
Temperature Anisotropy Instabilities
Stimulated by the Solar Wind
Suprathermal Populations
Marian Lazar1,2*, R.A. López3, Shaaban Mohammed Shaaban4, Stefaan Poedts1,5,
Peter Haesung Yoon6 and Horst Fichtner2

1Centre for Mathematical Plasma-Astrophysics, KU Leuven, Leuven, Belgium, 2Institut für Theoretische Physik IV, Ruhr-
Universität Bochum, Bochum, Germany, 3Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile,
4Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt, 5Institute
of Physics, University of Maria Curie-Skłodowska, Lublin, Poland, 6Institute for Physical Science and Technology, University of
Maryland, College Park, MD, United States

This review paper compiles recent results obtained by the present group of authors describing
the effects of suprathermal populations present in space plasmas (up to a few keVs) on
temperature anisotropy instabilities. Of particular interest are the electromagnetic cyclotron and
firehose excitations, which play a major role in limiting temperature anisotropy, resulting, for
instance, from the adiabatic expansion of the solar wind. Relying on a rigorous modeling and
interpretation of the observed velocity distributions, both theoretical models and numerical
simulations indicate a systematic stimulation of these excitations in the presence of
suprathermal populations of electrons or protons. Moreover, the enhanced fluctuations
react back on particles, and determine a faster and deeper relaxation of their anisotropy.
The present comparative analysis suggests that previous studies, considering only quasi-
thermal low-energy populations, may have significantly underestimated these excitations and
their implications in various applications in space plasmas.
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1 INTRODUCTION

With the first in-situ explorations of solar wind plasmas in interplanetary space, the kinetic (micro-
and mesoscopic) properties of plasma populations became of great interest (Olbert et al., 1968;
Vasyliunas, 1968; Gary, 1993). These properties are mainly revealed by the fluxes and velocity
distributions of particles measured in-situ, which suggest that, locally, particle plasma populations
(electrons, protons, or minor ions) are not in thermal equilibrium. The non-equilibrium features
frequently reported by the observations are kinetic anisotropies, such as temperature anisotropy or
beam populations (Marsch, 2006), phase space density gradients (Page et al., 2021), as well as
suprathermal populations (e.g., halo, beaming populations), with energies up to a few keVs (Olbert
et al., 1968; Vasyliunas, 1968; Collier et al., 1996; Maksimovic et al., 2005; Štverák et al., 2008; Mason
and Gloeckler, 2012; Tong et al., 2019a). By comparison to the low-energy, or core populations (up to
a few tens of eV), which are well reproduced by the standard Maxwellian models, suprathermal
populations are less dense (but hotter), and require a more laborious approach based on the Kappa
(κ–power-law) distributions (Pierrard and Lazar, 2010; Viñas et al., 2015; López et al., 2021). These
are probably the main reasons why suprathermal populations have been ignored for decades in the
analysis of anisotropic temperatures and related wave excitations, usually invoking the dominance of
the core population and the simplicity of standard Maxwellian models, see Ref. (Gary, 1993; Yoon,
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2017). and references therein. However, suprathermal
populations (e.g., electron halo) are much hotter and more
anisotropic than quasi-thermal core (Maksimovic et al., 2000;
Štverák et al., 2008; Pierrard et al., 2016; Lazar et al., 2020),
suggesting a significant implication of suprathermals in the
kinetic excitations of wave fluctuations and instabilities.
Moreover, in recent years important progresses have been
made, both theoretically and numerically, by developing
kinetic approaches relying on the anisotropic Kappa
distribution functions. These models become thus able to
describe the observed suprathermal populations (Pierrard and
Lazar, 2010; Lazar et al., 2012), and also their contributions to
kinetic effects and instabilities of plasma particles (Shaaban et al.,
2019a; Lazar et al., 2019; López et al., 2019; López et al., 2021).

