan, R., McCarthy, M., Fennell, J., Sample, J., et al. (2015). Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss. Nature 523, 193–195. doi:10.1038/nature14515
Burton, R. K., and Holzer, R. E. (1974). The origin and propagation of chorus in the outer magnetosphere. J. Geophys. Res. 79, 1014–1023. doi:10.1029/JA079i007p01014
Cattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C. A., and Kurth, W. S. (2015). Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophys. Res. Lett. 42, 7273–7281. doi:10.1002/2015GL065565
Chakraborty, S., Chakrabarty, D., Reeves, G. D., Baker, D. N., Claudepierre, S. G., Breneman, A. W., et al. (2021). Van allen probe observations of disappearance, recovery and patchiness of plasmaspheric hiss following two consecutive interplanetary shocks: First results. J. Geophys. Res. (Space Phys. 126, e28873. doi:10.1029/2020JA028873
Chen, L., Bortnik, J., Thorne, R. M., Horne, R. B., and Jordanova, V. K. (2009). Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume. Geophys. Res. Lett. 36, L22101. doi:10.1029/2009GL040451
Church, S. R., and Thorne, R. M. (1983). On the origin of plasmaspheric hiss - ray path integrated amplification. J. Geophys. Res. 88, 7941–7957. doi:10.1029/JA088iA10p07941
Dalin, P. A., Zastenker, G. N., Paularena, K. I., and Richardson, J. D. (2002). A Survey of large, rapid solar wind dynamic pressure changes observed by Interball-1 and IMP 8. Ann. Geophys. 20, 293–299. doi:10.5194/angeo-20-293-2002
Draganov, A. B., Inan, U. S., Sonwalkar, V. S., and Bell, T. F. (1992). Magnetospherically reflected whistlers as a source of plasmaspheric hiss. Geophys. Res. Lett. 19, 233–236. doi:10.1029/91GL03167
Fu, H. S., Cao, J. B., Mozer, F. S., Lu, H. Y., and Yang, B. (2012). Chorus intensification in response to interplanetary shock. J. Geophys. Res. (Space Phys. 117, A01203. doi:10.1029/2011JA016913
Fu, H., Yue, C., Ma, Q., Kang, N., Bortnik, J., Zong, Q.-g., et al. (2021). Frequency-dependent responses of plasmaspheric hiss to the impact of an interplanetary shock. Geophys. Res. Lett. 48, e2021GL094810. doi:10.1029/2021GL094810
Gao, Z., Su, Z., Chen, L., Zheng, H., Wang, Y., and Wang, S. (2017). Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones. Geophys. Res. Lett. 44, 5909–5919. doi:10.1002/2017GL073420
Gao, Z., Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., et al. (2016). Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons. Geophys. Res. Lett. 43, 967–977. doi:10.1002/2016GL067687
Goldstein, B. E., and Tsurutani, B. T. (1984). Wave normal directions of chorus near the equatorial source region. J. Geophys. Res. Space Phys. 89, 2789–2810. doi:10.1029/JA089iA05p02789
Gonzalez, W. D., Gonzalez, A. L. C., Tsurutani, B. T., Smith, E. J., Tang, F., and Akasofu, S. I. (1989). Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979). J. Geophys. Res. 94, 8835–8851. doi:10.1029/JA094iA07p08835
Gonzalez, W. D., Tsurutani, B. T., and Clúa de Gonzalez, A. L. (1999). Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562. doi:10.1023/A:1005160129098
Gosling, J. T., Asbridge, J. R., Bame, S. J., Hundhausen, A. J., and Strong, I. B. (1967). Discontinuities in the solar wind associated with sudden geomagnetic impulses and storm commencements. J. Geophys. Res. 72, 3357–3363. doi:10.1029/JZ072i013p03357
Green, J. L., Boardsen, S., Garcia, L., Taylor, W. W. L., Fung, S. F., and Reinisch, B. W. (2005). On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110, A03201. doi:10.1029/2004JA010495
Hartley, D. P., Chen, L., Christopher, I. W., Kletzing, C. A., Santolik, O., Li, W., et al. (2022). The angular distribution of lower band chorus waves near plasmaspheric plumes. Geophys. Res. Lett. 49, e2022GL098710. doi:10.1029/2022GL098710
