Skip to main content

MINI REVIEW article

Front. Astron. Space Sci., 30 May 2023
Sec. Planetary Science
This article is part of the Research Topic Editor’s Challenge in Planetary Science: the Future of Planetary Exploration and the Next Generation of Planetary Missions View all 6 articles

Radiative transfer and inversion codes for characterizing planetary atmospheres: an overview

  • 1Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
  • 2Georg-August-Universität Göttingen, Göttingen, Germany

The study of planetary atmospheres is crucial for understanding the origin, evolution, and processes that shape celestial bodies like planets, moons and comets. The interpretation of planetary spectra requires a detailed understanding of radiative transfer (RT) and its application through computational codes. With the advancement of observations, atmospheric modelling, and inference techniques, diverse RT and retrieval codes in planetary science have been proliferated. However, the selection of the most suitable code for a given problem can be challenging. To address this issue, we present a comprehensive mini-overview of the different RT and retrieval codes currently developed or available in the field of planetary atmospheres. This study serves as a valuable resource for the planetary science community by providing a clear and accessible list of codes, and offers a useful reference for researchers and practitioners in their selection and application of RT and retrieval codes for planetary atmospheric studies.

1 Introduction

Planetary science, including the study of exoplanets, is currently a very active and fascinating multi-disciplinary field covering astronomy, astrophysics, geophysics, astrobiology, among other fields. By studying planets, we can answer fundamental questions about their origin, formation, evolution, potential for life, and physico-chemical processes. The spectrum of a planet contains valuable information about its atmospheric chemical composition and physical processes. Deriving atmospheric properties like the vertical thermal structure, chemical composition and dynamics is essential to understand the origin, evolution, and how the atmospheres are influenced by physical and chemical mechanisms.

Numerous physico-chemical problems in planetary atmospheres require a detailed understanding of radiative transfer (RT) of photons in different environments. Detailed solutions of the RT equation demand high computational capabilities. The technical implementation of these solutions in codes is a rapidly developing area, and numerous RT approaches have been attempted in recent years. Several groups then attacked the problem from a variety of perspectives by using completely different, independent and dedicated numerical algorithms. Some atmospheric RT codes have been developed with a particular aim or for the interpretation of a particular planet. Later on, in some cases, their functionalities have been extended beyond their original purposes but still limited to the study of a specific type of planets. In recent years, breakthroughs in atmospheric retrieval have been made possible through a combination of advancements in instrumentation, computational resources, sophisticated atmospheric modelling, and powerful statistical inference techniques.

There are varying levels of complexity in atmospheric models and the physico-chemical processes considered in RT and inversion codes, motivated by atmospheric observations. As a result, a significant number of RT and inversion codes have been developed and widely used in different atmospheric contexts, depending on whether the planet being studied is Earth, another planet or body in the Solar System, or an exoplanet. Spectra of Solar System planets can be spatially distributed and have a high signal-to-noise ratio, and can be supplemented with in situ measurements or a priori knowledge. However, exoplanetary spectroscopy currently lacks this observational capability, and retrievals must navigate a much larger parameter space for exoplanetary atmospheres than that for Solar System planets.

The selection of a particular code may depend on various factors, such as the physical problem to face, the estimation technique, computation time, flexibility, user-friendliness, among others. The selection of the most appropriate code suited for a specific problem may result in more accurate and reliable results, highlighting the importance of having a comprehensive list of available codes. This mini-review provides a comprehensive overview of the current RT and inversion codes used in the planetary and exoplanetary communities, as seen from the perspective of a user. These codes are crucial in predicting and interpreting spectra of planetary atmospheres, both in hydrostatic equilibrium and in expanding comas. The quality and extent of these codes are critical for the effective use of space and ground-based telescopes facilities. Madhusudhan (2018) has already provided a review of exoplanetary atmospheric retrieval, some existing retrieval codes, and a description of their differences, Barstow and Heng (2020) provides a discussion of open problems in retrieval analysis, and more recently, MacDonald and Batalha (2023) provides a catalogue of the atmospheric retrieval codes for exoplanets published to date. In this mini-review, we expand and update the codes list, including a large new generation of RT and atmospheric retrieval codes for Solar System and exoplanets.

2 RT and inversion codes

One commonly used way to interpret the measured spectra is calculating a synthetic spectrum for comparison with that measured by solving the radiative transfer (forward model) -i.e., computation of the outgoing radiation from the planetary surface for a given set of free parameters-, and inferring parameters like temperature and chemical abundance profiles. This last step is called inversion or retrieval and consists in comparing the measured and best modelled/synthetic spectra adjusting the atmospheric parameters in such a way as to minimise any discrepancy. A number of radiative transfer codes or forward models and inversion algorithms are already constructed, and generally available and used by the planetary and exoplanetary characterisation communities. A comprehensive list of RT and retrieval codes in the literature is shown in Table 1, indicating where to find them (if available) and the estimation technique employed (Section 3).

TABLE 1
www.frontiersin.org

TABLE 1. Some radiative transfer and inversion codes used in the (exo) planetary community. Symbols: OE algorithm (†), nested sampling (‡), MCMC method (▴), Grid search (•), and ML approaches (⧫).

Retrieval codes can use either parametric models or self-consistent equilibrium models to estimate the composition and pressure-temperature (P-T) profiles from spectral data. Parametric models do not make any assumptions about thermochemical and radiative-convective equilibrium, using instead parametric forms for the P-T profile and composition. Self-consistent models compute profiles based on assumptions of the atmosphere’s physical and chemical properties and processes, with varying levels of complexity from 1-D atmospheres to full 3-D general circulation models. We do not cover 3-D general circulation codes specifically in this paper, they are complex and couple many processes together in a three-dimensional time-marching calculation. For a discussion of the principles of atmospheric retrievals of exoplanets see Gandhi and Madhusudhan (2017). When calculating a synthetic atmospheric spectrum, lines are read from atomic and molecular databases -databases differ in completeness and accuracies-, and opacities are calculated via diverse approaches (Rengel, 2022).

Some RT models used for Solar System planets and exoplanets have their roots in Earth codes. There are several RT codes used in the Earth atmospheric community but they are just listed here: 4A/OP [Scott (1974); Scott and Chedin (1981)], 6S [Lee et al. (2020)], AccuRT1[Stamnes et al. (2018)]; ARMS Weng et al. (2020), BIRRA2 [Gimeno García et al. (2011)], BTRAM3 [Chapman et al. (2004)], DISORT [Stamnes et al. (1988)], Eradiate4 [Govaerts et al. (2022)], FASCODE [Smith et al. (1978); Clough et al. (1981)], FUTBOLIN [Martin-Torres and Mlynczak (2005)], GARLIC [Schreier et al. (2014)], GENLN2 [Edwards (1992)], IMAP-DOAS [Frankenberg et al. (2005)], IMLM Gloudemans et al. (2005), KCARTA56 [DeSouza-Machado et al. (2020)], LBLRTM78 [Clough et al. (2005)], LEEDR [Fiorino et al. (2014)], LinePak9 [Gordley et al. (1994)], libRadtran10 [Mayer and Kylling (2005)], MODTRAN11 [Berk et al. (1998)], MPI12 [Gropp et al. (1998)], PUMAS13 [Villanueva et al. (2015); Villanueva et al. (2022)], RFM14 [Dudhia (2017)], RTMOM [Govaerts (2006)], RTTOV15 [Saunders et al. (1999); Matricardi (2007)], SARTA1617 [Strow et al. (2003)], SARTre [Mendrok (2006)], SASKTRAN18 [Bourassa et al. (2008); Zawada et al. (2015)], SBDART19 [Ricchiazzi et al. (2002)], SCIATRAN20 [Rozanov et al. (2005); Rozanov et al. (2014)], SICOR21 [Borsdorff et al. (2017); Borsdorff et al. (2018)], SKIRT22 [Baes et al. (2003)], SMART-G23 [Ramon et al. (2019)], TOMRAD [Dave (1964)], VDISORT [Lin et al. (2022)], VLIDORT/LIDORT24 [Spurr and Christi (2019)], WFM-DOAS [Buchwitz et al. (2004); Buchwitz et al. (2005)] as well as models by Hartogh (1989), Tinetti et al. (2006a), Tinetti et al. (2006b) and Robinson et al. (2011).