In the present review we compile recent results consistently
and rigorously describing the effects of suprathermal populations
on electromagnetic (EM) excitations induced by the temperature
anisotropy of major plasma species in solar wind plasma,
i.e., electrons and protons. The present review is largely
confined to the works carried out by the present authors, and
is not meant to cover the broader aspects regarding the
fundamental properties and origins of suprathermal charged
particle distributions. Particularly interesting are the EM
cyclotron and firehose excitations, known as plasma micro-
instabilities, or kinetic instabilities, which enhance the small-
scale magnetic fluctuations observed in the solar wind (Bale et al.,
2009; He et al., 2011; Wilson et al., 2013; Lion et al., 2016; Wicks
et al., 2016; Roberts et al., 2017). These instabilities and the
resulting enhanced fluctuations should play a major role in self-
regulating the properties of solar wind plasma, especially in the
absence of particle-particle collisions whose frequency decreases
significantly with increasing heliocentric distance (Štverák et al.,
2008; Bale et al., 2009; Klein et al., 2018). Also, compared to low-
energy (core) populations, suprathermal particles are less
affected by collisions (Maksimovic et al., 2005), but should
be more susceptible to kinetic instabilities. Moreover, the free
energy of suprathermal particles is expected to stimulate kinetic
instabilities, and increase the level of magnetic fluctuations.
Despite these expectations, a large number of dispersion and
stability analyses predict the opposite, especially an inhibition of
these instabilities, for many conditions specific to the solar wind
(Lazar and Poedts, 2009; Mace and Sydora, 2010; Lazar et al.,
2011; Lazar et al., 2013). Such contradictory outcomes led to
further investigations (Lazar et al., 2015; Lazar et al., 2016),
which showed that these studies did not use the original Kappa
distribution, but another simplified form assuming the
corresponding kinetic temperature (as given by the second
order moment) independent of the power exponent κ (Hau
et al., 2009; Hellberg et al., 2009; Livadiotis and McComas,
2012). Empirically introduced by Olbert (Olbert et al., 1968) and
Vasyliunas (Vasyliunas, 1968), the original Kappa model (see
also section 2 below) enables realistic interpretation of
suprathermal populations, and produces reliable results
(Lazar et al., 2015), which show rather a stimulation of the
temperature anisotropy instabilities and an enhancement of the
resulting EM fluctuations in the presence of suprathermal
populations (Thorne and Summers, 1991; Lazar et al., 2015;

Lazar et al., 2016; Shaaban et al., 2019a; Lazar et al., 2019; López
et al., 2019).

Section 2 presents the essence of such a realistic interpretation
of suprathermal populations, which enhance the high-energy tails
of the anisotropic bi-Kappa distribution, and are highlighted by
contrast with the bi-Maxwellian (quasi-thermal) core. In Sections
3 and 4 we discuss the most important instabilities triggered by
the temperature anisotropy of electrons and protons, the
dominant species in the solar wind. Selected are the results
from advanced quasi-linear (QL) theories and from numerical
simulations, those able to show the extended evolution of the
excited fluctuations, as well as their action back on the particles
leading to the relaxation of their temperature anisotropy. The last
section (Section 5) brings together the main conclusions and a
series of perspectives of the present review study.

2 MODELING SUPRATHERMAL
POPULATIONS

Themodeling of suprathermal populations and their implications
is often based on the Kappa distribution functions, introduced to
reproduce the observed electron distributions with energies of up
to a few eVs (Olbert et al., 1968; Vasyliunas, 1968). In such a case,
the Kappa power-law is applied as a global (fitting) model, that
incorporates both the low-energy electron core and the
suprathermal population enhancing the high-energy tails of
the observed distribution. Not only electrons, but also protons
and minor ions observed in the solar wind exhibit such velocity
distributions (Collier et al., 1996; Mason and Gloeckler, 2012).

