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Solar granulation is the visible signature of convective cells at the solar surface. The
granulation cellular pattern observed in the continuum intensity images is characterised by
diverse structures e.g., bright individual granules of hot rising gas or dark intergranular
lanes. Recently, the access to new instrumentation capabilities has given us the possibility
to obtain high-resolution images, which have revealed the overwhelming complexity of
granulation (e.g., exploding granules and granular lanes). In that sense, any research
focused on understanding solar small-scale phenomena on the solar surface is sustained
on the effective identification and localization of the different resolved structures. In this
work, we present the initial results of a proposed classification model of solar granulation
structures based on neural semantic segmentation. We inspect the ability of the U-net
architecture, a convolutional neural network initially proposed for biomedical image
segmentation, to be applied to the dense segmentation of solar granulation. We use
continuum intensity maps of the IMaX instrument onboard the Sunrise I balloon-borne
solar observatory and their corresponding segmented maps as a training set. The training
data have been labeled using the multiple-level technique (MLT) and also by hand. We
performed several tests of the performance and precision of this approach in order to
evaluate the versatility of the U-net architecture. We found an appealing potential of the
U-net architecture to identify cellular patterns in solar granulation images reaching an
average accuracy above 80% in the initial training experiments.

Keywords: solar physics, solar granulation, photosphere–convection, dense segmentation, deep learning–artificial
neural network

1 INTRODUCTION

The solar photosphere is the lowest visible layer of the solar atmosphere, where the solar plasma
changes from almost completely opaque to almost completely transparent, forming the so-called
solar surface (Stix, 2002). Continuum intensity images of this layer reveal the existence of the solar
granulation. It covers most of the solar surface and is characterized by a recurrent and dynamical
cellular pattern. Individual elements are called granules, which are relatively small and bright bubble-
like structures with horizontal scales in the order of megameters (103 km) evolving on timescales of
minutes (Nordlund et al., 2009). Solar granules are evidence of the overturning convection process

Edited by:
Bala Poduval,

University of New Hampshire,
United States

Reviewed by:
Reinaldo Roberto Rosa,

National Institute of Space Research
(INPE), Brazil

Herbert Muthsam,
University of Vienna, Austria

Jerome Ballot,
UMR5277 Institut de Recherche en

Astrophysique et Planétologie (IRAP),
France

*Correspondence:
S. M. Díaz Castillo

smdiazcas@leibniz-kis.de

Specialty section:
This article was submitted to

Astrostatistics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 15 March 2022
Accepted: 23 May 2022
Published: 23 June 2022

Citation:
Díaz Castillo SM, Asensio Ramos A,

Fischer CE and Berdyugina SV (2022)
Towards the Identification and

Classification of Solar Granulation
Structures Using

Semantic Segmentation.
Front. Astron. Space Sci. 9:896632.

doi: 10.3389/fspas.2022.896632

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 8966321

ORIGINAL RESEARCH
published: 23 June 2022

doi: 10.3389/fspas.2022.896632

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.896632&domain=pdf&date_stamp=2022-06-23
https://www.frontiersin.org/articles/10.3389/fspas.2022.896632/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.896632/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.896632/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.896632/full
http://creativecommons.org/licenses/by/4.0/
mailto:smdiazcas@leibniz-kis.de
https://doi.org/10.3389/fspas.2022.896632
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.896632


occurring at the solar interior, where hot plasma rises at their
centre, then cools down and sinks downward at the edges (Stix,
2002). An intergranular region forms when the granule’s cool
plasma drives down into the solar interior. This relatively darker
narrow lane surrounding the granules is another identifiable
structure at the solar surface. (Nordlund et al., 2009).