3 Retrieval or parameter fitting or estimation techniques

The objective of an optimization algorithm is to extensively and efficiently sample a high-dimensional parameter space to find the best solution space given the data. The retrieval or parameter fitting or estimation techniques commonly used are Optimal Estimation (OE) algorithm (†), nested sampling (‡), Markov chain Monte Carlo (MCMC) method (▴), Grid search (•), and more recently, data-driven Machine Learning (ML) approaches (⧫). OE is popular in the Solar System community and assumes Gaussian statistics. It is fast and efficient and applicable to exoplanets under some specific conditions (e.g., Rengel et al., 2008; Hartogh et al., 2010; Lee et al., 2011; Line et al., 2012; Shulyak et al., 2019; Rengel et al., 2022; Villanueva et al., 2022). Grid search is simple and computationally cheap, but it can be inefficient (e.g., Madhusudhan & Seager, 2009). MCMC provides a better parameter exploration of the parameter space but with limitations in calculating the model evidence for model comparison and can be computationally expensive (e.g., Benneke and Seager, 2012; Madhusudhan et al., 2014; Waldmann et al., 2015b; Blecic, 2016; Cubillos, 2016; Evans et al., 2017; Wakeford et al., 2017; Lacy and Burrows, 2020). Nested sampling algorithm facilitates efficient parameter space exploration and calculation of model evidence (e.g., Benneke and Seager, 2013; Waldmann et al., 2015a; Gandhi and Madhusudhan, 2017; Pinhas et al., 2018; Brogi and Line, 2019; Fisher and Heng, 2019; Mollière et al., 2019; Min et al., 2020; Seidel et al., 2020; Shulyak et al., 2020). ML algorithms can be computationally efficient, but they require large amounts of training data and can be sensitive to biases in the training set (e.g., Waldmann, 2016; Marquez-Neila et al., 2018; Soboczenski et al., 2018; Zingales and Waldmann, 2018; Cobb et al., 2019; Fisher et al., 2020; Hayes et al., 2020; Nixon and Madhusudhan, 2020). An example of an application of the forward model and retrieval technique is provided in Figure 1.

FIGURE 1
www.frontiersin.org

FIGURE 1. Example of forward model and retrieval applied to the case of HCN in Titan: Left: comparison between observed and best-fit simulated HCN (3-2) lines (black and red, respectively, upper panel), and the difference between the observed and fitted spectra (lower panel). Right: retrieved temperature and HCN distribution derived from the spectrum. The black and red lines, and the pink shadow show the initial and retrieved profiles, and the error bars, respectively. Figure based on Figure 1 in Rengel et al. (2022).

4 Verification and validation of RT and retrieval codes

The retrieval problem is a challenging one due to its ill-posed and ill-conditioned nature. This means that even a small change in measurements can result in a significant deviation in the estimated model, making the inverse solution computation extremely unstable (e.g., Ih and Kempton, 2021). Currently, each retrieval code has its unique method for computing opacities and input models, lacking community standards. Furthermore, models continue to become more complex and data quality improves, retrieval codes face increasingly complex and degenerate problems (e.g., Welbanks and Madhusudhan, 2019).

Verification and validation of planetary retrieval codes is an important aspect. Verification can be readily accomplished using synthetic measurements and code inter-comparison. Inter-model comparisons of forward and retrieval suites have already been underway, with notable studies by Clarmann et al., 2003; Baudino et al., 2017; Schreier et al., 2018; Barstow et al., 2020; Barstow et al., 2022). Validation is challenging due to the lack of reference “truth” data (e.g., in situ measurements). Thus, for an assessment of exoplanet atmospheric remote sensing, data dedicated to Solar System planets like Earth, Mars and Venus is an ideal test case. To our knowledge, this kind of data have been rarely used to demonstrate the capabilities of exoplanet atmospheric studies. Observing planetary transits in our own Solar System, for example, can serve as an invaluable benchmark and can provide crucial information for future exoplanet characterizations (e.g., Ehrenreich et al., 2011; Ehrenreich et al., 2012; Montañés-Rodríguez et al., 2015; López-Puertas et al., 2018; Schreier et al., 2018).

Results from inter-comparison show that small differences in the forward model setup can lead to noticeable differences in the retrieval outcome (Barstow et al., 2020). These efforts are crucial for improving the field and providing a clearer understanding of the sources of variability and their impact on the results. Such comparisons provide a roadmap for future advancements and refinements in modelling, enabling us to compare theoretical predictions with observations. They also offer an opportunity to identify any remaining problems, leading to the improvement of existing codes and the development of more reliable and consistent codes. The continued pursuit of inter-model comparisons will drive the field forward towards a better understanding of the retrieval problem. Furthermore, the inherent similarities in methods was investigated (Line et al., 2013), and there is now considerable work to understand and quantify the role of different modelling choices affecting accuracy and precision on constraints (Barstow et al., 2020).

5 Final remarks

Our current understanding of planetary atmospheres is limited by model completeness and robustness. Forward modelling and spectral retrieval is the leading technique for interpretation of spectra and is employed by various teams using a variety of forward models and parameter estimation algorithms. Numerous codes are available and continue been developed. The code employed which contain the complexity of models should be chosen with care depending on the specific questions whose answer is sought and on the nature of the data at hand (considering spectral coverage and region, resolution, precision, signal-to-noise ratio, etc.). The efficiency of these codes is a critical issue, but beyond the scope of this paper.

The study of RT in planetary atmospheres is a rapidly developing field, with numerous advances being made in both the understanding of the RT process and in the development of RT codes. With continued research and development including the improving of observational capabilities, it is likely that even more sophisticated RT codes and inversion algorithms will be developed in the future, enabling us to better understand the diversity of planetary systems beyond our own and the mechanisms shaping their atmospheres.

Author contributions

MR wrote the first draft of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

Authors acknowledge the support by the DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (DFG PR 36 24602/41).

Acknowledgments

This research has made use of NASA’s Astrophysics Data System Bibliographic Services.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Footnotes

1http://www.geminor.com/accurt.html.

2https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5447/9970_read-20673/.

3https://blueskyspectroscopy.com/?page_id=21.

4https://www.eradiate.eu/site/.

5http://asl.umbc.edu/pub/packages/kcarta.html.

6https://github.com/sergio66/kcarta_gen.

7http://rtweb.aer.com/lblrtm.html.

8https://github.com/AER-RC/LBLRTM.

9https://spectralcalc.com/info/about.

10http://www.libradtran.org/doku.php.

11http://modtran.spectral.com.

12https://mitpress.mit.edu/9780262571234/mpi-the-complete-reference/.

13https://psg.gsfc.nasa.gov/.

14http://eodg.atm.ox.ac.uk/RFM/.

15https://nwp-saf.eumetsat.int/site/software/rttov/.

16https://github.com/strow/sarta.

17https://github.com/clhepp/sarta.

18https://arg.usask.ca/docs/sasktran/.

19https://github.com/paulricchiazzi/SBDART.

20https://www.iup.uni-bremen.de/sciatran/.

21https://pypi.org/project/sicor/.

22https://skirt.ugent.be/root/_home.html.

23https://www.hygeos.com/smartg.

24http://www.rtslidort.com/about_overview.html.