Hartley, D. P., Kletzing, C. A., Chen, L., Horne, R. B., and Santolík, O. (2019). Van allen probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism. Geophys. Res. Lett. 46, 2337–2346. doi:10.1029/2019GL082111
Hayakawa, M., and Sazhin, S. S. (1992). Mid-latitude and plasmaspheric hiss - a review. Planet. Space Sci. 40, 1325–1338. doi:10.1016/0032-0633(92)90089-7
Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J., et al. (2005). Wave acceleration of electrons in the Van Allen radiation belts. Nature 437, 227–230. doi:10.1038/nature03939
Hudson, P. D. (1970). Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci. 18, 1611–1622. doi:10.1016/0032-0633(70)90036-X
Jin, Y., Liu, N., Su, Z., Zheng, H., Wang, Y., and Wang, S. (2022). Immediate impact of solar wind dynamic pressure pulses on whistler-mode chorus waves in the inner magnetosphere. Geophys. Res. Lett. 49, e2022GL097941. doi:10.1029/2022GL097941
Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., et al. (2018). Pulsating aurora from electron scattering by chorus waves. Nature 554, 337–340. doi:10.1038/nature25505
Katoh, Y., and Omura, Y. (2013). Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and broadband hiss-like emissions. J. Geophys. Res. 118, 4189–4198. doi:10.1002/jgra.50395
Kennel, C. F., Edmiston, J. P., Hada, T., and Wu, C. S. (1985). The quasi-parallel shock wave: Theory and particle simulations. J. Geophys. Res. Space Phys. 90, 2199–2208. doi:10.1029/JA090iA11p12199
Kennel, C. F., and Engelmann, F. (1966). Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 2377–2388. doi:10.1063/1.1761629
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev. 179, 127–181. doi:10.1007/s11214-013-9993-6
Laakso, H., and Blomberg, L. G. (2005). A survey of magnetospheric whistler-mode waves: Occurrence statistics. J. Geophys. Res. Space Phys. 110. doi:10.1029/2004JA010684
Le Contel, O., Roux, A., Robert, P., Coillot, C., Bouabdellah, A., de La Porte, B., et al. (2008). First results of the THEMIS Search Coil magnetometers. Space Sci. Rev. 141, 509–534. doi:10.1007/s11214-008-9371-y
LeDocq, M. J., Gurnett, D. A., and Hospodarsky, G. B. (1998). Chorus source locations from VLF poynting flux measurements with the polar spacecraft. Geophys. Res. Lett. 25, 4063–4066. doi:10.1029/1998GL900071
Lee, D. Y., Lyons, L. R., and Yumoto, K. (2004). Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements. J. Geophys. Res. (Space Phys. 109, A04202. doi:10.1029/2003JA010246
Li, J., Ma, Q., Bortnik, J., Li, W., An, X., Reeves, G. D., et al. (2019). Parallel acceleration of suprathermal electrons caused by whistler-mode hiss waves. Geophys. Res. Lett. 46, 12675,675–12,684. doi:10.1029/2019GL085562
Li, L. Y., Cao, J. B., Yang, J. Y., and Dong, Y. X. (2013). Joint responses of geosynchronous magnetic field and relativistic electrons to external changes in solar wind dynamic pressure and interplanetary magnetic field. J. Geophys. Res. (Space Phys. 118, 1472–1482. doi:10.1002/jgra.50201
Li, L. Y., Yu, J., Cao, J. B., Yang, J. Y., Li, X., Baker, D. N., et al. (2017). Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J. Geophys. Res. (Space Phys. 122, 5431–5448. doi:10.1002/2016JA023634
Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C. A., et al. (2015). First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophys. Res. Lett. 42, 241–248. doi:10.1002/2014GL062832
Li, W., Santolik, O., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S., et al. (2016). New chorus wave properties near the equator from van allen probes wave observations. Geophys. Res. Lett. 43, 4725–4735. doi:10.1002/2016GL068780
Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J. W., McFadden, J. P., Carlson, C. W., et al. (2009). Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res. 114, A00C14. doi:10.1029/2008JA013554
Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., et al. (2013). An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons. Geophys. Res. Lett. 40, 3798–3803. doi:10.1002/grl.50787
Liu, N., Jin, Y., He, Z., Yu, J., Li, K., and Cui, J. (2022). Simultaneous evolutions of inner magnetospheric plasmaspheric hiss and EMIC waves under the influence of a heliospheric plasma sheet. Geophys. Res. Lett. 49, e2022GL098798. doi:10.1029/2022GL098798
Liu, N., Su, Z., Gao, Z., Reeves, G. D., Zheng, H., Wang, Y., et al. (2017a). Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS, and POES satellites. J. Geophys. Res. (Space Phys. 122, 10,421–10,435. doi:10.1002/2017JA024470
Liu, N., Su, Z., Gao, Z., Zheng, H., Wang, Y., Wang, S., et al. (2020a). Comprehensive observations of substorm-enhanced plasmaspheric hiss generation, propagation, and dissipation. Geophys. Res. Lett. 47, e86040. doi:10.1029/2019GL086040
Liu, N., Su, Z., Gao, Z., Zheng, H., Wang, Y., Wang, S., et al. (2017b). Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure. Geophys. Res. Lett. 44, 52–61. doi:10.1002/2016GL071987
Liu, S., Xie, Y., Zhang, S., Shang, X., Yang, C., Zhou, Q., et al. (2020b). Unusual loss of van allen belt relativistic electrons by extremely low-frequency chorus. Geophys. Res. Lett. 47, e89994. doi:10.1029/2020GL089994
Lyons, L. R., and Thorne, R. M. (1973). Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78, 2142–2149. doi:10.1029/JA078i013p02142
Ma, Q., Mourenas, D., Li, W., Artemyev, A., and Thorne, R. M. (2017). VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons. Geophys. Res. Lett. 44, 6483–6491. doi:10.1002/2017GL073885
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179, 3–27. doi:10.1007/s11214-012-9908-y
McPherron, R. L., Terasawa, T., and Nishida, A. (1986). Solar wind triggering of substorm expansion onset. J. Geomagnetism Geoelectr. 38, 1089–1108. doi:10.5636/jgg.38.1089
Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., and Shen, X.-C. (2021). Statistical investigation of the frequency dependence of the chorus source mechanism of plasmaspheric hiss. Geophys. Res. Lett. 48, e92725. doi:10.1029/2021GL092725
Meredith, N. P., Horne, R. B., and Anderson, R. R. (2001). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res. 106, 13165–13178. doi:10.1029/2000JA900156
Meredith, N. P., Horne, R. B., Li, W., Thorne, R. M., and Sicard-Piet, A. (2014). Global model of low-frequency chorus (fLHR<f<0.1fce) from multiple satellite observations. Geophys. Res. Lett. 41, 280–286. doi:10.1002/2013GL059050
Meredith, N. P., Horne, R. B., Shen, X.-C., Li, W., and Bortnik, J. (2020). Global model of whistler mode chorus in the near-equatorial region (|λm| < 18°). Geophys. Res. Lett. 47, e87311. doi:10.1029/2020GL087311
Nakamura, S., Omura, Y., and Angelopoulos, V. (2016). A statistical study of EMIC rising and falling tone emissions observed by THEMIS. J. Geophys. Res. (Space Phys. 121, 8374–8391. doi:10.1002/2016JA022353
Neugebauer, M. (2006). Comment on the abundances of rotational and tangential discontinuities in the solar wind. J. Geophys. Res. (Space Phys. 111, A04103. doi:10.1029/2005JA011497
Ni, B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., Chen, L., et al. (2014). Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophys. Res. Lett. 41, 1854–1861. doi:10.1002/2014GL059389
