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The aim of this article is to study the existence, location, and stability of equilibrium points in
a generalized restricted three-body problem (R3BP) that consists of an oblate infinitesimal
body when the primaries are radiating sources with triaxiality of the two stars surrounded
by a belt (circumbinary disc). The existence, number, location, and stability of the collinear
and triangular Lagrangian equilibrium points of the problem depend on the mass
parameter and the perturbing forces involved in the equations of motion. We find
numerically that four additional collinear equilibrium points Lni, i = 1, 2, 3, 4, exist, in
addition to the three Eulerian points Li, i = 1, 2, 3, of the classical case, making up a total of
up to seven collinear points. Ln1 and Ln2 result due to the potential from the belt, while Ln3
and Ln4 arise from the effect of triaxiality. The positions of the equilibrium points are affected
by the presence of perturbations, since they are deviated from the classical R3BP on the
x-axis and out of the x-axis, respectively. The stability of the equilibrium points, for a
particular set of the parameters, is analyzed, and it is concluded that all the collinear points
are unstable except Ln1, which is always linearly stable. The range of stability of the
Lagrangian points L4,5 is determined analytically and found that being stable for 0 < μ < μcrit

and unstable for μcrit ≤ μ ≤ 1/2, where μcrit is the critical mass ratio which depends on the
combined effects of the perturbing forces. It is noticed that the critical mass ratio decreases
with the increase in the values of the radiation pressure, triaxiality, and oblate infinitesimal
body; however, it increases with the increase in the value of mass of the disc. All three of the
former and the latter one possess destabilizing and stabilizing behavior, respectively. The
net effect is that the size of the region of stability that decreases when the value of these
parameters increases. In our model, the binary HD155876 system is used, and it is found
that there exists one stable collinear equilibrium point viz. Ln1.
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INTRODUCTION

There is no doubt that the restricted three-body problem (R3BP)
is certainly the most known and studied problem in celestial
mechanics as well as in dynamical astronomy since the age of
Euler and Lagrange and still does, due to the fact that the study of
this problem in its many variants has had important implications
in several scientific fields, including galactic dynamics, chaos
theory, molecular physics, and lunar theory, among others
(see, for example, Szebehely, 1967; Prosmiti et al., 1996;
Vrahatis et al., 2001; Contopoulos, 2002; Marsden and Ross,
2005; Douskos et al., 2007; Sano, 2007; Musielak and Quarles,
2017; Voyatzis and Antoniadou, 2018; Zotos et al., 2020). The
circular R3BP models the motion of an infinitesimal mass m3

which moves under the gravitational attraction of two massive
bodies m1 and m2, which are called primaries. We refer to these

bodies as the bigger and smaller primaries, respectively. The
primaries revolve in circular orbits around their common center
of mass, and their motion is not affected by the massless body.
The classical circular R3BP admits five equilibrium points
denoted as Li, i = 1, 2, ..., 5. Three of such points, Li, i = 1, 2,
3, lie on the line connecting the two massive bodies m1 and m2,
and they are called collinear equilibrium points which are
unstable, while the other two points form an equilateral
triangle with the two massive bodies, called the triangular
equilibrium points L4 and L5, and are stable for 0 < μ < μc =
0.03852. . ., where μ is the mass parameter, and μc is the critical
mass parameter (see, for e.g., Valtonen and Karttunen, 2006).
These points and their stability are among the most characteristic
features of any dynamical system not only due to their immediate
applications in real systems but also due to their theoretical
importance since the nature of these points characterizes the

FIGURE 1 | (A) Positions of the three collinear equilibrium points (red dots) Li i = 1, 2, 3, forMb = 0.00005. (B) Five collinear points Li, i = 1, 2, 3, Lni, i = 1, 2, forMb = 0.05.
In both frames, we have fixed μ = 0.455, σ1 = 4 × 10−5, σ2 = 3 × 10−5, σ3 = 2 × 10−5, σ4 = 10−5, A3 = 0.02, T = 0.01, q2 = 0.99, and q1 = 0.8. (C) similar to panel (B), but for the
case of seven collinear points in which σ1 = 0.01, σ2 = 0.03, σ3 = 0.05, σ4 = 0.07, and A3 = 0.001. The positions of the primary bodies,mi, i=1,2, are denoted by black dots.
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behavior of nearby orbits (Markellos et al., 1996; Hou and Liu,
2008; Capdevila and Howell, 2018).

During the past, several variants of this classical problem have
been proposed in order to make it more applicable to real systems
of dynamical astronomy. These modifications include the
consideration of one or both primaries being sources of
radiation pressure and/or oblateness of the third body and/or
triaxial rigid bodies or even some more simplified versions such
as the well-known Hill’s problem (see, for e.g., Voyatzis et al.,
2012; Singh, 2013; Elshaboury et al., 2016; Amuda et al., 2021;
Gao and Wang, 2020; Kalantonis, 2020; Singh et al., 2018; Saeed
and Zotos, 2021), among others. Another interesting
modification of the R3BP is the Chermnykh’s problem which

can be considered a generalization of the Euler’s problem of two
fixed gravitational centers and the R3BP when the massless body
moves in the orbital plane of a dumbbell which is rotating with
constant angular velocity around the center of mass (Chermnykh,
1987; Goździewski and Maciejewski, 1998; Perdios and Ragos,
2004; Papadakis, 2005; Perdiou et al., 2013). In Yeh and Jiang
(2006) and Jiang and Yeh (2006), the authors studied the
Chermnykh-like problem analytically and numerically, in
which an additional gravitational potential from the belt is
included in the model. Other works that took into account the
gravitational potential from the belt/disc under different
assumptions have been presented and studied by Kishor and
Kushvah (2013), Abouelmagd et al. (2014), Singh and Leke
(2014), Perdios et al. (2015), Singh and Amuda (2019),
Kalantonis et al. (2021), Leke and Singh (2021), among others.

In the case of a triaxial rigid primary body, Saeed and Zotos
(2021) revealed the way numerically in which the triaxiality
parameters affect the existence and linear stability of the
libration points and explored the entire range of values of the
triaxiality parameters that control the shape of the primary body.
It was observed that the number of collinear and noncollinear
equilibrium points depends on the triaxiality parameters of the
primary. They also showed that the equilibria are always linearly
unstable for all possible values of the parameters of the primary
body. Recently, Gyegwe et al. (2022) have studied the positions
and stability of the triangular equilibrium points in the
framework of the R3BP when the primaries are triaxial-
radiating rigid bodies, while the third body of infinitesimal
mass is an oblate spheroid. They found that the parameters of
the problem play a significant role on the regions of stability and
in particular that the comprehensive effects of the perturbations
have destabilizing tendencies.

In the present work, we aim to extend the work of Gyegwe
et al. (2022) by considering not only the radiation pressure and

FIGURE 2 | Plots of Ux = 0 (blue curves) and Uy = 0 (orange curves)
depicting the locations of the seven equilibrium points (red dots) on the x
y–plane for μ = 0.4583,Mb = 0.05, σ1 = 4 × 10−5, σ2 = 3 × 10−5, σ3 = 2 × 10−5,
σ4 = 10−5, A3 = 0.02, T = 0.01, q2 = 0.99, and q1 = 0.8.

FIGURE 3 | (Color figure online) (A) Zero-velocity curves for μ = 0.455, σ i � σ′i � 0, i = 1, 2,Mb = A3 = 0, q1 = q2 = 1, and Jacobi constant values: C � CL1 (red line),
C � CL2 (green line),C =CL3 (black line),C = 3 (yellow line), andC = 2.8 (blue line). The two primary bodies are denoted bymi i = 1, 2, while the five equilibrium points Li, i =
1,...,5, are indicated by small circles. (B) Surface and the corresponding zero-velocity curves of the problem in the gravitational case.
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asphericity of the primaries but also the gravitational
potential of the belt. Moreover, taking into account these
perturbing forces, we investigate the existence, location, and
stability of both the collinear and triangular equilibrium points
of this system. New equilibrium points, zero-velocity surfaces, and
allowed regions of motion make a qualitative difference to the
dynamical features of the model. In our study, the triaxiality
factors of the primaries are of small quantities, and therefore we
choose arbitrary values that are far less than one (see, for e.g., Singh,
2013; Elshaboury et al., 2016, and references therein). Our goal in
this article was to study important aspects of the dynamics of the
restricted problem with the involved parameters from both
numerical and analytical points of view. Several results
concerning the equilibrium points and stability are proved
analytically, and the study is completed numerically in some cases.