Detailed studies of small-scale phenomena on the solar surface
have shown specific and systematic morphological patterns in the
granulation. A type of pattern that has been studied extensively is
the so-called Exploding granules. They were first described by
Carlier et al. (1968) as special types of granules with sizes
2–3 times bigger than regular ones, being a product of their
rapid horizontal expansion. Based on their morphology,
exploding granules are characterized by a reduction in the
continuum intensity in their centre, generating a “dark dot”,
which eventuality evolves by fragmenting (Kitai and Kawaguchi,
1979; Namba, 1986; Hirzberger et al., 1999). Several observational
and numerical studies revealed that exploding granules have a
close relationship with mesogranular dynamics (Domínguez
Cerdeña, 2003; Roudier et al., 2003; Roudier and Muller,
2004), small-scale magnetic field diffusion and concentration
(Roudier et al., 2016; Malherbe et al., 2018), and small-scale
magnetic flux emergence (De Pontieu, 2002; Palacios et al., 2012;
Rempel, 2018; Guglielmino et al., 2020). Another extensively
studied pattern are Bright points, point-like bright elements
localized within intergranular lanes and which can be clearly
identified in certain photospheric spectral bands such as the
Fraunhofer’s G band (Muller and Roudier, 1984). Those are
mostly related with magnetic field elements, being perfect
tracers of high magnetic field concentrations in intensity
images ((Bellot Rubio and Orozco Suárez, 2019) and
references therein). More recently, Granular lanes have been
reported as another subgranular pattern of interest (Steiner
et al., 2010). Those are arch-like signatures moving from the
boundary of a granule into the granule itself. In general, they do
not completely cover the granules and are associated with a linear
polarisation signal, which corresponds to the emergence of
horizontal magnetic fields (Fischer et al., 2020). Granular lanes
were described in simulations as signatures of underlying tubes of
vortex flow with their axis oriented parallel to the solar surface
(Steiner et al., 2010).

The capabilities of the new and upcoming solar telescopes
(Daniel K. Inouye Solar Telescope–DKIST (Rimmele et al., 2020)
or Balloon-borne telescope Sunrise III (Solanki et al., 2017)) will
provide us with large amounts of unprecedented high-resolution
images, which could reveal the next level of complexity of
granulation. The statistical study of photospheric plasma
dynamics at this level of resolution will rely on the correct
identification, classification and localization of systematic
structures. For this specific task, automatic solutions can be
implemented, for instance, Machine Learning techniques (ML)
have demonstrated promising results in classification tasks on
solar images (Armstrong and Fletcher, 2019; Love et al., 2020;
Baek et al., 2021; Chola and Benifa, 2022). The demonstrated
effectiveness of those algorithms in pattern identification tasks
has motivated us toward the exploration of Deep Learning (DL)
in semantic segmentation tasks, i.e., producing automatically

labelled maps at the pixel level in order to rapidly distinguish
diverse granulation patterns, such as described previously.

Machine Learning techniques have acquired high popularity
in resolving diverse problems in daily life during the last decade.
For instance, giving computers the ability to learn representations
without being directly programmed for a specific task has been
extensively leveraged in computer vision (Sebe et al., 2005).
Convolutional Neural Networks (CNNs) were particularly
developed for image recognition tasks (Le Cun et al., 1997;
Krizhevsky et al., 2012). Inspired by biological visual
perception, CNNs are trained to react to specific image
features, starting from simple forms, as lines or edges, and
then detecting more complex and abstract patterns in
subsequent layers (Ghosh et al., 2020). Sequentially combining
layers inside the network to progressively extract higher-level
features is the main line of the DL success (Aloysius and Geetha,
2017). Taking advantage of large amounts of data, this approach
may achieve unprecedented performance on several perception
tasks, e.g., instance classification (Simonyan and Zisserman, 2015;
Huang et al., 2017), object detection (Girshick, 2015) or optical
flow estimation (Ilg et al., 2017).

Another task that saw an important push forward with DL was
dense prediction, i.e., prediction at a pixel level in images, such as
semantic segmentation (Shelhamer et al., 2017; Chen et al., 2018),
which solves the classification problem working at pixel
resolution. More specifically, the aim is to group the pixels of
an image into categories, providing precise localization of labeled
structures. Additionally, semantic segmentation seeks to partition
the image into semantic meaningful parts (Szeliski, 2011). This
paradigm has been successfully addressed using Encoder-
Decoder architectures (Badrinarayanan et al., 2017; Yanli and
Pengpeng, 2021). Leveraging the properties of CNNs, this type of
architecture is capable of producing spatially consistent
classification maps, thus providing precise localization of
objects of interest.

In this work, we propose to train supervisedly and evaluate the
performance of a CNN to carry out solar granulation
segmentation. To this end, we apply an encoder-decoder
architecture called U-net (Ronneberger et al., 2015). This
architecture was developed for biomedical image segmentation
tasks, and it is especially interesting for our objectives since it has
been successfully applied to cellular pattern segmentation. It can
work with few training images, and it achieves high levels of
accuracy in the localization of specific structures (Ronneberger
et al., 2015).