The anisotropic model used to describe populations with
anisotropic temperatures (i.e., A � T⊥/T‖ ≠ 1) is the bi-Kappa
distribution (Summers and Thorne, 1991)

fκ v⊥, v‖( ) � 1

π3/2θ2⊥θ‖

Γ κ + 1( )
κ3/2Γ κ − 1/2( ) 1 + v2⊥

κθ2⊥
+ v2‖
κθ2‖

⎡⎣ ⎤⎦−κ−1, (1)

normalized to unity ∫d3vfκ � 1, and written in terms of the
normalization velocity parameters θ‖,⊥ (where ‖, ⊥ indicate the
components defining the anisotropy with respect to the uniform
magnetic field lines). From the second-order moments of Kappa
distribution we find the velocity parameters directly related to the
corresponding components of the (Kappa) kinetic temperature

Tκ,‖,⊥ � κ

κ − 3/2

mθ2‖,⊥
2kB

, (2)

for particle populations of mass m (and kB is the Boltzmann
constant). These kinetic temperatures are positively defined only
for a power exponent κ > 3/2.

Widely applied theoretically (Lazar and Poedts, 2009; Mace and
Sydora, 2010; Lazar et al., 2011; Lazar et al., 2013; Shaaban et al.,
2019a; Lazar et al., 2019; López et al., 2019), the bi-Kappa model
has also been used in more recent and refined observations, as a
partial fit reproducing only the suprathermal components of the
observed distributions, e.g., halo or strahl populations, while the
low-energy core was described by a more standard bi-Maxwellian
distribution (Maksimovic et al., 2005; Štverák et al., 2008; Tong
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et al., 2019a;Wilson III et al., 2019; Scherer et al., 2020). Such a dual
or even multi-component description using Kappa models may
offer valuable insights distinguishing between various components,
e.g., core, halo and, eventually, beaming (or strahl) populations,
their properties and origin. In such a case the theory becomes not
only complicated, due to the multitude of parameters involved, but
also limited to the specific case defined by the set of parameters
considered in the approach (Lazar et al., 2014; Shaaban et al., 2016;
Lazar et al., 2018a; Lazar et al., 2018b; Shaaban et al., 2019b).

For plasma instabilities driven by the temperature anisotropy
of the observed (gyrotropic) distributions relevant are the most
unstable cases combining both the core and suprathermal halo
populations with similar anisotropies, either both with A � T⊥/T‖
> 1, or both with A � T⊥/T‖ < 1 (Lazar et al., 2018a; Lazar et al.,
2018b; Shaaban et al., 2019b). For instance, the electron plasma
states with a dual core–halo composition, showing reduced
relative drifts but similar (correlated-like) anisotropies, are
often revealed by the solar wind observations (Štverák et al.,
2008; Pierrard et al., 2016; Wilson III et al., 2019), and can be
described by a global (bi-)Kappa (Lazar et al., 2017a), as also
suggested in the early theories and observations (Pierrard and
Lazar, 2010)1. Such a simplified approach cannot provide details
about the components like core, halo or additional beams, but has
a particular advantage in the analysis of suprathermal halo
populations, facilitating the understanding of their
implications in the excitation of anisotropic temperature
instabilities. Thus, the suprathermals can be emphasized and
even quantified based on a comparison between the observed
(global) Kappa distribution with enhanced high-energy tails (red
line in Figure 1) and the Maxwellian low-energy core in the
absence of suprathermal population (e.g., dashed blue line in
Figure 1) (Lazar et al., 2015; Lazar et al., 2016).

Such a contrasting analysis becomes straightforward, since the
quasi-thermal core (subscript c) is reproduced with a good
approximation by the Maxwellian limit (of lower temperature)
of the Kappa distribution, i.e., fκ→∞(v⊥, v‖) � fM(v⊥, v‖) (see
also Figure 1) (Lazar et al., 2015; Lazar et al., 2016), which reads

fc v⊥, v‖( ) ≃ fM v⊥, v‖( ) � 1

π3/2θ2⊥θ‖
exp −v

2
⊥

θ2⊥
− v2‖
θ2‖

⎛⎝ ⎞⎠. (3)

Here the normalization parameters θ⊥,‖ are thermal velocities
related to the corresponding components of the core temperature