The content of this article is organized as follows: in
Equations and Integral of Motion section, we define the
mathematical model and the governing equations of
motion that we use for our study. In Equilibrium Points
and Zero-Velocity Surfaces section, we determine the
existence and locations of the equilibrium points as well as
the geometric structure of the zero-velocity surfaces and
curves. The linear stability of the equilibria is analyzed in
Stability of Collinear and Triangular Points section, while in
Numerical Application section, numerical and graphical
simulation is made by using the physical data of the binary
HD155876 system for various values of the parameters under
consideration. Finally, Discussion and Conclusion section
summarizes the discussion and conclusion of our study.

EQUATIONS AND INTEGRAL OF MOTION

We adopt the usual barycentric, rotating, and dimensionless
coordinate system Oxyz, in which its origin is located at the
center of mass of the two primary bodies with masses m1 = 1 − μ
andm2 = μ, μ =m2/(m1+m2) ∈ (0, 1/2], have fixed positions at the
Ox-axis. Then, the coordinates of the bigger and smaller
primaries are (−μ, 0) and (1 − μ, 0), respectively, while the
coordinates of the third body of negligible mass are (x, y, z).
Following Gyegwe et al. (2022) and Singh and Leke (2014), the
equations of motion of the massless body under the influence of
its shape, forces of radiation pressure, and triaxiality coupled with
gravitational potential from a belt around the stars are:

€x − 2n _y � zU

zx
� Ux; €y + 2n _x � zU

zy
� Uy (1)

where

Ux � n2x − (1 − μ)(x + μ)q1
r31

− μ(x + μ − 1)q2
r32

− 3(1 − μ)(2σ1 − σ2)(x + μ)q1
2r51

− 3μ(2σ1′ − σ2
′)(x + μ − 1)q2
2r52

+ 15(1 − μ)(σ1 − σ2)(x + μ)y2q1
2r71

+ 15μ(σ1
′ − σ2

′)(x + μ − 1)y2q2

2r72

− 3(1 − μ)(x + μ)A3

2r51
− 3μ(x + μ − 1)A3

2r52

− Mbx(r2 + T2)32,
Uy � n2y − (1 − μ)yq1

r31
− μyq2

r32
− 3(1 − μ)(σ1 − σ2)yq1

r51

−3μ(σ1′ − σ2
′)yq2

r52

−3(1 − μ)(2σ1 − σ2)yq1
2r51

− 3μ(2σ1
′ − σ2

′)yq2
2r52

+15(1 − μ)(σ1 − σ2)y3q1
2r71

+15μ(σ1′ − σ2
′)y3q2

2r72
− 3(1 − μ)yA3

2r51

−3μyA3

2r52
− Mby(r2 + T2)32, (2)

are the partial derivatives of the potential function,

U � n2

2
(x2 + y2) + (1 − μ)q1

r1
+ μq2

r2
+ (1 − μ)(2σ1 − σ2)q1

2r31

+μ(2σ1′ − σ2
′)q2

2r32

−3(1 − μ)(σ1 − σ2)q1y2

2r51
− 3μ(σ1

′ − σ2
′)q2y2

2r52

+(1 − μ)A3

2r31
+ μA3

2r32
+ Mb(r2 + T2)12, (3)

with

TABLE 1 | Numerical data for the binary HD155876 system (Singh et al., 2018).

Binary system Mass (Ms) Radiation pressure Luminosity Mass ratio

MA MB q1 q2 LA LB μ

HD 155876 0.39 0.33 0.979950 0.983912 0.00380 0.00258 0.4583
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FIGURE 4 | (Color figure online) Zero-velocity surfaces of the HD155876 (μ = 0.4583) binary system for (A) A3 = 0, σ1 = σ2 = 0, σ1′ � σ2′ � 0,Mb = 0, and q1 = q2 = 1
(classical case); (B) A3 = 0.09, σ1 = σ2 = 0, σ1′ � σ2′ � 0,Mb = 0, and q1 = q2 = 1 case; (C)Mb = 0.05, T = 0.01, A3 = 0, σ1 = σ2 = 0, σ1′ � σ2′ � 0, and q1 = q2 = 1 case; (D) σ1 =
0.02, σ2 = 0.01, σ1′ � σ2′ � 0, A3 = 0,Mb = 0, and q1 = q2 = 1 case; (E) σ1′ � 0.02, σ2′ � 0.01, σ1 = σ2 = 0, A3 = 0,Mb = 0, and q1 = q2 = 1 case; (F) q1 = 0.5, q2 = 0.8, A3 = 0, σ1
= σ2 = 0, σ1′ � σ2′ � 0, andMb = 0 case; (G) q1 = 0.45, q2 = 0.75, A3 = 0.1, σ1 = 0.07, σ2 = 0.05, σ1′ � 0.03, σ2′ � 0.02,Mb = 0.055, and T = 0.01 case. The presence of
the new collinear points is obvious in panels (C) and (G). Motion is permitted inside the chimneys and below it. Note the different scales of Jacobian constantC in the first
and the next frames.
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n �
�����������������������������������
1 + 3

2
(2σ1 − σ2) + 3

2
(2σ1

′ − σ2
′) + 2Mbrc(r2c + T2)32

√
,

0< σ i, σ
′
i ,Mb, T< < 1, i � 1, 2,

r1 � [(x + μ)2 + y2]12, r2 � [(x + μ − 1)2 + y2]12,
r � (x2 + y2)12, rc � (1 − μ + μ2)12. (4)

Here, we denote by ri, i = 1, 2, the distances of the third body
from the bigger and smaller primaries, respectively, by 0 < q i= 1 −
δi ≤ 1, i = 1, 2, the radiation factor of each primary, where δ1 and
δ2 are the ratios of the radiation force Fri to the gravitational force
Fgi which results from the gravitation due to the primary bodies
m1 and m2, respectively, by A3, the oblateness coefficient of the
test body defined by the formula A3 = (AE

2−AP
2)/5R2 << 1, where

AE andAP are the equatorial and polar radii of the said third body,
respectively, and R is the dimensionless distance between the
primaries. The triaxiality of the bigger and smaller primaries is
defined with the help of the parameters σ i, σ′i < < 1, i � 1, 2, where

σ1 � h2 − f2

5R2
, σ2 � b2 − f2

5R2
, σ1

′ � h′2 − f′2

5R2
, σ2

′ � b′2 − f′2

5R2
,

with h, b, f as lengths of the semiaxis of the bigger primary and h′,
b′, f′ as those of the smaller primary. Also, 0 <Mb << 1 is the total
mass of circular cluster of material points, and r is the radial
distance of the test body while rc is that in the classical case. T = a +
b is the density profile of the accumulated materials chosen to the
value T = 0.01 (Jiang and Yeh, 2006), while a and b are the flatness
and core parameters, respectively, while n is the mean motion of
the primaries. We assume that the admissible region for A3 in this
study is [0, 0.1], whereas we restrict the triaxiality coefficients
σ i, σ′i , i � 1, 2, to the interval [0, 0.12], while the radiation factors q1
and q2 vary in the interval qi ∈ (0, 1], i = 1, 2, and the region ofMb is
[0, 0.15]. Such a region should be enough to show the influence of
the parameter on the equilibria in which the upper boundary can
be found in that given in Yeh and Jiang (2006). The Jacobian-type
integral of this problem has the following expression:

C � 2U − ( _x2 + _y2), (5)
where C is the Jacobian constant. Since the square of the particle
velocity must be positive or at least zero, relation (Eq. 5) may
provide the following equation:

C � 2U(x, y), (6)
where its plots are known as zero-velocity curves (ZVC), and they
separate the (x, y) plane in regions in which the particle motion is
allowed and in regions in which this is not allowed to take place. If
we consider a third dimension that counts the Jacobian constant
C, then we obtain the so-called zero-velocity surface (ZVS). Here,
we note that the aforementioned model reduces to Gyegwe et al.
(2022) when Mb = 0, while for Mb = 0 and A3 = 0 some of the
results can be found in Singh (2013).