2 METHODS

2.1 U-Net Architecture
A U-net is composed of fully CNN layers organized in an encoder-
decoder architecture (Ronneberger et al., 2015)1. The encoder part
(left side of Figure 1) is responsible for producing a low

1More information can be found at https://lmb.informatik.uni-freiburg.de/people/
ronneber/u-net/
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dimensionality dense representation of an image. In the initial stage,
the contracting network receives an image of a specific sizeH (height)
× W (width), which is downsampled by sequential layers, each
composed by the following operations:

1. Two 3 × 3 padded convolution operations each followed by a
rectified linear unit (entire operation represented by orange
arrows in the Figure 1). As the fundamental components of
the convolutional neural network, 2D convolution operations
transform the image into feature maps using a set of filters or
kernels. Those resulting feature maps then pass through a non-
linear activation function. We use a set of 64 3 × 3 kernels
generating features maps of 64 (depth) × H × W in the initial
operation. Then for the subsequent one, each kernel will have a
depth dimension, which corresponds to the feature map depth
previously generated. We used padded operations in order to not
change the size of the input map during the convolution
operations (Dumoulin and Visin, 2016). U-net convolutional
operations use a rectified linear unit (ReLU) as the default
activation function, which gives the non-linear character to the
network. This function is characterized by being linear for input
positive values and zero for input negative values. It is well-
behaved and converges fast when using the stochastic gradient
descent algorithm. Consequently, it is commonly used as an
activation function in deep neural networks (Schmidhuber, 2014).

2. A 2 × 2 max-pooling operation with stride 2, which reduces
the dimensions of the input map by computing the maximum
value of each successive 2 × 2 pixel set to produce a
downsampled map (pink arrows in Figure 1). During this
process, the spatial information is reduced by a factor of two,
while the feature information is increased by a factor of two.

When the lower level is reached, the lower feature map is
then expanded by upsampling sequential layers in the decoder
part (right side of the Figure 1), which is responsible for
recovering the initial spatial dimension. This
expanding network consists of upsampled layers, each
composed by:

1. Two 3 × 3 padded convolution operations, each followed by a
rectified linear unit (orange arrows in the Figure 1) equivalent
to the operations of the encoder part.

2. A 2 × 2 transposed convolution with stride 2 as the
upsampling operation (green arrows in Figure 1). Those
seek to reverse the encoder downsampling operations, while
broadcasting input elements via a set of 2 × 2 kernels, thereby
producing an output that is larger than the input (Dumoulin
and Visin, 2016). During this process, the spatial information
is increased by a factor of two, while the feature information is
reduced by a factor of two.

As the outstanding component of the U-net architecture,
each expansion layer is concatenated with high-resolution
features from the encoder path at the same level (see grey
blocks in Figure 1), giving the network the capacity to localize
with precision. We use five levels of contraction and
expansion, like in the original U-net model, giving it its
characteristic symmetrical shape. Finally, at the end of the
sequence, a 1 × 1 convolution operation produces probability
maps per class as output with the same sizes as the original
map. Using the configuration shown in Figure 1, our model
employs around 31 million trainable parameters or
hyperparameters.

FIGURE 1 | Schematic sketch of the U-net architecture used, going sequentially from left to right. Each blue box corresponds to a feature map. The depth of the
map is denoted on top of the box. Gray boxes represent copied feature maps. The arrows denote the different operations. We use 64 kernels (feature information) for the
initial kernel set, whose number increases sequentially in the contraction levels and decreases in the expansion levels as seen in the feature maps depth values. Based on
the intrinsic properties of a fully convolutional neural network, the height (H) and width (W) of the input images can be arbitrary numbers but must be equal (squared
maps). For the training procedure, we use input maps of sizes of 128 × 128. Sketch modified from (Ronneberger et al., 2015).
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2.2 Ground-Truth Data
2.2.1 Observational Dataset: IMaX/Sunrise
In order to train the model using supervised training, we should
provide it with a suitable set of data for the segmentation process, i.e., a
ground-truth. We are interested in classifying specific patterns in
observational images of the solar surface seen in the continuum. Based
on our requirements of high-spatial-resolution data, we select the
products of the Imaging Magnetograph eXperiment (IMaX)
(Martínez Pillet et al., 2011), the filterpolarimeter onboard the
Sunrise I balloon-borne telescope during its flight in June 2009
(Barthol et al., 2011; Solanki et al., 2010). IMaX was tuned to the
FeI at 525.02 nm highly Zeeman-sensitive line, and provided
measurements of the local continuum intensity near this line. After
phase diversity reconstruction, each map reached a spatial resolution
of around 0”.15 ≈ 100 km over the solar surface (pixel scale 0”.05) and
a field of view (FOV) of 50”× 50”≈ 35 × 35Mm (Martínez Pillet et al.,
2011). Those data products are freely accessible on https://star.mps.
mpg.de/sunrise/. We select a time series of 56min with a cadence of
30 s resulting in 113 individual frames. We selected the frames with
the highest quality and spread out in time to obtain as much as
possible a diverse data set. Due to the apodization needed for image
reconstruction, a portion of the edges was lost. Taking all the above in
consideration, our ground-truth dataset is composed of eight frames
of 768 × 768 pixels each, with a FOV of 38” × 38” (see one frame as
example in Figure 2 map A).