References

Al-Refaie, A. F., Changeat, Q., Waldmann, I. P., and Tinetti, G. (2021). TauREx 3: A fast, dynamic, and extendable framework for retrievals. Astrophys. J.917, 37. doi:10.3847/1538-4357/ac0252

CrossRef Full Text | Google Scholar

Baes, M., Davies, J. I., Dejonghe, H., Sabatini, S., Roberts, S., Evans, R., et al. (2003). Radiative transfer in disc galaxies – III. the observed kinematics of dusty disc galaxies. Mon. Notices R. Astronomical Soc.343, 1081–1094. doi:10.1046/j.1365-8711.2003.06770.x

CrossRef Full Text | Google Scholar

Barstow, J. K., Changeat, Q., Chubb, K. L., Cubillos, P. E., Edwards, B., MacDonald, R. J., et al. (2022). A retrieval challenge exercise for the ariel mission. Exp. Astron.53, 447–471. doi:10.1007/s10686-021-09821-w

CrossRef Full Text | Google Scholar

Barstow, J. K., Changeat, Q., Garland, R., Line, M. R., Rocchetto, M., and Waldmann, I. P. (2020). A comparison of exoplanet spectroscopic retrieval tools. Mon. Not. R. Astron. Soc.493, 4884–4909. doi:10.1093/mnras/staa548

CrossRef Full Text | Google Scholar

Barstow, J. K., and Heng, K. (2020). Outstanding challenges of exoplanet atmospheric retrievals. Outst. Challenges Exopl. Atmos. Retrievals216, 82. doi:10.1007/s11214-020-00666-x

CrossRef Full Text | Google Scholar

Batalha, N. E., Marley, M. S., Lewis, N. K., and Fortney, J. J. (2019). Exoplanet reflected-light spectroscopy with picaso. Astrophysical J.878, 70. doi:10.3847/1538-4357/ab1b51

CrossRef Full Text | Google Scholar

Baudino, J.-L., Mollière, P., Venot, O., Tremblin, P., Bézard, B., and Lagage, P.-O. (2017). Toward the analysis ofJWSTExoplanet spectra: Identifying troublesome model parameters. Identifying Troubl. Model. Param.850, 150. doi:10.3847/1538-4357/aa95be

CrossRef Full Text | Google Scholar

Baudino, J. L., Bézard, B., Boccaletti, A., Bonnefoy, M., Lagrange, A. M., and Galicher, R. (2015). Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations, 582, A83. doi:10.1051/0004-6361/201526332

CrossRef Full Text | Google Scholar

Benneke, B., and Seager, S. (2012). Atmospheric retrieval for super-earths: Uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J.753, 100. doi:10.1088/0004-637X/753/2/100

CrossRef Full Text | Google Scholar

Benneke, B., and Seager, S. (2013). How to distinguish between cloudy mini-neptunes and water/volatile-dominated super-earths. Astrophys. J.778, 153. doi:10.1088/0004-637X/778/2/153

CrossRef Full Text | Google Scholar

Benneke, B. (2015). Strict upper limits on the carbon-to-oxygen ratios of eight hot jupiters from self-consistent atmospheric retrieval. arXiv e-prints , arXiv:1504.07655.

Google Scholar

Berk, A., Bernstein, L., Anderson, G., Acharya, P., Robertson, D., Chetwynd, J., et al. (1998). Modtran cloud and multiple scattering upgrades with application to aviris. Remote Sens. Environ.65, 367–375. doi:10.1016/S0034-4257(98)00045-5

CrossRef Full Text | Google Scholar

Blecic, J. (2016). Observations, thermochemical calculations, and modeling of exoplanetary atmospheres. arXiv e-prints , arXiv:1604.02692.

Google Scholar

Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., and Landgraf, J. (2018). Measuring carbon monoxide with tropomi: First results and a comparison with ecmwf-ifs analysis data. Geophys. Res. Lett.45, 2826–2832. doi:10.1002/2018GL077045

CrossRef Full Text | Google Scholar

Borsdorff, T., aan de Brugh, J., Hu, H., Nédélec, P., Aben, I., and Landgraf, J. (2017). Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: A full-mission data set from sciamachy 2.3µm reflectance measurements. Atmos. Meas. Tech.10, 1769–1782. doi:10.5194/amt-10-1769-2017

CrossRef Full Text | Google Scholar

Bourassa, A., Degenstein, D., and Llewellyn, E. (2008). Sasktran: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight. J. Quantitative Spectrosc. Radiat. Transf.109, 52–73. doi:10.1016/j.jqsrt.2007.07.007

CrossRef Full Text | Google Scholar

Brogi, M., and Line, M. R. (2019). Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astronomical J.157, 114. doi:10.3847/1538-3881/aaffd3

CrossRef Full Text | Google Scholar

Buchwitz, M., de Beek, R., Bramstedt, K., Noël, S., Bovensmann, H., and Burrows, J. P. (2004). Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS. Atmos. Chem. Phys.4, 1945–1960. doi:10.5194/acp-4-1945-2004

CrossRef Full Text | Google Scholar

Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Bremer, H., et al. (2005). Carbon monoxide, methane and carbon dioxide columns retrieved from sciamachy by wfm-doas: Year 2003 initial data set. Atmos. Chem. Phys.5, 3313–3329. doi:10.5194/acp-5-3313-2005

CrossRef Full Text | Google Scholar

Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O. (2018). ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition. Geosci. Model. Dev.11, 1537–1556. doi:10.5194/gmd-11-1537-2018

CrossRef Full Text | Google Scholar

Burningham, B., Marley, M. S., Line, M. R., Lupu, R., Visscher, C., Morley, C. V., et al. (2017). Retrieval of atmospheric properties of cloudy L dwarfs. Mon. Notices R. Astronomical Soc.470, 1177–1197. doi:10.1093/mnras/stx1246

CrossRef Full Text | Google Scholar

Caldas, A., Leconte, J., Selsis, F., Waldmann, I. P., Bordé, P., Rocchetto, M., et al. (2019). Effects of a fully 3d atmospheric structure on exoplanet transmission spectra: Retrieval biases due to day–night temperature gradients. Astronomy Astrophysics623, A161. doi:10.1051/0004-6361/201834384

CrossRef Full Text | Google Scholar

Carrión-González, O., García Muñoz, A., Cabrera, J., Csizmadia, Sz., Santos, N. C., and Rauer, H. (2020). Directly imaged exoplanets in reflected starlight: The importance of knowing the planet radius. A&A640, A136. doi:10.1051/0004-6361/202038101

CrossRef Full Text | Google Scholar

Challener, R. C., and Rauscher, E. (2022). Theresa: Three-dimensional eclipse mapping with application to synthetic jwst data. Astronomical J.163, 117. doi:10.3847/1538-3881/ac4885

CrossRef Full Text | Google Scholar

Changeat, Q., Al-Refaie, A., Mugnai, L. V., Edwards, B., Waldmann, I. P., Pascale, E., et al. (2020). Alfnoor: A retrieval simulation of the ariel target list. Astronomical J.160, 80. doi:10.3847/1538-3881/ab9a53

CrossRef Full Text | Google Scholar

Chapman, I. M., Naylor, D. A., and Phillips, R. R. (2004). Correlation of atmospheric opacity measurements by SCUBA and an infrared radiometer. Mon. Notices R. Astronomical Soc.354, 621–628. doi:10.1111/j.1365-2966.2004.08223.x

CrossRef Full Text | Google Scholar

Clarmann, T., Höpfner, M., Funke, B., López-Puertas, M., Dudhia, A., Jay, V., et al. (2003). Modelling of atmospheric mid-infrared radiative transfer: The amil2da algorithm intercomparison experiment. J. Quantitative Spectrosc. Radiat. Transf.78, 381–407. doi:10.1016/S0022-4073(02)00262-5

CrossRef Full Text | Google Scholar

Clough, S. A., Kneizys, F. X., Rothman, L. S., and Gallery, W. O. (1981). “Atmospheric spectral transmittance and radiance: FASCOD1 B,”. Atmospheric transmission. Editor R. W. Fan (Washington, DC: International Society for Optics and Photonics), 0277, 152–167. doi:10.1117/12.931914

CrossRef Full Text | Google Scholar

Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady-Pereira, K., et al. (2005). Atmospheric radiative transfer modeling: A summary of the aer codes. J. Quantitative Spectrosc. Radiat. Transf.91, 233–244. doi:10.1016/j.jqsrt.2004.05.058

CrossRef Full Text | Google Scholar

Cobb, A. D., Himes, M. D., Soboczenski, F., Zorzan, S., O’Beirne, M. D., Baydin, A. G., et al. (2019). An ensemble of bayesian neural networks for exoplanetary atmospheric retrieval. Astronomical J.158, 33. doi:10.3847/1538-3881/ab2390