EQUILIBRIUM POINTS AND
ZERO-VELOCITY SURFACES

To find the positions of the equilibrium points of Eq. 1, we have to
set _x � _y � €x � €y � 0 in the equations of motion. Precisely, we
have the following results:

Collinear Equilibrium Points (y = 0)
The collinear (or Eulerian) equilibrium points lie on the Ox-axis
and in this case y = 0 which can be determined by solving the
nonlinear equation numerically for x:

g(x, 0) � n2x − (1 − μ)(x + μ)q1
r31

− μ(x + μ − 1)q2
r32

−3(1 − μ)(2σ1 − σ2)(x + μ)q1
2r51

−3μ(2σ1′ − σ2
′)(x + μ − 1)q2
2r52

− 3(1 − μ)(x + μ)A3

2r51

−3μ(x + μ − 1)A3

2r52
− Mbx(r2 + T2)32 � 0, (7)

TABLE 2 | Positions (x0, 0) of the collinear points of the binary HD155876 system for the fixed values Mb = 0.05, T = 0.01, σ1 = 4 × 10−5, σ2 = 3 × 10−5, σ1′ � 2 × 10−5,
σ2′ � 10−5, A3 = 0.02, and for two fixed values of q1 when q2 radiates.

q1 = 1

q2 L1 L2 L3 Ln1 Ln2

1 (0.150850, 0) (1.20098, 0) (−1.17037, 0) (−2.45432 × 10−5, 0) (−0.106160, 0)
0.8 (0.162467, 0) (1.15715, 0) (−1.16379, 0) (−3.07938 × 10−5, 0) (−0.104402, 0)
0.6 (0.176649, 0) (1.10800, 0) (−1.15726, 0) (−3.70442 × 10−5, 0) (−0.102675, 0)
0.4 (0.194229, 0) (1.05210, 0) (−1.15077, 0) (−4.32294 × 10−5, 0) (−0.100981, 0)
0.2 (0.216211, 0) (0.98818, 0) (−1.14433, 0) (−4.95445 × 10−5, 0) (−0.099319, 0)
0.1 (0.229118, 0) (0.95335, 0) (−1.14113, 0) (−5.26696 × 10−5, 0) (−0.098502, 0)

q1 = 0.5

q2 L1 L2 L3 Ln1 Ln2

1 (0.138139, 0) (1.18183, 0) (−1.03918, 0) (1.268190 × 10−6, 0) (−0.129450, 0)
0.8 (0.148348, 0) (1.13762, 0) (−1.03218, 0) (−4.98207 × 10−6, 0) (−0.126976, 0)
0.6 (0.160995, 0) (1.08824, 0) (−1.02529, 0) (−1.12321 × 10−5, 0) (−0.124520, 0)
0.4 (0.177074, 0) (1.03254, 0) (−1.01850, 0) (−1.74818 × 10−5, 0) (−0.122089, 0)
0.2 (0.198037, 0) (0.96988, 0) (−1.01182, 0) (−2.37313 × 10−5, 0) (−0.119688, 0)
0.1 (0.210905, 0) (0.93643, 0) (−1.00852, 0) (−2.68560 × 10−5, 0) (−0.118500, 0)
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with r1 = |x + μ| and r2 = |x + μ − 1| for certain values of the
parameters of the problem A3, Mb, qi, σi, σ′i , i � 1, 2, and μ. It has
been known that there may be five collinear equilibrium points
for the case of mass of disc (Yeh and Jiang, 2006) or triaxiality
parameters of the massive primary body (Saeed and Zotos, 2021).
In this article, such investigations will be extended to the case of
both primaries with radiation, triaxiality, mass of disc, and oblate
infinitesimal body.

In Figure 1, we present the exact locations of the collinear
equilibrium points of the problem, for two different values ofMb,

which have been obtained by solving numerically Eq. 7. In
particular, Figure 1A illustrates the position of the three
classical collinear points Li, i = 1, 2, 3, for the case where Mb

= 0.00005. For Mb = 0.05, we observe in Figure 1B that the
problem has two more collinear points located between the
primaries to be referred to as Lni, i = 1, 2 (the first either for
x > 0 or x < 0 depending on the relative values of q1, q2, while the
second one is for x < 0 regardless of the values of the parameters
q1, q2). In both cases, we have fixed the remaining parameters to μ
= 0.455, σ1 = 4 × 10−5, σ2 = 3 × 10−5, σ′1 � 2 × 10−5, σ′2 � 10−5,

FIGURE 5 | (A–E) Positions of the collinear equilibrium points Li, i = 1, 2, 3, Lnj, j = 1, 2, of the HD11565 system, as a function of q2, which varies in the interval (0, 1]
for fixed values of q1 equal to 1 (1), 0.5 (2), and 0.1 (3). The disc, oblateness, and triaxiality parameters are kept as constants as given in Table 2. The numbering of
equilibrium points is according to the diagram shown in Figure 2.

TABLE 3 | Positions (x0, ± y0) of the triangular points of the binary HD155876 system for three fixed values of q1 when q2 radiates. The disc, oblateness, and triaxiality
parameters are kept as constants as in the collinear case (Table 2).

q2 L4,5: q1 = 1 L4,5: q1 = 0.5 L4,5:q1 = 0.1

1 (0.041708, ±0.855869) (−0.124958, ±0.759644) (−0.258292, ±0.682664)
0.8 (0.108375, ±0.817379) (−0.058292, ±0.721154) (−0.191625, ±0.644174)
0.6 (0.175042, ±0.778889) (0.00837499, ±0.682664) (−0.124958, ±0.605684)
0.4 (0.241708, ±0.740399) (0.07504170, ±0.644174) (−0.058292, ±0.567194)
0.2 (0.308375, ±0.701909) (0.14170800, ±0.605684) (0.0083750, ±0.528704)
0.1 (0.341708, ±0.682664) (0.17504200, ±0.586439) (0.0417083, ±0.509459)
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A3 = 0.02, T = 0.01, q2 = 0.99, and q1 = 0.8. Figure 1C shows the
case of seven collinear points (including the two collinear points
Ln3 and Ln4 on either side of the bigger primary bodym1 between
Ln2 and L3), similar to panel (B) but for σ1 = 0.01, σ2 = 0.03, σ3 =
0.05, σ4 = 0.07, andA3 = 0.001. From these figures (Figures 1A,B),
we can observe that for some values of the system parameters, the
additional equilibria do not in general exist even in the presence
of the circular cluster of material points, indicating that such
equilibria only exist depending on the mass parameter and mass
of the enclosed material points. Additionally, the mass parameter
does not affect significantly the existence of the new collinear
equilibria Ln3 and Ln4 but due to the triaxiality of the primaries.
As a summary of Figure 1C, the corresponding locations of the
seven libration points using the special values of the parameters of
the problem mentioned previously can be identified as follows:

L1(0.139966, 0), L2(1.19480, 0), L3(−1.08861, 0),
Ln1( − 4.05331 × 10−6, 0), Ln2(−0.133979, 0),
Ln3(−0.339265, 0), Ln4(−0.569789, 0).

We note that the triaxiality of the primaries has a high degree
of complexity in a dynamical system, and any subtle changes in
different parameters may substantially change the third body’s
dynamic behavior (see, for e.g., Saeed and Zotos, 2021). The
stability of the system equilibria is a significant problem for the
understanding of the dynamical behaviors around these points.
Based on the results given by Saeed and Zotos (2021), it can be
predicted that the equilibria Ln3 and Ln4 are unstable. As a
preliminary study, the discussions about these new equilibria
resulting from triaxiality of the primaries will be ended by only
examining the existence and stability of these points. Further
studies can be made if needed, especially when these parameters
are “pushed” at their limits.

Triangular Equilibrium Points (y ≠ 0)
For zero velocity and acceleration components in the equations of
motion (Eq. 1) with y ≠ 0, the positions of the equilibria are the
solutions of the nonlinear algebraic system Ux = Uy = 0, which
yields:

n2x − (1 − μ)(x + μ)q1
r31

− μq2(x + μ − 1)
r32

−3(1 − μ)(2σ1 − σ2)(x + μ)q1
2r51

−3μq2(2σ1
′ − σ2

′)(x + μ − 1)
2r52

+ 15(1 − μ)(σ1 − σ2)y2q1(x + μ)
2r71

+15μ(σ1′ − σ2
′)y2q2(x + μ − 1)
2r72

−3(1 − μ)(x + μ)A3

2r51
− 3μ(x + μ − 1)A3

2r52
− Mbx(r2 + T2)32 � 0, (8)

TABLE 4 | Positions (x0, 0) of the collinear points of the binary HD155876 system for fixed valuesMb=0.05, T = 0.01, σ1 = 4 × 10−5, σ2 = 3 × 10−5, σ1′ � 2 × 10−5, σ2′ � 10−5, A3

= 0.02, and for two fixed values of q2 when q1 radiates.