2.2.2 Labeling Structures
In a supervised learning approach, we need to provide an initial
truth segmentation of our selected dataset in order to properly
train the model. In previous studies, the identification and
tracking of specific granular structures have been done mostly
manually with the help of intensity multi-threshold algorithms
(Javaherian et al., 2014; Ellwarth et al., 2021). For our experiment,
we select a common multi-threshold algorithm MLT4 (Bovelet
and Wiehr, 2001; Bovelet and Wiehr, 2007) used for segmenting
photospheric structures for the initial granular identification (see
for instance (Riethmüller et al., 2008; Fischer et al., 2019;
Kaithakkal and Solanki, 2019)) which is freely available2. We
adopt this approach to assess the extent to which user

intervention affects the training process on the network. In
particular, for labeling our structures at a pixel level we follow
a procedure composed of two phases:

1. Semi-automatic granules identification: Using the Multiple-
Level Pattern Recognition algorithm–MLT4 (Bovelet and
Wiehr, 2001; Bovelet and Wiehr, 2007), we segregated the
intergranular regions and the granular pattern. This is a top-
down segmentation technique of brightness structures based
on a sequence of descending detection thresholds (Bovelet and
Wiehr, 2007). The algorithm uses the reconstructed and
normalized continuum intensity maps as input (see one
frame as an example in Figure 2 map A). The procedure
starts with an initial segmentation of features at equidistant
intensity levels as shown in map B of Figure 2, and then the
pixel brightness level is normalized within each cell to its
maximum value. Consecutively, a semi-automatic procedure
of merging over-segmented cells and (4) shrinking these
brightness-normalized cells to features of adequate sizes is
performed, resulting in maps such as map C of Figure 2.
Regarding the setup parameters used, we selected 25
descending thresholds, 0.47 as a normalized reference for
merging and 0.38 as the unitary cut threshold for
shrinking. The unitary cut threshold controls the final size
of the recognized features, initially derived from a normalized
brightness histogram for the full sample of recognized cells,
which was then tuned by visual inspection. The rest of input
parameters were set to their default value (Bovelet and Wiehr,
2001). The resulting maps are composed of several hundred
individual cells (granules) separated from the intergranular
space as shown in map D of the Figure 2.

2. Fully manual granules classification: Based on the basic
instantaneous morphological features of the granular
phenomena that we seek to classify, we propose an initial
set of granule classes characterised by the presence of a central
dot signatures or an arch-like lane signatures. For
completeness, we include two categories that refer to
extreme levels of complexity in granules: 1) morphologies
with low complexity, i.e. uniform and cleanmorphologies with
circular or ellipsoid shapes, and 2) morphologies with high
complexity, i.e. abnormal granules having combinations of
dark spots or lanes. In that sense and using the map products

FIGURE 2 | Frame example of IMaX/Sunrise during the labeling procedure. (A) Reconstructed continuum intensity map, (B) Initial segmentation results using 25
descending detection thresholds, (C) Merging and shrinking results, (D) Result map differentiating integranular lanes and granules cells as single units, (E) Manual
selection into defined categories: intergranular lane (dark violet), uniform-shaped granules (pink), granules with a dot (white), granules with a lane (light green) and
complex-shaped granules (dark green).

2All code and documentation can be found at http://wwwuser.gwdg.de/astronom/
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of the previous procedure, we classified manually the set of
individual cells into four categories: granules with a dot (cells
with dark point-shape features close to the centre of the cell),
granules with a lane (cells with a dark arch-like lane following
a bright rim mark inside the cell structure), uniform-shaped
granules (cells with uniform intensity distribution and with
elliptical or circular shapes) and complex-shaped granules (all
remaining cells). The map E of the Figure 2 shows the results
of the manual classification, where each colour corresponds to
a specific classification, equivalently to the ground-truth maps
in the Figure 4A; Figure 5A. During the selection via visual
inspection, we pursue to classify all individual granules per
class unequivocally to avoid ambiguity.