CrossRef Full Text | Google Scholar

Cubillos, P. E., and Blecic, J. (2021). The PYRAT BAY framework for exoplanet atmospheric modelling: A population study of hubble/WFC3 transmission spectra. Mon. Not. R. Astron. Soc.505, 2675–2702. doi:10.1093/mnras/stab1405

CrossRef Full Text | Google Scholar

Cubillos, P. E. (2016). Characterizing exoplanet atmospheres: From light-curve observations to radiative-transfer modeling. arXiv e-prints, arXiv:1604.01320. doi:10.48550/arXiv.1604.01320

CrossRef Full Text | Google Scholar

Damiano, M., and Hu, R. (2020). ExoReL: A bayesian inverse retrieval framework for exoplanetary reflected light spectra. Astronomical J.159, 175. doi:10.3847/1538-3881/ab79a5

CrossRef Full Text | Google Scholar

Dave, J. V. (1964). Meaning of successive iteration of the auxiliary equation in the theory of radiative transfer. Astrophysical J.140, 1292. doi:10.1086/148024

CrossRef Full Text | Google Scholar

de Wit, J., and Seager, S. (2013). Constraining exoplanet mass from transmission spectroscopy. Science342, 1473–1477. doi:10.1126/science.1245450

PubMed Abstract | CrossRef Full Text | Google Scholar

DeSouza-Machado, S., Strow, L. L., Motteler, H., and Hannon, S. (2020). kcarta: a fast pseudo line-by-line radiative transfer algorithm with analytic jacobians, fluxes, nonlocal thermodynamic equilibrium, and scattering for the infrared. Atmos. Meas. Tech.13, 323–339. doi:10.5194/amt-13-323-2020

CrossRef Full Text | Google Scholar

Dos Santos, L. A., Vidotto, A. A., Vissapragada, S., Alam, M. K., Allart, R., Bourrier, V., et al. (2022). p-winds: An open-source python code to model planetary outflows and upper atmospheres. A&A659, A62. doi:10.1051/0004-6361/202142038

CrossRef Full Text | Google Scholar

Dudhia, A. (2017). The reference forward model (rfm). J. Quantitative Spectrosc. Radiat. Transf.186, 243–253. doi:10.1016/j.jqsrt.2016.06.018

CrossRef Full Text | Google Scholar

Edwards, D. P. (1992). GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide.

Google Scholar

Ehrenreich, D., Tinetti, G., des Etangs, A. L., Vidal-Madjar, A., and Selsis, F. (2006). The transmission spectrum of earth-size transiting planets. Astronomy Astrophysics448, 379–393. doi:10.1051/0004-6361:20053861

CrossRef Full Text | Google Scholar

Ehrenreich, D., Vidal-Madjar, A., Widemann, T., Grono, G., Tanga, P., Barthelemy, M., et al. (2011). VizieR online data catalog: Transmission spectrum of Venus (Ehrenreich+, 2012). VizieR Online Data Catalog , J/A+A/537/L2.

Google Scholar

Ehrenreich, D., Vidal-Madjar, A., Widemann, T., Gronoff, G., Tanga, P., Barthélemy, M., et al. (2012). Transmission spectrum of Venus as a transiting exoplanet, 537, L2. doi:10.1051/0004-6361/201118400

CrossRef Full Text | Google Scholar

Espinoza, N., Rackham, B. V., Jordán, A., Apai, D., López-Morales, M., Osip, D. J., et al. (2018). Access: A featureless optical transmission spectrum for WASP-19b from magellan/IMACS. Mon. Notices R. Astronomical Soc.482, 2065–2087. doi:10.1093/mnras/sty2691

CrossRef Full Text | Google Scholar

Evans, T. M., Sing, D. K., Kataria, T., Goyal, J., Nikolov, N., Wakeford, H. R., et al. (2017). An ultrahot gas-giant exoplanet with a stratosphere548, 58–61. doi:10.1038/nature23266

PubMed Abstract | CrossRef Full Text | Google Scholar

Falco, A., Zingales, T., Pluriel, W., and Leconte, J. (2022). Toward a multidimensional analysis of transmission spectroscopy. Astronomy Astrophysics658, A41. doi:10.1051/0004-6361/202141940

CrossRef Full Text | Google Scholar

Fiorino, S. T., Randall, R. M., Via, M. F., and Burley, J. L. (2014). Validation of a uv-to-rf high-spectral-resolution atmospheric boundary layer characterization tool. J. Appl. Meteorology Climatol.53, 136–156. doi:10.1175/JAMC-D-13-036.1

CrossRef Full Text | Google Scholar

Fisher, C., and Heng, K. (2019). How much information does the sodium doublet encode? Retrieval analysis of non-lte sodium lines at low and high spectral resolutions. Astrophysical J.881, 25. doi:10.3847/1538-4357/ab29e8

CrossRef Full Text | Google Scholar

Fisher, C., Hoeijmakers, H. J., Kitzmann, D., Márquez-Neila, P., Grimm, S. L., Sznitman, R., et al. (2020). Interpreting high-resolution spectroscopy of exoplanets using cross-correlations and supervised machine learning. Astronomical J.159, 192. doi:10.3847/1538-3881/ab7a92

CrossRef Full Text | Google Scholar

Fortney, J. J., Marley, M. S., Lodders, K., Saumon, D., and Freedman, R. (2005). Comparative planetary atmospheres: Models of TrES-1 and HD 209458b. Astrophysical J.627, L69–L72. doi:10.1086/431952

CrossRef Full Text | Google Scholar

Fortney, J. J., Shabram, M., Showman, A. P., Lian, Y., Freedman, R. S., Marley, M. S., et al. (2010). Transmission spectra of three-dimensional hot jupiter model atmospheres. Astrophysical J.709, 1396–1406. doi:10.1088/0004-637x/709/2/1396

CrossRef Full Text | Google Scholar

Frankenberg, C., Platt, U., and Wagner, T. (2005). Retrieval of co from sciamachy onboard envisat: Detection of strongly polluted areas and seasonal patterns in global co abundances. Atmos. Chem. Phys.5, 1639–1644. doi:10.5194/acp-5-1639-2005

CrossRef Full Text | Google Scholar

Gandhi, S., and Madhusudhan, N. (2017). Retrieval of exoplanet emission spectra with HyDRA. Mon. Notices R. Astronomical Soc.474, 271–288. doi:10.1093/mnras/stx2748

CrossRef Full Text | Google Scholar

Gibson, N. P., Merritt, S., Nugroho, S. K., Cubillos, P. E., de Mooij, E. J. W., Mikal-Evans, T., et al. (2020). Detection of Fei in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Notices R. Astronomical Soc.493, 2215–2228. doi:10.1093/mnras/staa228

CrossRef Full Text | Google Scholar

Gimeno García, S., Schreier, F., Lichtenberg, G., and Slijkhuis, S. (2011). Near infrared nadir retrieval of vertical column densities: Methodology and application to sciamachy. Atmos. Meas. Tech.4, 2633–2657. doi:10.5194/amt-4-2633-2011

CrossRef Full Text | Google Scholar

Gloudemans, A. M. S., Schrijver, H., Kleipool, Q., van den Broek, M. M. P., Straume, A. G., Lichtenberg, G., et al. (2005). The impact of sciamachy near-infrared instrument calibration on ch4 and co total columns. Atmos. Chem. Phys.5, 2369–2383. doi:10.5194/acp-5-2369-2005

CrossRef Full Text | Google Scholar

Gordley, L. L., Marshall, B. T., and Allen Chu, D. (1994). Linepak: Algorithms for modeling spectral transmittance and radiance. J. Quantitative Spectrosc. Radiat. Transf.52, 563–580. doi:10.1016/0022-4073(94)90025-6

CrossRef Full Text | Google Scholar

Govaerts, Y. M. (2006). Rtmom v0b.10 user’s manual.

Google Scholar

Govaerts, Y., Nollet, Y., and Leroy, V. (2022). Radiative transfer model comparison with satellite observations over ceos calibration site Libya-4. Atmosphere13, 1759. doi:10.3390/atmos13111759

CrossRef Full Text | Google Scholar

Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., et al. (1998). MPI - The Complete Reference, 2. The MIT Press.