q2 = 1

q1 L1 L2 L3 Ln1 Ln2

1 (0.150850, 0) (1.20098, 0) (−1.17037, 0) (−2.45432 × 10−5, 0) (−0.106160, 0)
0.8 (0.145725, 0) (1.19326, 0) (−1.12271, 0) (−1.42179 × 10−5, 0) (−0.114001, 0)
0.6 (0.140648, 0) (1.18562, 0) (−1.06893, 0) (−3.89358 × 10−6, 0) (−0.123694, 0)
0.4 (0.135655, 0) (1.17807, 0) (−1.00716, 0) (6.42973 × 10−6, 0) (−0.135961, 0)
0.2 (0.130778, 0) (1.17059, 0) (−0.93539, 0) (1.67522 × 10−5, 0) (−0.151809, 0)
0.1 (0.128393, 0) (1.16689, 0) (−0.89565, 0) (2.19131 × 10−5, 0) (−0.161441, 0)

q2 = 0.5

q1 L1 L2 L3 Ln1 Ln2

1 (0.184953, 0) (1.08099, 0) (−1.15401, 0) (−4.01993 × 10−5, 0) (−0.101824, 0)
0.8 (0.178488, 0) (1.07297, 0) (−1.10589, 0) (−2.98435 × 10−5, 0) (−0.109041, 0)
0.6 (0.171873, 0) (1.06511, 0) (−1.05173, 0) (−1.95188 × 10−5, 0) (−0.117976, 0)
0.4 (0.165166, 0) (1.05742, 0) (−0.98989, 0) (−9.19533 × 10−6, 0) (−0.129353, 0)
0.2 (0.158437, 0) (1.04990, 0) (−0.91895, 0) (1.127160 × 10−6, 0) (−0.144272, 0)
0.1 (0.155088, 0) (1.04620, 0) (−0.88038, 0) (6.288060 × 10−6, 0) (−0.153522, 0)

FIGURE 6 | Positions of the two triangular equilibrium points L4 and L5
on the xy–plane as a function of q2, which varies in the interval (0, 1] for fixed
values of q1 equal to 1 (1), 0.5 (2), and 0.1 (3). The disc, oblateness, and
triaxiality parameters are kept as constants as given in Table 3.
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n2y − (1 − μ)q1y
r31

− μq2y

r32
− 3(1 − μ)(2σ1 − σ2)q1y

2r51

− 3(σ1 − σ2)(1 − μ)q1y
r51

− 3μ(2σ1′ − σ2
′)q2y

2r52

− 3(σ1′ − σ2
′)μq2y

r52
+ 15(1 − μ)(σ1 − σ2)q1y3

2r71

+ 15μ(σ1
′ − σ2

′)q2y3

2r72
− 3(1 − μ)A3y

2r51

− 3μyA3

2r52
− Mby(r2 + T2)32 � 0.

(9)

The real solutions (x, y) of Eqs 8, 9 for those parameter values
for which they exist provide the coordinates of the equilibrium
points. Notice that

Ux(x,−y; μ, q1, q2, σ1, σ2, σ1
′, σ2

′, A3,Mb, T)
� Ux(x, y; μ, q1, q2; σ1, σ2, σ1

′, σ2
′, A3,Mb, T)

and

Uy(x,−y; μ, q1, q2, σ1, σ2, σ1
′, σ2

′, A3,Mb, T)
� −Uy(x, y; μ, q1, q2, σ1, σ2, σ1

′, σ2
′, A3,Mb, T),

and thus for each solution (x, y) of the equations with y > 0, (x,
− y) is also a solution. So, the triangular equilibrium points come
in pairs. Using the perturbation technique as that in Gyegwe et al.
(2022), Eqs 8, 9 yield:

x � 1
2
− μ − (1 − q1)

3
+ (1 − q2)

3
− 1
2
(1
μ
− 1
4
)σ1 + 1

2
(1
μ
+ 3
4
)σ2 + 1

2
( μ

1 − μ
+ 3
4
)σ1

′

−1
2
( μ

1 − μ
+ 7
4
)σ2′ ;

y � ±

�
3

√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − 2(1 − q1)

9
− 2(1 − q2)

9
− 4Mb(2rc − 1)

9(r2c + T2)32 +

1
3
((−23

4
+ 1
μ
)σ1 + (194 − 1

μ
)σ2 + ( μ

1 − μ
− 19

4
)σ1

′ + (15
4
− μ

1 − μ
)σ2′ + 2A3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(10)

0<Mb, T, A3, σ i, σ ′i ≪ 1, i � 1, 2, Hence, Eq. 10 are the
required coordinates of the triangular equilibrium points
denoted by L4,5 (x, ± y). It follows directly that the positions
of the triangular points depend on the mass parameter μ and the
perturbing forces involved in the equations of motion.

Moreover, we have verified these positions through numerical
computations in which we plot in common diagram by making
zero the equations of motion Eq. 1 in order to obtain the

equilibria which appear as the intersection points of the curves
on the xy–plane. In Figure 2, we show as a matter of interest, the
location of the collinear and triangular equilibrium points as well as
the fixed location of the primaries resulting from the solutions of
Eq. 1 for the parameter values μ = 0.4583,Mb = 0.05, σ1 = 4 × 10−5,
σ2 = 3 × 10−5, σ3 = 2 × 10−5, σ4 = 10−5,A3 = 0.02, T = 0.01, q2 = 0.99,
and q1 = 0.8. Black dots represent primaries, red dots stand for the
equilibrium points, and blue curves and orange curves represent
the curvesUx = 0 andUy = 0, respectively.Moreover, our numerical
computations (not shown here for latter studies) suggest the
influence of triaxiality parameters of the primaries by revealing
additional cases, regarding the total number of noncollinear
equilibria, especially when these parameters are “pushed” at
their limits. Detailed discussions can be made in terms of the
variation of such parameters in further studies if needed.

The Jacobian integral given by Eq. 6 for μ = 0.455 and σ i �
σ′i � 0, i � 1, 2,Mb � A3 � 0, q1 � q2 � 1 (gravitational case)
provides the ZVCs and the corresponding surface shown in
Figure 3A,B, respectively, in which the equilibria appear
either as intercrossing points between two or more branches
of the equipotential curves for a given C or as reducing points
after a process of shrinking of closed zero-velocity curves when C
varies. The infinitesimal particle is permitted to move inside the
“chimney”-like infinitely high peaks at m1 and m2 where C tends
to infinity and below it (Figure 3B).

STABILITY OF COLLINEAR AND
TRIANGULAR POINTS

We investigate the linear stability of the infinitesimal motions
when small displacements ξ and η are given to the coordinates of
an equilibrium point (x0, y0) such that:

ξ � x − x0, η � y − y0. (11)
Substituting these values in system Eq. 1, we obtain the

linearized system:

€ξ − 2n _η � U(0)
xx ξ + U(0)

xy η, €η + 2n _ξ � U(0)
xy ξ + U(0)

yy η. (12)
Here, only linear terms in ξ and η have been taken. The second

partial derivatives of U are denoted by subscripts, while the
superscript “0” indicates that the derivatives are to be
evaluated at the equilibrium point (x0, y0). Now, the
characteristic equation of the linearized system Eq. 12 is:

λ4 + (4n2 − U(0)
xx − U(0)

yy )λ2 + U(0)
xx U

(0)
yy − [U(0)

xy ]2 � 0. (13)

TABLE 5 | Positions (x0, ± y0) of the triangular points of the binary HD155876 system for three fixed values of q2 when q1 radiates. The disc, oblateness, and triaxiality
parameters are kept as constants as in the collinear case (Table 4).

q1 L4,5: q2 = 1 L4,5: q2 = 0.5 L4,5: q2 = 0.1

1 (0.041708, ±0.855869) (0.208375, ±0.759644) (0.341708, ±0.682664)
0.8 (−0.02496, ±0.81738) (0.141708, ±0.721154) (0.275042, ±0.644174)
0.6 (−0.09163, ±0.77889) (0.075042, ±0.682664) (0.208375, ±0.605684)
0.4 (−0.15829, ±0.74034) (0.008375, ±0.644174) (0.141708, ±0.567194)
0.2 (−0.22496, ±0.70191) (−0.05829, ±0.605684) (0.075042, ±0.528704)
0.1 (−0.25829, ±0.68266) (−0.09163, ±0.586439) (0.041708, ±0.509459)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org April 2022 | Volume 9 | Article 8774599

Vincent et al. Equilibrium Points in a Generalized R3BP

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


For the collinear equilibrium points U(0)
xy � U(0)

yx � 0, and
stability occurs when all four roots of the characteristic equation
for λ are pure imaginary or complex roots all of which have
negative real parts. This happens if the following three necessary as
well as sufficient conditions are satisfied simultaneously:

[4n2 − U(0)
xx − U(0)

yy ]2 − 4U(0)
xx U

(0)
yy > 0,

4n2 − U(0)
xx − U(0)

yy > 0, U(0)
xx U

(0)
yy > 0. (14)

In all other cases, the equilibrium points are unstable. In the
present problem, the collinear points L1,2,3,n2,n3,n4 with respect to
mass parameter μ and relative to involved perturbing forces are
unstable since Eq. 13 has two real eigenvalues λ1,2 = ±a and two
imaginary eigenvalues λ3,4 = ±ib, while the point Ln1 is stable since
the conditions (Eq. 14) are satisfied simultaneously, i.e., Eq. 13
has four purely imaginary eigenvalues of the form λ1,2 = ±ia, λ3,4
= ± ib. Studying the stability of the collinear equilibria for the
specific values μ = 0.455, σ1 = 0.01, σ2 = 0.03, σ3 = 0.05, σ4 = 0.07,
A3 = 0.001, T = 0.01,Mb = 0.05, q2 = 0.99, and q1 = 0.8, we found

FIGURE 8 | Positions of the two triangular equilibrium points L4 and L5
on the xy–plane as a function of q1, which varies in the interval (0, 1] for fixed
values of q2 equal to 1 (1), 0.5 (2), and 0.1 (3). The disc, oblateness, and
triaxiality parameters are kept as constants as given in Table 5.