We perform this two-step procedure for all pixels of the eight
selected frames, generating one ground-truth labeled map for
each continuum intensity map. We are interested in evaluating
independently and unbiased the performance of our model and
simultaneously providing it with as many training examples as
possible, thus we split our dataset in such a way that seven frames
are used for the training set and one is used for the validation/test
set. As an example, Figure 2 shows the intermediate steps in the
complete labeling procedure for the validation/test map.

2.3 Training Strategy
Although the U-net architecture has demonstrated a good
performance even with a few per-class training examples, it is
essential to provide it with a large and diverse set of training data.
In that sense, we divided the full FOV of all available maps into
several sub-maps of a fixed size. As we are interested in predicting
the class of each granule, we select sub-maps of the size 128 × 128
pixels (~ 6.5” × 6.5”) as input, with the aim of covering entire
granules (see Figure 1). In addition, we applied a process of data
augmentation, including random rotations, random perspective
transformations and warping.

We identified a severely skewed class distribution in the
labeled data, where 85% of the pixels of all available maps are
associated to two classes (intergranular lane 40% and complex-
shaped granules 45%) and the remaining 15% of the pixels belong
to the underrepresented classes (granules with a dot 8%, granules
with a lane 3% and uniform-shaped granules 4%). This is a known
difficulty that affects all classification machine learning
algorithms because the metrics used for training assume an
equivalent proportion of examples of each class. This
assumption decreases the performance of the model for
underrepresented classes (He and Garcia, 2009; Fernández
et al., 2018). Many strategies have been developed to overcome
this issue in computer vision paradigms [see, e.g., (He et al., 2008;
He and Garcia, 2009; He and Ma, 2013; Huang et al., 2016; Khan
et al., 2017; Oksuz et al., 2020)], however, it is still an active topic
research in semantic segmentation tasks [see, e.g., (Havaei et al.,
2017; Olã Bressan et al., 2022; Zou et al., 2021)].

We addressed the imbalance-class issue in this work by
including a stratified random sub-map sampling previous to
the augmentation procedure as follows. 1) We defined
weighted pixel maps for each full image, in which the greater
weights were given to areas where underrepresented classes were

localized. 2) We applied a softmax function to compute
probability distribution maps. Those probability distributions
were included in a weighted random choice function, which
returned sub-maps centred on underrepresented classes
regions. With this method, we increased the pixel proportion
of the underrepresented classes to 22% in our training dataset. We
noticed that this proportion has an upper limit due to the size of
the sub-maps. The reason is that the surface covered by
underrepresented classes is smaller than the size of the sub-
maps, which is mostly covered by the background classes
(i.e., intergranular regions and several complex-shaped granules).

An additional strategy towards solving class imbalance is an
appropriate selection of the loss function. Neural networks
applications learn via optimization, which requires a suitable
cost/loss functions to calculate the model error. The iterative
process of hyperparameter tuning is controlled by the loss
function minimization, which, at the end of the training,
ideally provides the best model setup for the assigned task. In
particular, metrics for semantic segmentation have been
historically dominated by global approaches, like the Cross-
Entropy loss (Aggarwal, 2018). Defined as CE = − log(pt),
where pt corresponds to the estimated probability for a correct
classification for a specific class t, the cross-entropy loss evaluates
the overall proportion of the correctly classified pixels as the
precision measurement. However, these scores are dominated by
the background classes in skewed datasets. Typically, the addition
of a cost-sensitive weighting factor α is used in cross-entropy,
known as α-balance variant. This seeks to balance the importance
of well-classified over the wrong-classified examples in cases of
skewed datasets. For several classes, the α factor can be considered
as a weight vector with values inversely proportional to the
frequency of each class (Lin et al., 2017).

For our experiments, we test the accuracy and effectiveness of
two different loss functions during the network training, which
are commonly used for imbalanced data problems:

1. The Focal Loss was developed for addressing the unbalance-
class problem by adding a modulating factor (1 − pt)γ to the
cross-entropy loss. It uses the tunable focusing parameter γ ≥
0, which adjusts the rate at which background examples are
down-weighted. This modification downplays the importance
of the background classes, making the training to focus on
learning the hard examples, i.e. weakly represented classes (Lin
et al., 2017). The use of α-balance variant is also applicable in
this case.