Ni, B., Summers, D., Xiang, Z., Dou, X., Tsurutani, B. T., Meredith, N. P., et al. (2023). Unique banded structures of plasmaspheric hiss waves in the Earth’s magnetosphere. J. Geophys. Res. (Space Phys. 128, e2023JA031325. doi:10.1029/2023JA031325
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Ni, B., Lyons, L. R., et al. (2013). Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. (Space Phys. 118, 664–673. doi:10.1029/2012JA018242
Omura, Y., Katoh, Y., and Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, A04223. doi:10.1029/2007JA012622
Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth, Planets Space 73, 95. doi:10.1186/s40623-021-01380-w
Peng, Q., Li, H., Tang, R., Zhong, Z., Zhang, H., and Li, Q. (2020). Variation of dayside chorus waves associated with solar wind dynamic pressure based on MMS observations. Adv. Space Res. 65, 2551–2558. doi:10.1016/j.asr.2020.03.006
Reeves, G. D., McAdams, K. L., Friedel, R. H. W., and O’Brien, T. P. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, 1529. doi:10.1029/2002GL016513
Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., et al. (2013). Electron acceleration in the heart of the van allen radiation belts. Science 341, 991–994. doi:10.1126/science.1237743
Russell, C. T., Holzer, R. E., and Smith, E. J. (1969). OGO 3 observations of ELF noise in the magnetosphere. 1. Spatial extent and frequency of occurrence. J. Geophys. Res. 74, 755–777. doi:10.1029/JA074i003p00755
Samsonov, A. A., Sibeck, D. G., and Imber, J. (2007). MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J. Geophys. Res. (Space Phys. 112, A12220. doi:10.1029/2007JA012627
Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and Cornilleau-Wehrlin, N. (2003). Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108, 1278. doi:10.1029/2002JA009791
Santolík, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., and Bounds, S. R. (2014a). Fine structure of large-amplitude chorus wave packets. Geophys. Res. Lett. 41, 293–299. doi:10.1002/2013GL058889
Santolík, O., Macúšová, E., Kolmašová, I., Cornilleau-Wehrlin, N., and Conchy, Y. (2014b). Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the Cluster spacecraft. Geophys. Res. Lett. 41, 2729–2737. doi:10.1002/2014GL059815
Sergeev, V. A., Angelopoulos, V., and Nakamura, R. (2012). Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, L05101. doi:10.1029/2012GL050859
Shi, R., Li, W., Ma, Q., Green, A., Kletzing, C. A., Kurth, W. S., et al. (2019). Properties of whistler mode waves in Earth’s plasmasphere and plumes. J. Geophys. Res. (Space Phys. 124, 1035–1051. doi:10.1029/2018JA026041
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., et al. (2013). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s van allen probes mission. Space Sci. Rev. 179, 311–336. doi:10.1007/s11214-013-0007-5
Su, Z., Liu, N., Zheng, H., Wang, Y., and Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. Geophys. Res. Lett. 45, 565–577. doi:10.1002/2017GL076754
Su, Z., Xiao, F., Zheng, H., He, Z., Zhu, H., Zhang, M., et al. (2014a). Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett. 41, 229–235. doi:10.1002/2013GL058912
Su, Z., Xiao, F., Zheng, H., and Wang, S. (2011). CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys. Res. Lett. 38, L06106. doi:10.1029/2011GL046873
Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., He, Z., et al. (2014b). Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons. J. Geophys. Res. 119, 4266–4273. doi:10.1002/2014JA019919
Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., Shen, C., et al. (2015). Disappearance of plasmaspheric hiss following interplanetary shock. Geophys. Res. Lett. 42, 3129–3140. doi:10.1002/2015GL063906
Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., Zong, Q.-G., et al. (2014c). Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt. J. Geophys. Res. Space Phys. 119, 10–023. doi:10.1002/2014JA020709
Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., et al. (2002). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys. Res. Lett. 29, 27-1–27-4. doi:10.1029/2002GL016039
Summers, D., Ni, B., Meredith, N. P., Horne, R. B., Thorne, R. M., Moldwin, M. B., et al. (2008). Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes. J. Geophys. Res. 113, A04219. doi:10.1029/2007JA012678
Summers, D., Omura, Y., Nakamura, S., and Kletzing, C. A. (2014). Fine structure of plasmaspheric hiss. J. Geophys. Res. (Space Phys. 119, 9134–9149. doi:10.1002/2014JA020437
Tang, R., Yuan, A., Li, H., Ouyang, Z., and Deng, X. (2023). Influence of solar wind dynamic pressure on distribution of whistler mode waves based on van allen probe observations. J. Geophys. Res. Space Phys. 128, e2022JA031181. doi:10.1029/2022ja031181
Tao, X. (2014). A numerical study of chorus generation and the related variation of wave intensity using the DAWN code. J. Geophys. Res. (Space Phys. 119, 3362–3372. doi:10.1002/2014JA019820
Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss - the importance of wave propagation and the plasmapause. J. Geophys. Res. 84, 5241–5247. doi:10.1029/JA084iA09p05241
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Baker, D. N., et al. (2013a). Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ∼ 3.2 following the september 2012 magnetic storm. Geophys. Res. Lett. 40, 3507–3511. doi:10.1002/grl.50627
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013b). Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414. doi:10.1038/nature12889
Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res. 78, 1581–1596. doi:10.1029/JA078i010p01581
Tsurutani, B. T., Falkowski, B. J., Pickett, J. S., Santolik, O., and Lakhina, G. S. (2015). Plasmaspheric hiss properties: Observations from polar. J. Geophys. Res. (Space Phys. 120, 414–431. doi:10.1002/2014JA020518
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717–21733. doi:10.1029/95JA01476
Tsurutani, B. T., Park, S. A., Falkowski, B. J., Bortnik, J., Lakhina, G. S., Sen, A., et al. (2019). Low frequency (f ¡ 200 hz) polar plasmaspheric hiss: Coherent and intense. J. Geophys. Res. Space Phys. 124, 10063–10084. doi:10.1029/2019JA027102
Tsurutani, B. T., Park, S. A., Falkowski, B. J., Lakhina, G. S., Pickett, J. S., Bortnik, J., et al. (2018). Plasmaspheric hiss: Coherent and intense. J. Geophys. Res. (Space Phys. 123, 10,009–10,029. doi:10.1029/2018JA025975
Tsurutani, B. T., and Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. J. Geophys. Res. 79, 118–127. doi:10.1029/JA079i001p00118
Tsurutani, B. T., and Smith, E. J. (1977). Two types of magnetospheric ELF chorus and their substorm dependences. J. Geophys. Res. 82, 5112–5128. doi:10.1029/JA082i032p05112
Tsyganenko, N. A., and Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 110, A03208. doi:10.1029/2004JA010798
Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V. (2012). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys. 8, 208–212. doi:10.1038/nphys2185
Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C., and Tsyganenko, N. A. (2006). Storm time evolution of the outer radiation belt: Transport and losses. J. Geophys. Res. 111, A11S03. doi:10.1029/2006JA011690
Wang, Z., Su, Z., Liu, N., Dai, G., Zheng, H., Wang, Y., et al. (2020). Suprathermal electron evolution under the competition between plasmaspheric plume hiss wave heating and collisional cooling. Geophys. Res. Lett. 47, e89649. doi:10.1029/2020GL089649