FIGURE 7 | (A–E) Positions of the collinear equilibria Li, i = 1, 2, 3, Lnj, j = 1, 2, of the HD11565 system, as a function of q1, which varies in the interval (0, 1] for fixed
values of q2 equal to 1 (1), 0.5 (2), and 0.1 (3), respectively. The disc, oblateness, and triaxiality parameters are kept as constants as given in Table 4. The numbering of
equilibrium points is according to the diagram shown in Figure 2.
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that all the collinear equilibria are unstable except point Ln1,
which is stable.

For the triangular equilibrium points, the characteristic equation
is also given by Eq. 13 but now U(0)

xy � U(0)
yx ≠ 0, so the

corresponding inequalities for purely imaginary roots are given by:

(4n2 − U(0)
xx − U(0)

yy )2 − 4[U(0)
xx U

(0)
yy − (U(0)

xy )2]> 0,
4n2 − U(0)

xx − U(0)
yy > 0, U(0)

xx U
(0)
yy − [U(0)

xy ]2 > 0. (15)
Now, at the triangular points which are given by Eq. 10, we

have the following analytical formulas depending only on the
parameters of the problem:

U(0)
xy � U(0)

yx � 3
�
3

√
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
− μ − [1

9
+ μ

9
](1 − q1) + [29 − μ

9
](1 − q2) + [4724 − 89μ

24
− 1
3μ
]σ1 + [ − 3

8
+ 37μ

24
+ 1
3μ
]σ2+

[25
12

− 85μ
24

+ μ

6(1 − μ) + μ2

6(1 − μ)]σ1′ + [ − 3
2
+ 11μ

8
− μ

6(1 − μ) − μ2

6(1 − μ)]σ2′ + A3(13 − 2μ
3
)

+Mb

2
⎡⎢⎣11(2rc − 1)
9(r2c + T2)32 + 1(r2c + T2)52⎤⎥⎦ − μMb

⎡⎢⎣11(2rc − 1)
9(r2c + T2)32 + 1(r2c + T2)52⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

U(0)
xx � 3

4
− [1

2
− 3μ

2
](1 − q1) + [1 − 3μ

2
](1 − q2) + [5716 + 45μ

16
− 3
2μ
]σ1 + [ − 3

16
− 93μ

16
+ 3
2μ
]σ2

+ [39
8
− 69μ

16
− 3μ2

2(1 − μ)]σ1
′ + [ − 9

2
+ 117μ

16
+ 3μ2

2(1 − μ)]σ2
′ + 5Mb(2rc − 1)

4(r2c + T2)32 +
3Mb(14 − μ + μ2)(r2c + T2)52

U(0)
yy � 9

4
+ 3A3 + [12 − 3μ

2
](1 − q1) − [1 − 3μ

2
](1 − q2) + [8716 − 45μ

16
+ 3
2μ
]σ1 + [ − 21

16
+ 45μ

16
− 3
2μ
]σ2

+ [33
8
+ 135μ

16
− 33μ
8(1 − μ) + 45μ2

8(1 − μ)]σ1
′ + [ − 135μ

16
+ 33μ
8(1 − μ) − 45μ2

8(1 − μ)]σ2
′ + 7Mb(2rc − 1)

4(r2c + T2)32 + 9Mb

4(r2c + T2)52
(16)

Substituting these values in Eq. 13, the characteristic equation
after normalizing becomes:

λ4 + b1λ
2 + b2 � 0, (17)

where we have abbreviated,

b1 � 4n2 − U(0)
xx − U(0)

yy , b2 � U(0)
xx U

(0)
yy − U(0)

yx U
(0)
xy , (18)

with

b1 � 1 − 3A3 + 3σ1 + (−92 + 3μ)σ2 + 3σ1
′ − 3(μ + 1

2
)σ2

′

+ Mb(2rc + 3)(r2c + T2)32 − 3Mbr2c(r2c + T2)52,
b2 � μ(1 − μ)[27

4
+ 3
2
(1 − q1) + 3

2
(1 − q2) + 9A3]

−[45
8
− 891μ

16
+ 801μ2

16
]σ1

+ [45
8
− 423μ

16
+ 333μ2

16
]σ2 + [711μ16

− 801μ2

16
]σ1

′

−[243μ
16

− 333μ2

16
]σ2

′

+ 33μ(1 − μ)(2rc − 1)Mb

2(r2c + T2)32 + 27μ(1 − μ)Mb

4(r2c + T2)52 .

Its roots are:

λ2 � −b1 ±
��
Δ

√
2

, (19)

where the discriminant Δ which defines the nature of roots is
expressed as:

Δ � b21 − 4b2

� μ2⎛⎝27 + 36A3 + 6(1 − q1) + 6(1 − q2) + 801
4
(σ1 + σ1

′)
−333

4
(σ2 + σ2

′) + 66Mb(2rc − 1)(r2c + T2)32 + 27Mb(r2c + T2)52⎞⎠
−μ⎛⎝27 + 36A3 + 6(1 − q1) + 6(1 − q2) + 891

4
σ1 − 447

4
σ2

+711
4
σ1
′ − 219

4
σ2
′ + 66Mb(2rc − 1)(r2c + T2)32 + 27Mb(r2c + T2)52⎞⎠ + 1 − 6A3

+57
2
σ1 − 63

2
σ2 + 6σ1

′ − 3σ2
′ + 2Mb(2rc + 3)(r2c + T2)32 − 6Mbr

2
c(r2c + T2)52

Now

(Δ)μ�0 � 1 − 6A3 + 57
2
σ1 − 63

2
σ2 + 6σ1

′ − 3σ ’
2 +

2Mb(2rc + 3)(r2c + T2)32
− 6Mbr2c(r2c + T2)52 > 0,

and

(Δ)μ�1
2
� −23

4
− 15A3 − 3

2
(1 − q1) − 3

2
(1 − q2) − 565

16
σ1 + 57

16
σ2

− 525
16

σ ’1 +
57
16
σ ’2 −

33Mb(2rc − 1)
2(r2c + T2)32 + 2Mb(2rc + 3)(r2c + T2)32

− 27Mb

4(r2c + T2)52 − 6Mbr
2
c(r2c + T2)52 < 0.

Evidently, the values of Δ when μ � 0 and μ � 1
2 have opposite

signs. Hence, there is a value of μ in the interval 0≤ μ≤ 1
2 at which

Δ = 0 is called the critical mass parameter denoted by μcrit. Hence,
we solve Δ = 0 for μ and simplify to finally get:

μcrit � μo + μb + μr + μt + μd, (20)
with

μo �
1
2
(1 − ��

23
27

√ ); μb � −22A3

9
��
69

√ ; μr � − 2
27
��
69

√ [(1 − q1) + (1 − q2)],
μt � ( 5

12
+ 59
18
��
69

√ )σ1 − (1936 + 85
18
��
69

√ )σ2 − ( 5
12

− 59
18
��
69

√ )σ1′
+(19

36
− 85
18
��
69

√ )σ2′,
μd �

(76 − 8rc)Mb

27
��
69

√ (r2c + T2)32 − (1 + 6r2c)Mb

3
��
69

√ (r2c + T2)52. (21)

Equation 20 represents the perturbed critical mass ratio with
five parts (i.e., in terms of all the perturbing parameters). The first
part μ0 represents the classical case without perturbation, the
second part μb is related to the oblate infinitesimal body, the third
part μr is related to radiation pressure of the primaries, and the
fourth part μt is connected to the triaxiality of the primaries, while the
fifth part μd is related to the circular cluster of material points.
Therefore, it is clearly observed that stability regions depend on
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the perturbing forces of our model. We remark that for Mb = 0, the
results agree fully with previously published results (see Gyegwe et al.,
2022 and references therein), while in case where σ i � σ ′i � 0, i �
1, 2, our results coincide with those by Amuda et al. (2021).