Google Scholar

Handley, W. J., Hobson, M. P., and Lasenby, A. N. (2015a). polychord: nested sampling for cosmology. Mon. Notices R. Astronomical Soc. Lett.450, L61–L65. doi:10.1093/mnrasl/slv047

CrossRef Full Text | Google Scholar

Handley, W. J., Hobson, M. P., and Lasenby, A. N. (2015b). polychord: next-generation nested sampling. Mon. Notices R. Astronomical Soc.453, 4385–4399. doi:10.1093/mnras/stv1911

CrossRef Full Text | Google Scholar

Hartogh, P., Błecka, M. I., Jarchow, C., Sagawa, H., Lellouch, E., de Val-Borro, M., et al. (2010). First results on Martian carbon monoxide fromHerschel/HIFI observations. Herschel/HIFI Obs.521, L48. doi:10.1051/0004-6361/201015159

CrossRef Full Text | Google Scholar

Hartogh, P. (1989). Chirptransformations-Spektrometer Fur die passive Millimeterwellenradiometrie: Messung der 142 GHz Emissionslinie des atmospharischen Ozons. Ph.D. thesis. Göttingen, Germany: Georg-August-Universität Göttingen.

Google Scholar

Hayes, J. J. C., Kerins, E., Awiphan, S., McDonald, I., Morgan, J. S., Chuanraksasat, P., et al. (2020). Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification. Mon. Not. R. Astron. Soc.494, 4492–4508. doi:10.1093/mnras/staa978

CrossRef Full Text | Google Scholar

Himes, M. D., Harrington, J., Cobb, A. D., Baydin, A. G., Soboczenski, F., O’Beirne, M. D., et al. (2022). Accurate machine-learning atmospheric retrieval via a neural-network surrogate model for radiative transfer. Planet. Sci. J.3, 91. doi:10.3847/PSJ/abe3fd

CrossRef Full Text | Google Scholar

Hoepfner, M., Stiller, G. P., Kuntz, M., von Clarmann, T., Echle, G., Funke, B., et al. (1998). Karlsruhe optimized and precise radiative transfer algorithm: II. Interface to retrieval applications. Interface Retr. Appl.3501, 186–195. doi:10.1117/12.317753

CrossRef Full Text | Google Scholar

Hollis, M., Tessenyi, M., and Tinetti, G. (2013). tau: A 1d radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres. Comput. Phys. Commun.184, 2351–2361. doi:10.1016/j.cpc.2013.05.011

CrossRef Full Text | Google Scholar

Howe, A. R., Burrows, A., and Deming, D. (2017). An information-theoretic approach to optimize jwst observations and retrievals of transiting exoplanet atmospheres. Astrophysical J.835, 96. doi:10.3847/1538-4357/835/1/96

CrossRef Full Text | Google Scholar

Howe, A. R., McElwain, M. W., and Mandell, A. M. (2022). Gj 229b: Solving the puzzle of the first known t dwarf with the apollo retrieval code. Astrophysical J.935, 107. doi:10.3847/1538-4357/ac5590

CrossRef Full Text | Google Scholar

Ih, J., and Kempton, E. M.-R. (2021). Understanding the effects of systematics in exoplanetary atmospheric retrievals. Astronomical J.162, 237. doi:10.3847/1538-3881/ac173b

CrossRef Full Text | Google Scholar

Irwin, P. G. J., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., et al. (2008). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf.109, 1136–1150. doi:10.1016/j.jqsrt.2007.11.006

CrossRef Full Text | Google Scholar

Jarchow, C. (1998). Bestimmung atmosphärischer wasserdampf-und ozone profile mittels bodengebundener millimeterwellen-fernerkundung.

Google Scholar

Johnsen, T. K., Marley, M. S., and Gulick, V. C. (2020). A multilayer perceptron for obtaining quick parameter estimations of cool exoplanets from geometric albedo spectra. Publ. Astronomical Soc. Pac.132, 044502. doi:10.1088/1538-3873/ab740d

CrossRef Full Text | Google Scholar

Kawahara, H., Kawashima, Y., Masuda, K., Crossfield, I. J. M., Pannier, E., and van den Bekerom, D. (2022). Autodifferentiable spectrum model for high-dispersion characterization of exoplanets and Brown dwarfs. Astrophysical J. Suppl. Ser.258, 31. doi:10.3847/1538-4365/ac3b4d

CrossRef Full Text | Google Scholar

Kitzmann, D., Heng, K., Oreshenko, M., Grimm, S. L., Apai, D., Bowler, B. P., et al. (2020). Helios-r2: A new bayesian, open-source retrieval model for Brown dwarfs and exoplanet atmospheres. Astrophysical J.890, 174. doi:10.3847/1538-4357/ab6d71

CrossRef Full Text | Google Scholar

Lacy, B. I., and Burrows, A. (2020). JWST transit spectra. i. exploring potential biases and opportunities in retrievals of tidally locked hot jupiters with clouds and hazes. Astrophysical J.905, 131. doi:10.3847/1538-4357/abc01c

CrossRef Full Text | Google Scholar

Lavie, B., Mendonça, J. M., Mordasini, C., Malik, M., Bonnefoy, M., Demory, B.-O., et al. (2017). HELIOS–RETRIEVAL:An open-source, nested sampling atmospheric retrieval code; application to the HR 8799 exoplanets and inferred constraints for planet formation. Astronomical J.154, 91. doi:10.3847/1538-3881/aa7ed8

CrossRef Full Text | Google Scholar

Lee, E. K. H., Wardenier, J. P., Prinoth, B., Parmentier, V., Grimm, S. L., Baeyens, R., et al. (2022). 3D radiative transfer for exoplanet atmospheres. gCMCRT: A GPU-accelerated mcrt code. gCMCRT A GPU-accelerated MCRT Code929, 180. doi:10.3847/1538-4357/ac61d6

CrossRef Full Text | Google Scholar

Lee, J.-M., Fletcher, L. N., and Irwin, P. G. J. (2011). Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy. Mon. Notices R. Astronomical Soc.420, 170–182. doi:10.1111/j.1365-2966.2011.20013.x

CrossRef Full Text | Google Scholar

Lee, K.-S., Lee, C. S., Seo, M., Choi, S., Seong, N.-H., Jin, D., et al. (2020). Improvements of 6s look-up-table based surface reflectance employing minimum curvature surface method. Asia-Pacific J. Atmos. Sci.56, 235–248. doi:10.1007/s13143-019-00164-3

CrossRef Full Text | Google Scholar

Lellouch, E., Gurwell, M., Butler, B., Fouchet, T., Lavvas, P., Strobel, D., et al. (2017). Detection of CO and HCN in pluto’s atmosphere with ALMA. Icarus286, 289–307. doi:10.1016/j.icarus.2016.10.013

CrossRef Full Text | Google Scholar

Li, C., Le, T., Zhang, X., and Yung, Y. L. (2018). A high-performance atmospheric radiation package: With applications to the radiative energy budgets of giant planets. J. Quantitative Spectrosc. Radiat. Transf.217, 353–362. doi:10.1016/j.jqsrt.2018.06.002

CrossRef Full Text | Google Scholar

Lin, Z., Stamnes, S., Li, W., Hu, Y., Laszlo, I., Tsay, S.-C., et al. (2022). Polarized radiative transfer simulations: A tutorial review and upgrades of the vector discrete ordinate radiative transfer computational tool. Front. Remote Sens.3. doi:10.3389/frsen.2022.880768

CrossRef Full Text | Google Scholar

Line, M. R., Wolf, A. S., Zhang, X., Knutson, H., Kammer, J. A., Ellison, E., et al. (2013). A systematic retrieval analysis of secondary eclipse spectra. I. A Comp. Atmos. Retr. Tech.775, 137. doi:10.1088/0004-637X/775/2/137

CrossRef Full Text | Google Scholar

Line, M. R., Zhang, X., Vasisht, G., Natraj, V., Chen, P., and Yung, Y. L. (2012). Information content of exoplanetary transit spectra: AN initial look. Astrophysical J.749, 93. doi:10.1088/0004-637x/749/1/93