Tc,‖,⊥ ≃
mθ2‖,⊥
2kB

<Tκ,‖,⊥. (4)

This implies an (approximate) relationship between temperatures
(Lazar et al., 2015)

Tκ,‖,⊥ ≃
κ

κ − 3/2
Tc,‖,⊥ >Tc,‖,⊥, (5)

and between the corresponding plasma beta parameters, for
instance, the parallel components

βκ,‖ ≃
κ

κ − 3/2
βc,‖ > βc,‖, (6)

commonly invoked in the dispersion analysis. The plasma beta is
defined (kinetically) as β � 8πnkBT/B2

0, where n is the number
density of plasma particles of temperature T, and B0 is the
strength of the uniform magnetic field. In the analysis below,
we will specify the values for the plasma beta corresponding to the
(bi-)Maxwellian limit, i.e., βc,‖ � β‖, and for the power exponent κ.
It becomes also clear that this bi-Maxwellian limit considerably
facilitates the comparison with the bi-Kappa distribution, both in
analytical and numerical computations, providing results of a
general validity (Lazar et al., 2015; Lazar et al., 2016; Shaaban
et al., 2021b). In this case one can conclude on the implications of
suprathermal populations without resorting to a laborious
statistical study of the results obtained for each core–halo
combination.

If we reiterate those studies which invoke another
comparison of the Kappa distribution with a Maxwellian
limit of the same (kinetic) temperature (Hellberg et al., 2009;
Livadiotis and McComas, 2012), i.e., TM � Tκ, their results do
not have the same relevance, and cannot highlight suprathermal
populations and their implications (Hau et al., 2009; Lazar et al.,
2015; Lazar et al., 2016) (a graphical comparison of a bi-Kappa
with both bi-Maxwellian limits can be found in (Lazar et al.,
2016)). Many of the early analyses of temperature anisotropy
instabilities were also affected by such a simplified approach
(Lazar and Poedts, 2009; Mace and Sydora, 2010; Lazar et al.,
2011). However, more recent studies based on a realistic
contrast between a (bi-)Kappa with its (bi-)Maxwellian core,
as illustrated in Figure 1, have reached concurring conclusions
providing a consistent interpretation of the suprathermal

FIGURE 1 | 1D representation contrasting the observed (global) Kappa
distribution with enhanced high-energy tails (red line) with the Maxwellian low-
energy core (dashed blue line) in the absence of suprathermal population.

1Focusing on temperature anisotropy instabilities, in a zero order approximation
we can neglect the influence of the relative drift that may exist between core and
halo populations. Away from the energetic events or interplanetary shocks this drift
is insignificant (much lower than thermal spreads and relative drifts of beam-strahl
populations) (Wilson III et al., 2019), being not even captured by the observations
(Štverák et al., 2008)
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populations and their contribution to these instabilities (Lazar
et al., 2016; Shaaban et al., 2019a; López et al., 2019). In the
following we will revisit these more reliable studies, paying
particular attention to the results obtained with advanced QL
theories and numerical simulations.

3 INSTABILITIESDRIVENBYANISOTROPIC
ELECTRONS

3.1 Whistler Instability (Ae > 1)
The enhanced magnetic fluctuations in the range of whistler
waves have been reported in space plasmas since the ’80 s,
especially in association with interplanetary shocks and co-
rotating interaction regions (CIRs) (Coroniti et al., 1982; Lin
et al., 1998; Wilson et al., 2013). Over the past decade, high-
performance detectors were also able to measure these
fluctuations in more quiet environments, such as the pristine
solar wind, showing that the occurrence of whistler waves is
related not only to electron suprathermal (halo, strahl)
populations carrying the heat-flux, but also to the electron
temperature anisotropy (Vinas et al., 2010; Lacombe et al.,
2014; Stansby et al., 2016; Tong et al., 2019b)2. So far, a link
between whistler fluctuations and the anisotropic temperature of

electrons (subscript e here in the next), i.e., Ae � Te,⊥/Te,‖ > 1, has
been established rather indirectly. Thus, the threshold of the
whistler instability has been found to shape the limits of this
anisotropy measured in-situ (Štverák et al., 2008), providing
another strong evidence on the role self-generated instabilities
can play in determining the solar wind properties.