There are three cases (1–3) to determine the linear stability of
the triangular equilibrium points. 1) When 0 < μ <μcrit, Δ > 0, the
roots Eq. 19 are distinct pure imaginary numbers, and the solution
is bounded. Hence, the triangular points are stable in this region. 2)
When μcrit < μ≤ 1

2, Δ < 0, then the real parts of two of the roots (Eq.
19) are positive and the triangular points are unstable. 3)When μ =
μcrit, Δ = 0, then the roots in Eq. 19 are double which leads to
instability of the triangular points. Therefore, we established that
the triangular points are stable only for 0 < μ < μcrit and unstable for
μcrit ≤ μ ≤ = 1/2. Hence, the stability region is:

0< μ< μcrit � μo −
22A3

9
��
69

√ − 2
27
��
69

√ [(1 − q1) + (1 − q2)]
+( 5

12
+ 59
18
��
69

√ )σ1 − (1936 + 85
18
��
69

√ )σ2
−( 5

12
− 59
18
��
69

√ )σ1′ + (19
36

− 85
18
��
69

√ )σ2′
+ (76 − 8rc)Mb

27
��
69

√ (r2c + T2)32 − (1 + 6r2c)Mb

3
��
69

√ (r2c + T2)52,
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) ≈ 0.03852089 is Routh’s critical value.

This critical mass parameter value gives the measure of the size
of the stability region. Computations of Eq. 20 clearly reveal that the
critical mass ratio decreases with the increase in the values of the
radiation pressure, triaxiality, and oblate infinitesimal body, as shown
in Gyegwe et al. (2022); however, it increases with the increase in the
value of mass of the disc. It is noticed that all three of the former and
the latter one possess destabilizing and stabilizing behavior,
respectively. Moreover, under the combined effect of the
parameters, the size of the region of stability decreases with a
simultaneous increase in the values of the parameters. Remarkably,
the present results of the triangular points are in conformity with Yeh
and Jiang (2006) for qi= 1, i= 1, 2,A3 = 0, and σ i � σ ′i � 0, i � 1, 2, in
the present work and forMb = 0, also agree with those of Gyegwe et al.
(2022) and references therein; the difference in configuration of the
primary bodies is responsible for the difference in sign.

NUMERICAL APPLICATION

In this section, we apply the data of the binary HD155876
system given in Table 1 to the results obtained in our previous
sections (Singh et al., 2018). The influence of the involved
perturbations on the zero-velocity surface and the positions
of the collinear and triangular points will be studied in this
section. The numbering of the equilibrium points and the
relative positions of the primaries are illustrated according to

TABLE 7 | Positions (x0, ±y0) of the two triangular points L4 and L5 of the binary HD155876 system for three fixed values ofMb when A3 varies. The radiation pressure and
triaxiality parameters are kept as constants as in the collinear case (Table 6).

A3 L4,5: Mb = 0.06 L4,5: Mb = 0.1 L4,5: Mb = 0.15

0 (0.040388, ±0.833033) (0.040388, ±0.815697) (0.040388, ±0.794027)
0.02 (0.040388, ±0.844580) (0.040388, ±0.827244) (0.040388, ±0.805574)
0.04 (0.040388, ±0.856127) (0.040388, ±0.838791) (0.040388, ±0.817121)
0.06 (0.040388, ±0.867674) (0.040388, ±0.850338) (0.040388, ±0.828668)
0.08 (0.040388, ±0.879221) (0.040388, ±0.861885) (0.040388, ±0.840215)
0.1 (0.040388, ±0.890768) (0.040388, ±0.873432) (0.040388, ±0.851762)

TABLE 6 | Positions (x0, 0) of the collinear points of the binary HD155876 system for fixed values q1 = 0.979950, q2 = 0.983912, T = 0.01, σ1 = 4 × 10−5, σ2 = 3 × 10−5,
σ1′ � 2 × 10−5, σ2′ � 10−5, and for two fixed values of Mb when the value of A3 varies.

Mb = 0.06

A3 L1 L2 L3 Ln1 Ln2

0 (0.168910, 0) (1.17584, 0) (−1.14548, 0) (−1.65267 × 10−5, 0) (−0.123842, 0)
0.02 (0.158310, 0) (1.19205, 0) (−1.16040, 0) (−2.00075 × 10−5, 0) (−0.113337, 0)
0.04 (0.150567, 0) (1.20631, 0) (−1.17375, 0) (−2.34888 × 10−5, 0) (−0.105923, 0)
0.06 (0.144497, 0) (1.21911, 0) (−1.18588, 0) (−2.69706 × 10−5, 0) (−0.100214, 0)
0.08 (0.139529, 0) (1.23078, 0) (−1.19702, 0) (−3.0453 × 10−5, 0) (−0.095589, 0)
0.1 (0.135343, 0) (1.24152, 0) (−1.20736, 0) (−3.3936 × 10−5, 0) (−0.091718, 0)

Mb = 0.1

A3 L1 L2 L3 Ln1 Ln2

0 (0.192468, 0) (1.15781, 0) (−1.12721, 0) (−9.91485 × 10−6, 0) (−0.145807, 0)
0.02 (0.179913, 0) (1.17429, 0) (−1.14232, 0) (−1.20027 × 10−5, 0) (−0.133168, 0)
0.04 (0.170939, 0) (1.18871, 0) (−1.15578, 0) (−1.40907 × 10−5, 0) (−0.124514, 0)
0.06 (0.163969, 0) (1.20162, 0) (−1.16797, 0) (−1.61789 × 10−5, 0) (−0.117936, 0)
0.08 (0.158289, 0) (1.21333, 0) (−1.17915, 0) (−1.82673 × 10−5, 0) (−0.112644, 0)
0.1 (0.153511, 0) (1.22410, 0) (−1.18950, 0) (−2.03559 × 10−5, 0) (−0.108230, 0)
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the diagram shown in Figure 2 for the same mass ratio (μ =
0.4583) of the primaries. Eq. 10 has been used to compute the
coordinates of the triangular points.

Effects of the Perturbations on the Zero
-Velocity Surfaces
We plot in Figure 4 the zero-velocity surface Eq. 6 for the
HD155876 binary system for the purely gravitational case and
five different cases of the involved parameters: Panel (A) is for the
gravitational case, panel (B) shows the oblateness effect of the third
body, panel (C) shows the effect of enclosed material points in
which the immediate formation of a new “chimney” around the
bigger primary is obvious, panel (D) shows the effect of triaxiality
of the bigger primary, panel (E) shows the effect of triaxiality of the
smaller primary, and panel (F) shows the effect of the radiation
coefficients of the binary system, while panel (G) shows the
combine effects of triaxiality and radiation pressure of both
primaries, oblateness of the third body, and enclosed material
points of the primaries. From these frames, we can observe two
main results. The first is a change of the Jacobian constants, which
correspond to all equilibrium points with or without involved
parameters due to which results of zero-velocity surfaces show the
chaotic behavior. Note the different values of the Jacobian constant
C of the panels (B)–(G) w.r.t panel (A). The second is a shrinking
or enlargement of the “chimneys” around each primarywhich limit
the area of the permitted third body’s motion in the neighborhood
of the two primaries for each of the panels (B)–(G) w.r.t panel (A).
We note two collinear equilibria which emerge on side of primary

FIGURE 9 | (A–E) Positions of the collinear equilibrium points Li, i = 1, 2, 3, Lnj, j = 1, 2, of the HD155876 system, as a function of A3, which varies in the interval (0,
0.1] for fixed values ofMb equal to 0.06 (1), 0.1 (2), and 0.15 (3), respectively. The radiation pressure and triaxiality parameters are kept as constants as in the previous
case (Table 6). The numbering of equilibrium points is according to the diagram shown in Figure 2.

FIGURE 10 | Positions of the two triangular equilibrium points L4 and L5
on the xy–plane as a function of A3, which varies in the interval (0, 0.1) for fixed
values ofMb equal to 0.06 (1), 0.1 (2), and 0.15 (3). The radiation pressure and
triaxiality parameters are kept as constants as in Table 7.
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body m1, in addition to the three classical points [see panels (C)
and (G)]. It is also remarkable that for a given value of the Jacobian
constant C and as the involved parameters increase, the allowed
regions of the third body motion around the two bodies expand
[panel (G)]. Thismeans that the third body canmove freely around
the primaries for bigger and bigger values of the Jacobian constant
C as the parameters increase.

It is obvious from these figures that the perturbing forces
under consideration have a significant effect in which the motion of
the test particle is allowed or forbidden in the vicinity of the
HD155876 binary system, comparing the first frame with the six
last ones. Remarkably, the cluster of material points of the primaries
provides a new observation of its topological structure resulting in
the neighborhood ofm1 primary a pair of new collinear equilibrium
points. Here, we note that since the two primaries have unequal
masses and unequal assumedmodel parameters, the two “chimneys”
are asymmetric with respect to both (C, y) and (C, x) planes.