2. The Intersection-over-Union (IoU) loss or Jaccard index was
extensively used in semantic segmentation tasks. It is focused
on determining the similarity between finite sample sets
(Jaccard, 1912). For images, the IoU measures the
agreement between any predicted region and its
corresponding ground-truth region by measuring the
intersection between the prediction and the ground-truth
normalized by their union. The IoU loss can take into
account the frequency of the classes, and thus it is
considered robust to the class imbalance problem (Leivas
Oliveira, 2019). For multi-class classification tasks like the
one we pursue here, the mean IoU (mIoU) loss function is
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often used, which initially computes the Jaccard index for each
class and then computes the average over all classes.

For comparative purposes, we computed the standard
evaluation metrics for semantic segmentation. We computed
the overall accuracy, measured as the ratio between the
correctly predicted pixels and the total number of pixels, and
the mean pixel accuracy per class measured as the average of the
correctly predicted pixels per class over the total ground-truth
pixels per class. Likewise, we compare the test performance with
performance parameters during the execution of the training. In
this sense, we monitor the average per epoch of the loss value
given its loss function (average loss) and the average overall
accuracy per epoch (accuracy).

3 RESULTS

We implemented the model and the training using the open-
source PyTorch (Paszke et al., 2019) framework3. All our training
cases have been performed with an NVIDIA GeForce 2080 Ti
GPU and anNVIDIA Tesla P100 GPU.We generated 27,000 sub-
maps in the training dataset and 3,000 sub-maps in the validation
dataset from the augmentation procedure previously described.
We used the Adam stochastic gradient algorithm (Kingma and
Ba, 2014) for optimization. In this case, the gradient is estimated
from subsets of the training dataset or batches. We used batches of
32 samples, generating around 840 subsets containing all the
training dataset, which are used to update the hyperparameters
and to computed themetric in each cycle or epoch. We considered
100 or 200 epochs depending on the loss function that we used,
thus we executed around 84,000 or 168,000 iterations in total
respectively. The learning rate was annealed from the initial value
of 0.001 with a dynamic adjustment, lowering the value by a
factor 0.9 when the minimization did not decrease in 5
consecutive epochs. We performed several training cases by
turning off some of the transformations of the data
augmentation process, changing the weight values for the
stratified random sampling maps, and changing the loss
functions and its parameters. Using this setup, each epoch
took ~ 210 s.

We present two training cases that reached the highest
accuracies from all testing that we ran. Test 1 uses the U-net
architecture with a α-balanced Focal Loss. For this experiment,
we consider a proportion of 1:100 for the background classes with
respect to the underrepresented classes to build the weighted pixel
maps for the stratified sampling selection. On the other hand,
Test 2 uses the U-net architecture using the mean IoU as the loss
function. Similarly, we consider a proportion of 1:100 for the
background classes with respect to the underrepresented classes
to build the weighted pixel maps. In both experiments, we only
used random rotations and perspective transformations as
augmentation. Figures 3A,B present the monitoring plots of

these two test cases during the training execution. These
graphs show the evolution of the performance parameters of
the selected metrics per epoch, i.e., average loss and accuracy. For
both cases, the performance parameters behave as expected for
the training dataset (see blue curves in Figures 3A,B), however,
the parameters associated with the validation dataset show
differences between each other.

For test 1, the overall pixel accuracy, the accuracy per class and
the Jaccard index for the validation dataset increase slowly over
every iteration reaching 0.84, 0.60, and 0.47 respectively, while its
corresponding loss increases heavily. We interpret that the noise
and rising trend in the loss profile are due to the accumulation of
misclassified examples, such as pixels at the edge of granules or
clusters of pixels that have features of multiple classes, which the
model slowly corrects thus improving the accuracy. The model
reaches high levels of saturation, with hints a slight overfitting
close to the end of the training (see Figure 3A).

This effect can be observed in the full map prediction and
in the predicted probability distribution per class shown in
Figures 4A,B. In the whole map, the model reaches 0.74 of
overall pixel accuracy, a mean accuracy per class of 0.52 and a
Jaccard index of 0.40. These values are slightly lower than
those achieved during training (evaluated in sub-maps of size
128 × 128) but still compatible, since they come from the same
map. Figure 4A displays the direct comparison between the
ground-truth map with the predicted map. As a first
conclusion, we highlight the efficiency of the model to
segregate granules and intergranular lanes, which
contributes mostly to the overall pixel accuracy.