Wilson, L., Cattell, C., Kellogg, P., Wygant, J., Goetz, K., Breneman, A., et al. (2011). The properties of large amplitude whistler mode waves in the magnetosphere: Propagation and relationship with geomagnetic activity. Geophys. Res. Lett. 38, L17107. doi:10.1029/2011GL048671
Woodroffe, J. R., Jordanova, V. K., Funsten, H. O., Streltsov, A. V., Bengtson, M. T., Kletzing, C. A., et al. (2017). Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume. J. Geophys. Res. (Space Phys. 122, 3073–3086. doi:10.1002/2015JA022219
Wu, B.-H., Mandt, M. E., Lee, L. C., and Chao, J. K. (1993). Magnetospheric response to solar wind dynamic pressure variations: Interaction of interplanetary tangential discontinuities with the bow shock. J. Geophys. Res. 98, 21297–21311. doi:10.1029/93JA01013
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., et al. (2013). The electric field and waves instruments on the radiation belt storm probes mission. Space Sci. Rev. 179, 183–220. doi:10.1007/s11214-013-0013-7
Xiao, F., Yang, C., He, Z., Su, Z., Zhou, Q., He, Y., et al. (2014). Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. J. Geophys. Res. 119, 3325–3332. doi:10.1002/2014JA019822
Yue, C., Chen, L., Bortnik, J., Ma, Q., Thorne, R. M., Angelopoulos, V., et al. (2017). The characteristic response of whistler mode waves to interplanetary shocks. J. Geophys. Res. (Space Phys. 122, 10,047–10,057. doi:10.1002/2017JA024574
Zesta, E., Singer, H. J., Lummerzheim, D., Russell, C. T., Lyons, L. R., and Brittnacher, M. J. (2000). The effect of the january 10, 1997, pressure pulse on the magnetosphere-ionosphere current system. Geophys. Monogr. Ser. 118, 217–226. doi:10.1029/GM118p0217
Zhang, W., Ni, B., Huang, H., Summers, D., Fu, S., Xiang, Z., et al. (2019). Statistical properties of hiss in plasmaspheric plumes and associated scattering losses of radiation belt electrons. Geophys. Res. Lett. 46, 5670–5680. doi:10.1029/2018GL081863
Zhou, C., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., An, X., et al. (2015). Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks. J. Geophys. Res. (Space Phys. 120, 8327–8338. doi:10.1002/2015JA021530
Zhou, X., Haerendel, G., Moen, J. I., Trondsen, E., Clausen, L., Strangeway, R. J., et al. (2017). Shock aurora: Field-aligned discrete structures moving along the dawnside oval. J. Geophys. Res. (Space Phys. 122, 3145–3162. doi:10.1002/2016JA022666
Zhou, X. Y., Fukui, K., Carlson, H. C., Moen, J. I., and Strangeway, R. J. (2009). Shock aurora: Ground-based imager observations. J. Geophys. Res. (Space Phys. 114, A12216. doi:10.1029/2009JA014186
Zhu, H., Su, Z., Xiao, F., Zheng, H., Wang, Y., Shen, C., et al. (2015). Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons. Geophys. Res. Lett. 42, 1012–1019. doi:10.1002/2014GL062964
Zong, Q., Zhou, X., Wang, Y. F., Li, X., Song, P., Baker, D. N., et al. (2009). Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 114, A10204. doi:10.1029/2009JA014393
Keywords: whistler-mode waves, solar wind-magnetosphere coupling, chorus, plasmaspheric hiss, plasma wave instability
Citation: Liu N and Su Z (2023) Prompt responses of magnetospheric whistler-mode waves to solar wind dynamic pressure pulses. Front. Astron. Space Sci. 10:1193600. doi: 10.3389/fspas.2023.1193600
Received: 25 March 2023; Accepted: 03 May 2023;
Published: 17 May 2023.
Edited by:
Qianli Ma, Boston University, United StatesReviewed by:
David Paul Hartley, The University of Iowa, United StatesCopyright © 2023 Liu and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Nigang Liu, liung5@mail.sysu.edu.cn; Zhenpeng Su, szpe@mail.ustc.edu.cn