Influence of [q1, q2] on the Equilibria
For the arbitrary chosen values of the model parameters
A3, σ i, σ ′i , i � 1, 2, and Mb, the locations of the collinear and
triangular equilibrium points are, respectively, presented in
Tables 2 and 3 as a function of q2 w.r.t. different values of q1.
Evidently, for fixed values of q1 and increasing values of q2, the
coordinates x and y of the equilibria decrease or increase. Here,
the increase or decrease is a measure of the deviation from the

classical estimations. Specifically, with the increase of q2, the
collinear equilibrium positions L2 and L3 constantly shift their
distance and move closer to the position where primary bodies
m1 andm2 are located, correspondingly. L1 and Ln1 go closer tom2

andm1, correspondingly, while at the same time collinear point Ln2
moves closer to the origin. At the same time, the two triangular
points L4 and L5 decrease with the line connecting the two primaries.

Such a variational trend can also be seen from Figures 5 and 6
in which the equilibria positions have been marked with curves
corresponding to the cases with q1 = 1, q1 = 0.5, and q1 = 0.1 for
the increasing values of radiation factor q2 of the smaller primary.
Here, we note from the tables and figures that the positions of Ln1,
L4, and L5 are decreasing and increasing functions of q2. A similar
phenomenon is observed under the combined effects of q1 and q2
in which the positions of Ln1, L4, and L5 are monotonic functions
of q1 and q2.

Similarly, the locations of the collinear and triangular points
are shown in Tables 4 and 5, respectively, as a function of q1 with
respect to different values of q2. We observe that as the radiation
coefficient q2 increases for varying q1, collinear equilibrium
positions L2 and L3 decrease and move closer to the primaries
m2 andm1, correspondingly, and points Ln1 and Ln2 both tend to
m2 and m1, respectively, while point L1 moves toward the origin.
At the same time, the two triangular equilibria L4 and L5 go
toward the line connecting the primaries as q1 tends to zero for
fixed values of q2.

TABLE 8 | Positions (x0, 0) of the collinear points of the binary HD155876 system for fixed values q1 = 0.979950, q2 = 0.983912, A3 = 0.02, Mb = 0.06, T = 0.01,
σ1′ � 2 × 10−5, σ2′ � 10−5, and for two fixed values of σ2 when σ1 varies.

σ2 = 0.01

σ1 L1 L2 L3 Ln1 Ln2

0.02 (0.160959, 0) (1.18267, 0) (−1.16894, 0) (−2.90229 × 10−5, 0) (−0.102352, 0)
0.04 (0.164409, 0) (1.17091, 0) (−1.17812, 0) (−4.10661 × 10−5, 0) (−0.092467, 0)
0.06 (0.167754, 0) (1.15993, 0) (−1.18553, 0) (−5.31123 × 10−5, 0) (−0.085383, 0)
0.08 (0.170995, 0) (1.14965, 0) (−1.19166, 0) (−6.51618 × 10−5, 0) (−0.079916, 0)
0.10 (0.174133, 0) (1.13999, 0) (−1.19683, 0) (−7.72147 × 10−5, 0) (−0.075498, 0)
0.12 (0.177167, 0) (1.13089, 0) (−1.20127, 0) (−8.92712 × 10−5, 0) (−0.071815, 0)

σ2 = 0.05

σ1 L1 L2 L3 Ln1 Ln2

0.02 (0.157408, 0) (1.19531, 0) (−1.15712, 0) (−1.69827 × 10−5, 0) (−0.118316, 0)
0.04 (0.160959, 0) (1.18267, 0) (−1.16894, 0) (−2.90229 × 10−5, 0) (−0.102352, 0)
0.06 (0.164409, 0) (1.17091, 0) (−1.17812, 0) (−4.10661 × 10−5, 0) (−0.092467, 0)
0.08 (0.167754, 0) (1.15993, 0) (−1.18553, 0) (−5.31123 × 10−5, 0) (−0.085383, 0)
0.10 (0.170995, 0) (1.14965, 0) (−1.19166, 0) (−6.51618 × 10−5, 0) (−0.079916, 0)
0.12 (0.174133, 0) (1.13999, 0) (−1.19683, 0) (−7.72147 × 10−5, 0) (−0.075498, 0)

TABLE 9 | Positions (x0, ± y0) of the two triangular points L4 and L5 of the binary HD155876 system for three fixed values of σ2 when σ1 varies. The radiation pressure,
oblateness, mass of the disc, and triaxiality parameters of the smaller primary are kept as constants as in the collinear case (Table 8).

σ1 L4,5: σ2 = 0.01 L4,5: σ2 = 0.05 L4,5: σ2 = 0.09

0.02 (0.035722, ±0.831413) (0.094362, ±0.861066) (0.153002, ±0.890719)
0.04 (0.016403, ±0.810813) (0.075042, ±0.840466) (0.133682, ±0.870119)
0.06 (−0.00292, ±0.790213) (0.055722, ±0.819866) (0.114362, ±0.849519)
0.08 (−0.02224, ±0.769613) (0.036403, ±0.799266) (0.095042, ±0.828919)
0.10 (−0.04156, ±0.749013) (0.017083, ±0.778666) (0.075722, ±0.808319)
0.12 (−0.06088, ±0.728413) (−0.00224, ±0.75807) (0.056403, ±0.787719)
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Such a variational trend can also be seen from Figures 7 and 8
in which the equilibria positions have been marked with curves
corresponding to the cases with q2 = 1, q2 = 0.5, and q2 = 0.1 for
values of the radiation factor of the bigger primary q1 ∈ (0, 1]. We
also observe from the tables and figures that the positions of Ln1,
L4, and L5 are decreasing functions of q1. A similar phenomenon

is observe under the combined effects of q1 and q2 in which the
positions of Ln1, L4, and L5 are monotonic functions of q1 and q2.
It is also remarkable that under the combined effects of the
radiation factors q1 and q2, the position (x, 0) of the equilibrium
points L1 and Ln2 is an increasing function and that of L2 and L3 is
a decreasing function, while the x coordinate of Ln1, L4, and L5 is a
monotonic function of q1 and q2 (Tables 4, 5 and Figures 7, 8).

Influence of [A3, Mb] on the Equilibria
In order to analyze the effects of oblate infinitesimal mass A3 and
mass of the discMb, we have obtained the coordinates of the five
collinear and the two triangular equilibria for varying oblateness
and varying mass of the disc at fixed values of q1, q2, σ1, σ2, σ1′, and
σ2′ (Tables 6, 7). From the results presented in Table 6, it is clear
that with an increase in the value of A3 for fixed values of Mb,
points L2 and L3 tend to infinity (L2 → ∞, L3 → − ∞), and L1 and
Ln2 tend closest to the origin, while the inner point Ln1 tends to
the position of m1, correspondingly. On the other hand, with an
increase in the value of A3 for fixed values of Mb, the two
triangular points L4 and L5 both tend to infinity (L4 → ∞, L5
→ − ∞) (Table 7).

Such variational trends for graphical solutions of the collinear
and triangular equilibria are shown in Figures 9 and 10,
respectively. From Tables 6 and 7, it is clearly seen that for
fixed values ofA3 and varying values ofMb, points L1 and L2 move
closest to the position ofm2, L3 and L1 tend to the position ofm1,
and L1 moves closer to the origin, while L4 and L5 tend to the line

FIGURE 11 | (A–E) Positions of the collinear equilibrium points Li, i = 1, 2, 3, Lnj, j = 1, 2, of the HD155876 system, as a function of σ1, which varies in the interval
(0.02, 0.12) for fixed values of σ2 equal to 0.01 (1), 0.05 (2), and 0.09 (3), respectively. The radiation pressure, oblateness, mass of the disc, and triaxiality parameters of
the smaller primary are kept as constants as in the previous case (Table 8). The numbering of equilibrium points is according to the diagram shown in Figure 2.

FIGURE 12 | Positions of the two triangular equilibrium points L4 and L5
on the xy–plane as a function of σ1, which varies in the interval (0.02, 0.12) for
fixed values of σ2 equal to 0.01 (1), 0.05 (2) and 0.09 (3). The radiation
pressure, oblateness, mass of the disc, and triaxiality parameters of the
smaller primary are kept as constants as in the previous case (Table 9).
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joining the primaries. Due to the limiting space of the article, we
do not present here this case as the presentation is obvious with
regard to the previous case. Moreover, in the absence and
presence of the remaining parameters, changes in the value of
Mb or A3 do not influence the x-coordinates of the triangular
points analytically (Table 7 and Figure 10). However, under the
joint action of both parameters, the situation is analogous for
variation of Mb and fixed values of A3. This indicates that the
presence of the disc plays a certain degree of “correction” to the
two primaries’ dynamic behavior, so that they can maintain
regular motion as much as possible.