Regarding the correct identification of underrepresented
morphologies, the model behaviour is different per class. Based
on the probability maps in Figure 4B, we identify that the model
develops different reliability levels depending on the class. For clean
morphologies such as uniformly shaped granules, the model is
slightly more confident as compared with more structured and
complex classes. In that sense, granules with multiple and similar
features give rise to a prediction with a high degree of uncertainty.
This is manifested in classes such as granules with a dot, granules
with a lane and complex-shaped granules.

On the other hand, test 2 shows a completely different
behaviour. As shown in Figure 3B, the performance
parameters related to the validation dataset reaches a
threshold at an early stage of training without appreciable
changes along the epochs. From the first cycle, a value of 0.87
for overall pixel accuracy and a Jaccard index of 0.52 are achieved.
However, in terms of the mean accuracy per class, the average
threshold value during the first 20 iterations is 0.64, which then
decreases and stabilizes around 0.60 correspondingly. Using this
training setup, we suggest that the model is able to learn the basic
morphological patterns from few batches, but it is unable to
extract more specific information from the full dataset provided
during the training. Signatures of over-fitting are also observed,
but the invariance of the loss for the training and validation
datasets indicates an upper limit in the learning process in the
defined training time.

Figure 5A shows the full map prediction and the predicted
probability distribution maps of the model with the lowest loss

3All codes are placed in a free access repository (https://gitlab.leibniz-kis.de/
smdiazcas/SegGranules_Unet_model.git)
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value obtained during the training (epoch 12). In the whole map,
the model reaches 0.71 of overall pixel accuracy, a mean accuracy
per class of 0.58 and a Jaccard index of 0.40. Again, these values
are slightly lower than those achieved during training (evaluated
in sub-maps of size 128 × 128) but still compatible, since they
come from the same map. A good efficiency to segregate granules
and intergranular lanes is also obtained in this test, contributing
mostly to the overall pixel accuracy as well (see the Figure 5A).

Based on the probability maps generated (see Figure 5B), we
notice that the model reproduces high levels of confidence in all
classes, managing to identify detailed morphological patterns
associated with the classes, i.e., dots, lanes or combinations
even within individual cells, which promotes the over-labelling
of structures, i.e., single granules contain pixels of different classes
as shown in the predicted map of Figure 5A.

So far, we have been referring to class-average quantities of the
performance parameters, which are biased by the well-know
imbalance between granulation structures. In Table 1, we
present a summary of the overall pixel accuracy (OPA) and
the Jaccard index per class. As we mentioned, the
identification of the intergranular lane provides the major
contribution to the effectiveness of the models, reaching
accuracy values around 0.90 in both metrics. On the other
hand, the identification of specific morphologies has a
significantly lower performance, especially for
underrepresented classes. We identify that the contribution of
precision and recall on the Jaccard index are unequal, i.e. the
models are acceptably sensitive (higher recall) in detecting the
simple shapes characteristics of each class, but those are inexact
during the ground-truth comparison.

FIGURE3 | (A) Tracking plot for the training for test 1:U-netmodel using α-balanced Focal loss with γ = 10 as training loss function. (B) Tracking training plot for test
2: U-net model using Mean IoU as training loss function.

FIGURE 4 | (A) Comparative maps using the validation full size map–Test 1: U-net model using α-balanced Focal loss with γ = 10 as training loss function. A
zoomed region is highlighted showing in detail the diverse constrains of the segmentation. (B) Probability maps per class using the validation full size map–Test 1: U-net
model using α-balanced Focal loss with γ = 10 as training loss function.
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FIGURE 5 | (A) Comparative maps using the validation full size map–Test 2: U-netmodel using Mean IoU as training loss function. A zoomed region is highlighted
showing in detail the diverse constrains of the segmentation. (B) Probability maps per class using the validation full size map–Test 2: U-net model using Mean IoU as
training loss function.

TABLE 1 | Summary of the performance parameters per class calculated for the full size verification map prediction.

IGLa UGb DGc LGd CGe

OPAf Jaccard OPA Jaccard OPA Jaccard OPA Jaccard OPA Jaccard

Test 1: Focal Loss 0.90 0.85 0.12 0.10 0.58 0.29 0.31 0.15 0.71 0.58
Test 2: mIoU 0.95 0.90 0.44 0.20 0.67 0.31 0.33 0.11 0.54 0.49

aIntergranular lane.
bUniform-shaped granules.
cGranules with a dot.
dGranules with a lane.
eComplex-shaped granules.
fOverall Pixel Accuracy.