CrossRef Full Text | Google Scholar

López-Puertas, M., Montañés-Rodríguez, P., Pallé, E., Höpfner, M., Sánchez-López, A., García-Comas, M., et al. (2018). Aerosols and water ice in jupiter’s stratosphere from UV-nir ground-based observations. Astron. J.156, 169. doi:10.3847/1538-3881/aadcef

CrossRef Full Text | Google Scholar

Lothringer, J. D., and Barman, T. S. (2020). The PHOENIX exoplanet retrieval algorithm and using H opacity as a probe in ultrahot jupiters. Astronomical J.159, 289. doi:10.3847/1538-3881/ab8d33

CrossRef Full Text | Google Scholar

Lupu, R. E., Marley, M. S., Lewis, N., Line, M., Traub, W. A., and Zahnle, K. (2016). Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. i. methane abundances and basic cloud properties. Astronomical J.152, 217. doi:10.3847/0004-6256/152/6/217

CrossRef Full Text | Google Scholar

Lustig-Yaeger, J., Sotzen, K. S., Stevenson, K. B., Luger, R., May, E. M., Mayorga, L. C., et al. (2022). Hierarchical bayesian atmospheric retrieval modeling for population studies of exoplanet atmospheres: A case study on the habitable zone. Astronomical J.163, 140. doi:10.3847/1538-3881/ac5034

CrossRef Full Text | Google Scholar

MacDonald, R. J., and Batalha, N. E. (2023). A catalog of exoplanet atmospheric retrieval codes. Res. Notes AAS7, 54. doi:10.3847/2515-5172/acc46a

CrossRef Full Text | Google Scholar

MacDonald, R. J., and Lewis, N. K. (2022). Trident: A rapid 3d radiative-transfer model for exoplanet transmission spectra. Astrophysical J.929, 20. doi:10.3847/1538-4357/ac47fe

CrossRef Full Text | Google Scholar

MacDonald, R. J., and Madhusudhan, N. (2017). HD 209458b in new light: Evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc.469, 1979–1996. doi:10.1093/mnras/stx804

CrossRef Full Text | Google Scholar

Madhusudhan, N. (2018). Atmospheric retrieval of exoplanets. Cham: Springer International Publishing, 1–30. doi:10.1007/978-3-319-30648-3_104-1

CrossRef Full Text | Google Scholar

Madhusudhan, N., Crouzet, N., McCullough, P. R., Deming, D., and Hedges, C. (2014). H2O abundances in the atmospheres of three hot jupiters, 791–L9. doi:10.1088/2041-8205/791/1/L9

CrossRef Full Text | Google Scholar

Madhusudhan, N., Harrington, J., Stevenson, K. B., Nymeyer, S., Campo, C. J., Wheatley, P. J., et al. (2011). A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. 469, 64–67. doi:10.1038/nature09602

PubMed Abstract | CrossRef Full Text | Google Scholar

Madhusudhan, N., and Seager, S. (2009). A temperature and abundance retrieval method for exoplanet atmospheres, 707, 24–39. doi:10.1088/0004-637X/707/1/24

CrossRef Full Text | Google Scholar

Madhusudhan, N., and Seager, S. (2010). On the inference of thermal inversions in hot jupiter atmospheres. Astrophys. J.725, 261–274. doi:10.1088/0004-637X/725/1/261

CrossRef Full Text | Google Scholar

Marley, M. S., and McKay, C. P. (1999). Thermal structure of uranus’ atmosphere. Icarus138, 268–286. doi:10.1006/icar.1998.6071

PubMed Abstract | CrossRef Full Text | Google Scholar

Marquez-Neila, P., Fisher, C., Sznitman, R., and Heng, K. (2018). Supervised machine learning for analysing spectra of exoplanetary atmospheres. doi:10.48550/ARXIV.1806.03944

CrossRef Full Text | Google Scholar

Martin-Torres, F. J., and Mlynczak, M. G. (2005). FUTBOLIN (full transfer by ordinary LINe-by-line methods): A new radiative transfer code for atmospheric calculations in the visible and infrared 2005, A21A–A05.

Google Scholar

Martínez, F. A., Min, M., Kamp, I., and Palmer, P. I. (2022). Convolutional neural networks as an alternative to bayesian retrievals for interpreting exoplanet transmission spectra. Astron. &amp Astrophys.662, A108. doi:10.1051/0004-6361/202142976

CrossRef Full Text | Google Scholar

Matricardi, M. (2007). An inter-comparison of line-by-line radiative transfer models. doi:10.21957/b3amji4k

CrossRef Full Text | Google Scholar

Mayer, B., and Kylling, A. (2005). Technical note: The libradtran software package for radiative transfer calculations - description and examples of use. Atmos. Chem. Phys.5, 1855–1877. doi:10.5194/acp-5-1855-2005

CrossRef Full Text | Google Scholar

Mendrok, J. (2006). The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties. Berlin: Ph.D. thesis, Freie Univ.

Google Scholar

Min, M., Ormel, C. W., Chubb, K., Helling, C., and Kawashima, Y. (2020). The ARCiS framework for exoplanet atmospheres. Model. philosophy Retr.642, A28. doi:10.1051/0004-6361/201937377

CrossRef Full Text | Google Scholar

Mollière, P., Wardenier, J. P., van Boekel, R., Henning, Th., Molaverdikhani, K., and Snellen, I. A. G. (2019). Petitradtrans - a python radiative transfer package for exoplanet characterization and retrieval. A&A627, A67. doi:10.1051/0004-6361/201935470

CrossRef Full Text | Google Scholar

Montañés-Rodríguez, P., González-Merino, B., Pallé, E., López-Puertas, M., and García-Melendo, E. (2015). Jupiter as an Exoplanet: UV to NIR Transmission Spectrum Reveals Hazes, a Na Layer, and Possibly Stratospheric H2O-ice Clouds, 801, L8. doi:10.1088/2041-8205/801/1/L8

CrossRef Full Text | Google Scholar

Moreno, R., Marten, A., Biraud, Y., Bézard, B., Lellouch, E., Paubert, G., et al. (2001). Jovian stratospheric temperature during the two months following the impacts of comet Shoemaker–Levy 9Shoemaker-Levy 949, 473–486. doi:10.1016/S0032-0633(00)00139-2

CrossRef Full Text | Google Scholar

Moreno, R. (1998). Observations millimetriques et submillimetriques des planetes geantes. Etude de jupiter apres la chute de la comete sl9. Ph.D. thesis. Thèse de doctorat dirigée par Marten, André Terre, océan, espace Paris 6 1998.

Google Scholar

Niraula, P., de Wit, J., Gordon, I. E., Hargreaves, R. J., Sousa-Silva, C., and Kochanov, R. V. (2022). The impending opacity challenge in exoplanet atmospheric characterization. Nat. Astron.6, 1287–1295. doi:10.1038/s41550-022-01773-1

CrossRef Full Text | Google Scholar

Nixon, M. C., and Madhusudhan, N. (2020). Assessment of supervised machine learning for atmospheric retrieval of exoplanets. Mon. Not. R. Astron. Soc.496, 269–281. doi:10.1093/mnras/staa1150

CrossRef Full Text | Google Scholar

Nixon, M. C., and Madhusudhan, N. (2022). Aura-3D: A three-dimensional atmospheric retrieval framework for exoplanet transmission spectra. Astrophys. J.935, 73. doi:10.3847/1538-4357/ac7c09

CrossRef Full Text | Google Scholar

Oreshenko, M., Lavie, B., Grimm, S. L., Tsai, S.-M., Malik, M., Demory, B.-O., et al. (2017). Retrieval Analysis of the Emission Spectrum of WASP-12b: Sensitivity of Outcomes to Prior Assumptions and Implications for Formation History, 847, L3. doi:10.3847/2041-8213/aa8acf

CrossRef Full Text | Google Scholar

Piette, A. A. A., Madhusudhan, N., and Mandell, A. M. (2021). HyDRo: Atmospheric retrieval of rocky exoplanets in thermal emission. Mon. Notices R. Astronomical Soc.511, 2565–2584. doi:10.1093/mnras/stab3612