Influence of Triaxiality of the Bigger Primary
(σ1, σ2) on the Equilibria
Tables 8 and 9 evaluate triaxiality effects of the bigger primary in
the binary system on the collinear and triangular equilibrium
points, respectively, while in Figures 11 and 12, we summarize
these effects on their positions, respectively. Evidently, an
increase in the value of σ1 for fixed values of σ2, points L1 and
L2 tend toward the smaller primary m2, Ln1 and Ln2 approach
each other, while L3 tends to minus infinity, whereas the two
triangular points L4 and L5 both tend to the Ox–axis.

Influence of Triaxiality of the Smaller
Primary (σ1

9, σ29) on the Equilibria
Tables 10 and 11evaluate triaxiality effects of the smaller primary
in the binary system on the collinear and triangular
equilibrium points, respectively, while in Figures 13 and 14,
we summarize these effects on their positions, respectively.
Evidently, an increase in the value of σ1′ for fixed values of σ2′,
points L1 and Ln1 both tend toward the origin, L3 and Ln2 both
approach the bigger primarym1, while L2 tends to plus infinity,
whereas the two triangular points L4 and L5 both move toward
the Ox–axis.

Now, we shall analyze the linear stability of the collinear and
triangular equilibrium points by looking at the eigenvalues of the
characteristic Eq. 13. In this article, for a particular example, we
compute the stability of the collinear and triangular points under
the joint effect of oblate infinitesimal body and mass of the disc of
the binary system HD155876 when the remaining parameters q1,
q2, σ1, σ2, σ1′, and σ2′ are fixed. The results are summarized in
Table 12 in which the presence of positive real roots or positive
real part in complex roots affirms the instability of L1,2,3,n2 and
L4(5) of the problem when applied to the HD155876 system.
However, for point Ln1, we get all purely imaginary roots
implying that due to all imaginary roots at this point are stable.

TABLE 10 | Positions (x0, 0) of the collinear points of the binary HD155876 system for fixed values q1 = 0.979950, q2 = 0.983912, A3 = 0.02,Mb = 0.06, T = 0.01, σ1 = 4 ×
10−5, σ2 = 3 × 10−5, and for two fixed values of σ2′ when σ1′ varies.

σ29 � 0.02

σ19 L1 L2 L3 Ln1 Ln2

0.01 (0.158326, 0) (1.19203, 0) (−1.16041, 0) (−2.00114 × 10−5, 0) (−0.113336, 0)
0.02 (0.148931, 0) (1.19910, 0) (−1.15372, 0) (−1.73923 × 10−5, 0) (−0.113899, 0)
0.03 (0.141461, 0) (1.20523, 0) (−1.14727, 0) (−1.47731 × 10−5, 0) (−0.114461, 0)
0.04 (0.135272, 0) (1.21060, 0) (−1.14103, 0) (−1.21539 × 10−5, 0) (−0.115023, 0)
0.05 (0.130000, 0) (1.21537, 0) (−1.13501, 0) (−9.53448 × 10−6, 0) (−0.115586, 0)
0.06 (0.125418, 0) (1.21964, 0) (−1.12918, 0) (−6.91500 × 10−6, 0) (−0.116147, 0)

σ ’2 � 0.04

σ1′ L1 L2 L3 Ln1 Ln2

0.01 (0.170986, 0) (1.18372, 0) (−1.16736, 0) (−2.26304 × 10−5, 0) (−0.112773, 0)
0.02 (0.158326, 0) (1.19203, 0) (−1.16041, 0) (−2.00114 × 10−5, 0) (−0.113336, 0)
0.03 (0.148931, 0) (1.19910, 0) (−1.15372, 0) (−1.73923 × 10−5, 0) (−0.113899, 0)
0.04 (0.141461, 0) (1.20523, 0) (−1.14727, 0) (−1.47731 × 10−5, 0) (−0.114461, 0)
0.05 (0.135272, 0) (1.21060, 0) (−1.14103, 0) (−1.21539 × 10−5, 0) (−0.115023, 0)
0.06 (0.130000, 0) (1.21537, 0) (−1.13501, 0) (−9.53448 × 10−6, 0) (−0.115586, 0)

TABLE 11 | Positions (x0, ±y0) of the two triangular points L4 and L5 of the binary HD155876 system for three fixed values of σ2′ when σ1′ varies. The radiation pressure,
oblateness, mass of the disc, and triaxiality parameters of the bigger primary are kept as constants as in the collinear case (Table 10).

σ19 L4,5: σ29 = 0.02 L4,5: σ29 = 0.04 L4,5: σ29 = 0.06

0.01 (0.0224045, ±0.850091) (−0.00356, ±0.866857) (−0.02951, ±0.88362)
0.02 (0.0303847, ±0.838821) (0.004424, ±0.855587) (−0.02154, ±0.87235)
0.03 (0.0383649, ±0.827551) (0.012405, ±0.844317) (−0.01356, ±0.86108)
0.04 (0.0463451, ±0.816282) (0.020385, ±0.833048) (−0.00558, ±0.84981)
0.05 (0.0543253, ±0.805012) (0.028365, ±0.821778) (0.002404, ±0.83854)
0.06 (0.0623055, ±0.793742) (0.036345, ±0.810508) (0.010385, ±0.82727)
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DISCUSSION AND CONCLUSION

Following the equations of motion of an oblate body with
negligible mass moving under the gravitational attraction of
radiating primaries coupled with triaxiality of the two stars
together with a circular cluster of materials, we determined the

positions of the collinear and triangular equilibrium points. The
resulting equations of motion differ from those described by
Gyegwe et al. (2022) due to the potential from the belt. It was
observed that the positions of these points are affected by the
mass parameter and perturbing forces involved in the equations
of motion. Moreover, it was found that in addition to the collinear
equilibrium points of the classical R3BP, there emerge four
additional collinear points considering very small ranges of
asphericity of the primaries and potential from the belt. It was
also noted that if the potential from the belt is neglected, the
obtained semi-analytical formulas which describe the coordinates
of the triangular equilibrium points coincide with those presented
by Gyegwe et al. (2022).

Despite the presence of the perturbing forces, all the collinear
points remain unstable except Ln1. The triangular points are
stable for 0 <μ < μcrit and unstable for μcrit ≤ μ ≤ 1/2, where μcrit is
the critical mass ratio which depends on the combined effect of the
perturbing forces. The resultant Eq. 20 for the critical mass clearly
describes the effects of the perturbing forces on it. Again, if the
gravitational potential from the belt is neglected, μcrit confirms the
result of Gyegwe et al. (2022). Equation 20 indicates that the critical
mass ratio decreases with the increase in the values of the radiation
pressure, triaxiality, and oblate infinitesimal body, while it increases
with the increase in the value ofmass of the disc (namely the range of
stability). Hence, all three of the former and the latter one possess
destabilizing and stabilizing behavior, respectively.

FIGURE 14 | Positions of the two triangular equilibrium points L4 and L5
on the xy–plane as a function of σ1′, which varies in the interval (0.01, 0.06) for
fixed values of σ2′ equal to 0.02 (1), 0.04 (2), and 0.06 (3). The radiation
pressure, oblateness, mass of the disc, and triaxiality parameters of the
bigger primary are kept as constants as in the previous case (Table 11).

FIGURE 13 | (A–E) Positions of the collinear equilibrium points Li, i = 1, 2, 3, Lnj, j = 1, 2, of the HD155876 system, as a function of σ1′, which varies in the interval
(0.01, 0.06) for fixed values of σ2′ equal to 0.02 (1), 0.04 (2), and 0.06 (3), respectively. The radiation pressure, oblateness, mass of the disc, and triaxiality parameters of the
bigger primary are kept as constants as in the previous case (Table 10). The numbering of equilibrium points is according to the diagram shown in Figure 2.
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Finally, a numerical exploration, using the binary HD155876
system, was performed to locate the collinear and triangular
points of the system as well as the allowed regions of motion
of the test body. These points were shown numerically and
graphically, thus highlighting the effects of the involved
parameters. It was found that the position of the collinear and
triangular points is affected in presence of perturbations because
it is deviated from the classical R3BP on the x–axis and out of the
x–axis, respectively. Likewise, allowed regions of motion of the
infinitesimal body are significantly affected with respect to the
gravitational case. The collinear points L1,2,3,n2,n3,n4 remain
unstable except Ln1, while triangular points L4,5 are stable
under certain conditions.

In conclusion, we would like to report that the mass parameter
μ has a minor impact on the evolution of the equilibria, with
respect to the influence of the triaxiality parameters contrary to
the mass of the disc. The presented results may help to analyze
more generalized problems of few bodies under the influence of
different kinds of perturbations such as Stokes drag,
Poynting–Robertson drag, and Yarkovsky or Albedo effects,
which are in relevance to this study, in a general theoretical

sense of studying nongravitational nature phenomena
regarding nonclassical effects (see, for e.g., Ershkov, 2012;
Abouelmagd and Sharaf, 2013; Idrisi and Ullah, 2020;
Ershkov et al., 2021).
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