FIGURE 6 | (A) Probability distribution at pixel level of the category prediction given its original category (confusion matrix) for test 1: U-netmodel using α-balanced
Focal loss with γ = 10 as training loss function. (B) Probability distribution at pixel level of the category prediction given its original category (confusion matrix) for test 2:
U-net model using Mean IoU as training loss function.
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Based on the multi-class confusion matrix at the pixel level for
each model shown in the Figures 6A,B, we notice specific
behavior per model. For test 1, the high uncertainty levels
generate a strong effect on the maximum probability to match
a category given the original category. In this case, granules
belonging to under-represented classes have a high tendency
to be classified as complex-shape granules due to the
homogeneous probabilities between classes in granules where
similar morphologies are shared. On the other hand, for test 2, the
over-labeling effect and the high levels of reliability, tend to
homogenize the maximum probabilities by class, negatively
affecting classes such as uniform-shaped granules and granules
with a lane.

4 DISCUSSION

In summary, we present the first attempts to classify and identify
structures in the solar granulation based on the semantic
segmentation paradigm using a deep learning method. As our
main objective, we found an interesting potential of the U-net
architecture to identify and classify cellular patterns in solar
granulation images, but modifications to the current model
should be implemented to ensure its optimal performance.
With the proposed training procedure, the model achieves
high levels of accuracy in the identification of the
intergranular network which allows the effective separation of
granular morphologies. We have also established that the
network architecture is sensitive in identifying characteristic
patterns in granules, such as granules with a dot (overall
accuracy greater than 0.5 in both tests), but it looses efficacy
when it comes to discerning between structures with combined
morphologies, i.e., granules with multiple features and complex-
shaped structures. This outcome drives high uncertainty levels
(test 1) or an over-labeling effect in single granules (test 2).

During our experiments, we have identified recurrent hints of
overfitting in all performed tests, meeting the highest accuracy for
the tests presented here. We implemented some functional
strategies such as the Dropout regularization and
hyperparameters scaling but without obtaining any
improvement. Going further, we identified that the
preparation of the ground-truth dataset played a crucial role
in the model generalization ability. The semi-manual and manual
labeling process introduced unwanted constraints, e.g., over-
merging, poor contours separation and small incorrect areas.
Moreover, we noted the difficulty in defining closed classification
criteria, which would allow us to represent the samples of each
category unambiguously. Labeling structures of this specific
phenomenon is a complex task, even for human classifications.
The phenomena in the photosphere are so diverse that it is
effectively easy to under-classify or over-classify morphologies.
Thus, it is fundamental to improve the initial labeling for future
supervised testing including the use of ground-truth
segmentation methods that involve the least amount of user
intervention in order to reduce ambiguity.

Another source of over-fitting may be related to the
augmentation process, which is highly affected by the

wrong-labeled data. In this case, the geometric
transformations applied in the limited available labeled
samples, especially for the underrepresented classes, can
induce over-fitting (Shorten and Khoshgoftaar, 2019).
Granules, as individual elements, are unique at a very
detailed level, i.e., in super-high-resolution images.
However, as we have already mentioned, they share similar
phenomenologies that makes it possible to classify them into
groups with comparable patterns at basic levels of similarity.
Therefore, the use of extensive and random geometric
transformations can produce non-deterministic effects,
negatively affecting the training performance. Other
strategies exist in the literature to prevent overfitting in
skewed data, i.e. transfer learning (Weiss et al., 2016), pre-
training (Singh Punn and Agarwal, 2021) or one-shot and
zero-shot learning (Xian et al., 2017), which we plan to study
in future works.

We extensively highlight these initial experiments as a starting
point for further investigation. As this research is still under
development, we seek to improve the levels of sensitivity and
precision as much as possible to unequivocally detect the existing
phenomenologies in solar granulation. We anticipate that
extending our approach to include time-series, i.e., video
segmentation, and other physical observables such as
polarization and Doppler maps can be fruitful. This additional
information would reveal other characteristics associated with the
considered phenomena, allowing the definition of precise
selection criteria, e.g., granular lane cases have been
unambiguously detected based on the host granule evolution.
Besides, the exploration of self-supervised or unsupervised
methods is in our sights for further studies.

5 RESOURCE IDENTIFICATION INITIATIVE

All code of the model was constructed based on Python
Programming Language, RRID:SCR_008394 version 3.9.7, and
PyTorch libraries, RRID: SCR_018536 version 1.10.0.
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