CrossRef Full Text | Google Scholar

Pinhas, A., Rackham, B. V., Madhusudhan, N., and Apai, D. (2018). Retrieval of planetary and stellar properties in transmission spectroscopy with Aura. Mon. Notices R. Astronomical Soc.480, 5314–5331. doi:10.1093/mnras/sty2209

CrossRef Full Text | Google Scholar

Ramon, D., Steinmetz, F., Jolivet, D., Compiègne, M., and Frouin, R. (2019). Modeling polarized radiative transfer in the ocean-atmosphere system with the gpu-accelerated smart-g Monte Carlo code. J. Quantitative Spectrosc. Radiat. Transf.222-223, 89–107. doi:10.1016/j.jqsrt.2018.10.017

CrossRef Full Text | Google Scholar

Rengel, M. (2022). About the atomic and molecular databases in the planetary community. doi:10.5281/zenodo.7040446

CrossRef Full Text | Google Scholar

Rengel, M., Hartogh, P., and Jarchow, C. (2008). Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations. HHSMT Co. spectral-line Obs.56, 1368–1384. doi:10.1016/j.pss.2008.07.004

CrossRef Full Text | Google Scholar

Rengel, M., Shulyak, D., Hartogh, P., Sagawa, H., Moreno, R., Jarchow, C., et al. (2022). Ground-based HCN submillimetre measurements in titan’s atmosphere: An intercomparison with herschel observations, 658, A88. doi:10.1051/0004-6361/202141422

CrossRef Full Text | Google Scholar

Ricchiazzi, P., Yang, S., and Gautier, C. (2002). Sbdart: A practical tool for plane-parallel radiative transfer in the earth’s atmosphere.

Google Scholar

Robbins-Blanch, N., Kataria, T., Batalha, N. E., and Adams, D. J. (2022). Cloudy and cloud-free thermal phase curves with picaso: Applications to wasp-43b. Astrophysical J.930, 93. doi:10.3847/1538-4357/ac658c

CrossRef Full Text | Google Scholar

Robinson, T. D., Meadows, V. S., Crisp, D., Deming, D., A’Hearn, M. F., Charbonneau, D., et al. (2011). Earth as an extrasolar planet: Earth model validation using epoxi Earth observations. Astrobiology11, 393–408. doi:10.1089/ast.2011.0642

PubMed Abstract | CrossRef Full Text | Google Scholar

Robinson, T. D., and Salvador, A. (2023). Exploring and validating exoplanet atmospheric retrievals with solar system analog observations. Planet. Sci. J.4, 10. doi:10.3847/PSJ/acac9a

CrossRef Full Text | Google Scholar

Rozanov, A., Rozanov, V., Buchwitz, M., Kokhanovsky, A., and Burrows, J. (2005). Sciatran 2.0 – A new radiative transfer model for geophysical applications in the 175–2400nm spectral region. Adv. Space Res.36, 1015–1019. doi:10.1016/j.asr.2005.03.012

CrossRef Full Text | Google Scholar

Rozanov, V., Rozanov, A., Kokhanovsky, A., and Burrows, J. (2014). Radiative transfer through terrestrial atmosphere and ocean: Software package sciatran. J. Quantitative Spectrosc. Radiat. Transf.133, 13–71. doi:10.1016/j.jqsrt.2013.07.004

CrossRef Full Text | Google Scholar

Saunders, R., Matricardi, M., and Brunel, P. (1999). An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorological Soc.125, 1407–1425. doi:10.1002/qj.1999.49712555615

CrossRef Full Text | Google Scholar

Scheucher, M., Wunderlich, F., Grenfell, J. L., Godolt, M., Schreier, F., Kappel, D., et al. (2020). Consistently simulating a wide range of atmospheric scenarios for K2-18b with a flexible radiative transfer module. Astrophys. J.898, 44. doi:10.3847/1538-4357/ab9084

CrossRef Full Text | Google Scholar

Schreier, F., Gimeno García, S., Hedelt, P., Hess, M., Mendrok, J., Vasquez, M., et al. (2014). Garlic — A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation. J. Quantitative Spectrosc. Radiat. Transf.137, 29–50. doi:10.1016/j.jqsrt.2013.11.018

CrossRef Full Text | Google Scholar

Schreier, F., Milz, M., Buehler, S. A., and von Clarmann, T. (2018). Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes. J. Quantitative Spectrosc. Radiat. Transf.211, 64–77. doi:10.1016/j.jqsrt.2018.02.032

CrossRef Full Text | Google Scholar

Scott, N. A. (1974). A direct method of computation of the transmission function of an inhomogeneous gaseous medium - I: Description of the method. J. Quant. Spectrosc. Radiat. Transf.14, 691–704. doi:10.1016/0022-4073(74)90116-2

CrossRef Full Text | Google Scholar

Scott, N. A., and Chedin, A. (1981). A fast line-by line method for atmospheric absorption computations: The automatized atmospheric absorption atlas. J. Appl. Meteorology20, 802–812. doi:10.1175/1520-0450(1981)020⟨0802:AFLBLM⟩2.0.CO;2

CrossRef Full Text | Google Scholar

Seidel, J. V., Ehrenreich, D., Pino, L., Bourrier, V., Lavie, B., Allart, R., et al. (2020). Wind of change: Retrieving exoplanet atmospheric winds from high-resolution spectroscopy. A&A633, A86. doi:10.1051/0004-6361/201936892

CrossRef Full Text | Google Scholar

Shulyak, D., Lara, L. M., Rengel, M., and Nèmec, N. E. (2020). Stellar impact on disequilibrium chemistry and observed spectra of hot Jupiter atmospheres, 639, A48. doi:10.1051/0004-6361/201937210

CrossRef Full Text | Google Scholar

Shulyak, D., Rengel, M., Reiners, A., Seemann, U., and Yan, F. (2019). Remote sensing of exoplanetary atmospheres with ground-based high-resolution near-infrared spectroscopy, 629, A109. doi:10.1051/0004-6361/201935691

CrossRef Full Text | Google Scholar

Smith, H. J. P., Dube, D. J., Gardner, M. E., Clough, S. A., and Kneizys, F. X. (1978). Fascode: Fast Atmospheric Signature CODE (spectral transmittance and radiance).

Google Scholar

Soboczenski, F., Himes, M. D., O’Beirne, M. D., Zorzan, S., Gunes Baydin, A., Cobb, A. D., et al. (2018). Bayesian deep learning for exoplanet atmospheric retrieval. arXiv e-prints , arXiv:1811.03390.

Google Scholar

Speagle, J. S. (2020). dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Notices R. Astronomical Soc.493, 3132–3158. doi:10.1093/mnras/staa278

CrossRef Full Text | Google Scholar

Spurr, R., and Christi, M. (2019). The LIDORT and VLIDORT linearized scalar and vector discrete ordinate radiative transfer models: Updates in the last 10 years. Cham: Springer International Publishing, 1–62. doi:10.1007/978-3-030-03445-0_1

CrossRef Full Text | Google Scholar

Stamnes, K., Hamre, B., Stamnes, S., Chen, N., Fan, Y., Li, W., et al. (2018). Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: A review and description of the accurt model. Appl. Sci.8, 2682. doi:10.3390/app8122682

CrossRef Full Text | Google Scholar

Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Laszlo, I. (2000). Disort: A general-purpose fortran program for discrete ordinate-method radiative transfer in scattering and emitting layered media: Documentation of methodology. Greenbelt, United States: Nasa report, NASA.

Google Scholar

Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweera, K. (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt.27, 2502–2509. doi:10.1364/ao.27.002502

PubMed Abstract | CrossRef Full Text | Google Scholar

Stiller, G. P., Hoepfner, M., Kuntz, M., von Clarmann, T., Echle, G., Fischer, H., et al. (1998). Karlsruhe optimized and precise radiative transfer algorithm. Part I: Requirements, justification, and model error estimation. Justif. Model. error Estim.3501, 257–268. doi:10.1117/12.317754

CrossRef Full Text | Google Scholar

Stiller, G. P. (2000). The Karlsruhe optimized and precise radiative transfer algorithm. Karlsruhe, Germany: Tech. rep. LK 01; Wissenschaftliche Berichte, FZKA-6487 (Dezember 2000). doi:10.5445/IR/270048971.22.02.11

CrossRef Full Text | Google Scholar

Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Hase, F., Höpfner, M., et al. (2002). Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling. J. Quantitative Spectrosc. Radiat. Transf.72, 249–280. doi:10.1016/S0022-4073(01)00123-6

CrossRef Full Text | Google Scholar

Stolker, T., Quanz, S. P., Todorov, K. O., Kühn, J., Mollière, P., Meyer, M. R., et al. (2020). Miracles: Atmospheric characterization of directly imaged planets and substellar companions at 4–5 μm: I. Photometric analysis of β pic b, HIP 65426 b, PZ tel B, and HD 206893 B. A&A635, A182. doi:10.1051/0004-6361/201937159

CrossRef Full Text | Google Scholar

Strow, L., Hannon, S., De Souza-Machado, S., Motteler, H., and Tobin, D. (2003). An overview of the airs radiative transfer model. IEEE Trans. Geoscience Remote Sens.41, 303–313. doi:10.1109/TGRS.2002.808244

CrossRef Full Text | Google Scholar

Swain, M. R., Line, M. R., and Deroo, P. (2014). On the detection of molecules in the atmosphere of hd 189733b using hst nicmos transmission spectroscopy. Astrophysical J.784, 133. doi:10.1088/0004-637X/784/2/133

CrossRef Full Text | Google Scholar

Tinetti, G., Meadows, V. S., Crisp, D., Fong, W., Fishbein, E., Turnbull, M., et al. (2006a). Detectability of planetary characteristics in disk-averaged spectra. I: The earth model. Astrobiology6, 34–47. doi:10.1089/ast.2006.6.34

PubMed Abstract | CrossRef Full Text | Google Scholar

Tinetti, G., Meadows, V. S., Crisp, D., Kiang, N., Kahn, B. H., Velusamy, T., et al. (2006b). Detectability of planetary characteristics in disk-averaged spectra II: Synthetic spectra and light-curves of earth. Astrobiology6, 881–900. doi:10.1089/ast.2006.6.881

PubMed Abstract | CrossRef Full Text | Google Scholar

Tremblin, P., Amundsen, D. S., Mourier, P., Baraffe, I., Chabrier, G., Drummond, B., et al. (2015). Fingering convection and cloudless models for cool Brown dwarf atmospheres, 804, L17. doi:10.1088/2041-8205/804/1/L17

CrossRef Full Text | Google Scholar

Urban, J., Baron, P., Lautié, N., Schneider, N., Dassas, K., Ricaud, P., et al. (2004). Moliere (v5): A versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range. J. Quantitative Spectrosc. Radiat. Transf.83, 529–554. doi:10.1016/S0022-4073(03)00104-3

CrossRef Full Text | Google Scholar

Vandaele, A., Kruglanski, M., and Maziere, D. (2006b). Modeling and retrieval of atmospheric spectra using asimut. Atmos. Sci. Conf.628, 71.

Google Scholar

Vandaele, A., Kruglanski, M., and De Mazière, M. (2006a). Modeling and retrieval of atmospheric spectra using asimut. European Space Agency. (Special Publication) ESA SP.

Google Scholar

Vasist, M., Rozet, F., Absil, O., Mollière, P., Nasedkin, E., and Louppe, G. (2023). Neural posterior estimation for exoplanetary atmospheric retrieval.

Google Scholar

Villanueva, G. L., Liuzzi, G., Faggi, S., Protopapa, S., Kofman, V., Fauchez, T., et al. (2022). Fundamentals of the planetary spectrum generator.

Google Scholar

Villanueva, G. L., Mumma, M. J., Novak, R. E., Käufl, H. U., Hartogh, P., Encrenaz, T., et al. (2015). Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science348, 218–221. doi:10.1126/science.aaa3630

PubMed Abstract | CrossRef Full Text | Google Scholar

Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., and Mandell, A. M. (2018). Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. small bodies Exopl.217, 86–104. doi:10.1016/j.jqsrt.2018.05.023

CrossRef Full Text | Google Scholar

Wakeford, H. R., Sing, D. K., Kataria, T., Deming, D., Nikolov, N., Lopez, E. D., et al. (2017). HAT-P-26b: A neptune-mass exoplanet with a well-constrained heavy element abundance. Science356, 628–631. doi:10.1126/science.aah4668

PubMed Abstract | CrossRef Full Text | Google Scholar

Waldmann, I. P. (2016). Dreaming Atmos.820, 107. doi:10.3847/0004-637X/820/2/107

CrossRef Full Text

Waldmann, I. P., Rocchetto, M., Tinetti, G., Barton, E. J., Yurchenko, S. N., and Tennyson, J. (2015a). Tau-REx II: Retrieval of emission spectra. Astrophys. J.813, 13. doi:10.1088/0004-637X/813/1/13

CrossRef Full Text | Google Scholar

Waldmann, I. P., Tinetti, G., Rocchetto, M., Barton, E. J., Yurchenko, S. N., and Tennyson, J. (2015b). Tau-REx I: A next generation retrieval code for exoplanetary atmospheres. Astrophys. J.802, 107. doi:10.1088/0004-637X/802/2/107

CrossRef Full Text | Google Scholar

Welbanks, L., and Madhusudhan, N. (2021). Aurora: A generalized retrieval framework for exoplanetary transmission spectra. Astrophysical J.913, 114. doi:10.3847/1538-4357/abee94

CrossRef Full Text | Google Scholar

Welbanks, L., and Madhusudhan, N. (2019). On degeneracies in retrievals of exoplanetary transmission spectra. Astronomical J.157, 206. doi:10.3847/1538-3881/ab14de

CrossRef Full Text | Google Scholar

Weng, F., Yu, X., Duan, Y., Yang, J., and Wang, J. (2020). Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci.37, 131–136. doi:10.1007/s00376-019-9170-2

CrossRef Full Text | Google Scholar

Yip, K. H., Changeat, Q., Al-Refaie, A., and Waldmann, I. (2022). To sample or not to sample: Retrieving exoplanetary spectra with variational inference and normalising flows.

Google Scholar

Zawada, D. J., Dueck, S. R., Rieger, L. A., Bourassa, A. E., Lloyd, N. D., and Degenstein, D. A. (2015). High-resolution and Monte Carlo additions to the sasktran radiative transfer model. Atmos. Meas. Tech.8, 2609–2623. doi:10.5194/amt-8-2609-2015

CrossRef Full Text | Google Scholar

Zhang, M., Chachan, Y., Kempton, E. M. R., Knutson, H. A., and Chang, W. H. (2020). Platon II: New capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Transit Eclipse Data899, 27. doi:10.3847/1538-4357/aba1e6

CrossRef Full Text | Google Scholar

Zhang, X. (2020). Atmospheric regimes and trends on exoplanets and Brown dwarfs. Res. Astronomy Astrophysics20, 099. doi:10.1088/1674-4527/20/7/99

CrossRef Full Text | Google Scholar

Zingales, T., and Waldmann, I. P. (2018). ExoGAN: Retrieving exoplanetary atmospheres using deep convolutional generative adversarial networks. Astronomical J.156, 268. doi:10.3847/1538-3881/aae77c

CrossRef Full Text | Google Scholar

Keywords: atmospheres, radiative transfer, planets and satellites, retrieval, exoplanets

Citation: Rengel M and Adamczewski J (2023) Radiative transfer and inversion codes for characterizing planetary atmospheres: an overview. Front. Astron. Space Sci. 10:1176740. doi: 10.3389/fspas.2023.1176740

Received: 28 February 2023; Accepted: 15 May 2023;
Published: 30 May 2023.

Edited by:

Josep M. Trigo-Rodríguez, Spanish National Research Council (CSIC), Spain

Reviewed by:

Knut Stamnes, Stevens Institute of Technology, United States

Copyright © 2023 Rengel and Adamczewski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: M. Rengel, rengel@mps.mpg.de

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.