In order to outline the effects of suprathermal electrons on the
whistler instability, here we revisit and refine the more or less
recent analyses of this instability in the solar wind conditions
(Lazar et al., 2013; Lazar et al., 2015; Lazar et al., 2019), focusing
on the results from 1D particle-in-cell (PIC) simulations. We
chose set-ups similar to those in Ref. (Lazar et al., 2019), and with
outcomes in very good agreement with linear and QL theory.
Thus, in Figure 2 we show the magnetic field fluctuations
obtained from PIC simulations (as |FFT(x,t)(By − iBz)|

2 in the
color bar, where the fast Fourier transform is taken along the
spatial and temporal dimensions, see also Ref. (Lazar et al.,
2019)), for two sets of parameters Ae(0) � 4.0, β‖(0) � 0.1
(top) and β‖(0) � 1.0 (bottom). The whistler nature of these
fluctuations is confirmed by their alignment along the dispersion
curves of whistler modes, i.e., the wave frequency (normalized to
the electron gyro-frequency, Ωe � |e|B0/mec) derived from linear
theory as a function of the wave number (normalized by the
inverse of electron skin depth ωpe/c, where ωpe � (4πne2/me)1/2 is
the plasma frequency and c is the speed of light in vacuum).
Comparison between the bi-Kappa (left) and bi-Maxwellian
(right) electrons shows an enhancement of the wave power in
the presence of suprathermal electrons (left panels). As expected,
this difference giving us the contribution of suprathermals is
reduced when electrons have (initially) a higher kinetic energy or

FIGURE 2 | Whistler fluctuations computed from PIC simulations for bi-Kappa (A) and for bi-Maxwellian (B) electrons with Ae(0) � 4.0, βe,‖(0) � 0.1 (top) and
βe,‖(0) � 1.0 (bottom): peaks of the wave magnetic power (color coded) align to the linear dispersion in the frequency (ω) –wave-number (k) space.

2Observationally, there can be shortcomings in using total moments of the velocity
distributions measured in-situ, and for a rigorous interpretation one may need
more sophisticated analyses to differentiate between electron populations and
quantify their properties (Wilson III et al., 2019; Vinas et al., 2010).
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temperature, reflected by a higher beta parameter, i.e., βe,‖(t � 0) �
1.0 (bottom panels).

Figure 3 displays temporal variations of the magnetic energy
density (normalized to the electron density at rest) UB(t) � (1/
(8π))∫dx δB2(x, t) (left), temperature anisotropy (middle) and
plasma betas (right), for an initial βe,‖(t � 0) � 0.1 (top), and
βe,‖(t � 0) � 1.0 (bottom). The results are obtained as function of
the normalized time τ � Ωet. In the presence of suprathermals
electrons (red lines for κ � 3) all cases show a stimulation of the
unstable fluctuations, enhancing the magnetic wave power and
deepening the relaxation of the anisotropy. In the first case, for a
low plasma beta, the maximum wave power reached at the
saturation is more than two times higher in the presence of
suprathermals. When electrons have a higher (initial)
temperature or higher beta parameter, i.e., βe,‖(t � 0) � 1.0,
the instability is triggered earlier in time, but the effects of
suprathermals are weaker. In this case, the wave power
reached at the saturation is enhanced only 1.5 times and the
influence on the relaxation of the anisotropy is also significantly
reduced.

However, in the second run for electrons with higher betas,
i.e., βe,‖(t � 0) � 1.0 (bottom panels), the amplitude of whistler
fluctuations is much higher, with a magnetic power reached at
saturation (bottom-left panel) almost one order of magnitude
higher than first case (top-left panel). This explains the deeper
relaxation of the anisotropy (middle and right panels), and may
also help us to understand why the fluctuating magnetic power
computed in Figure 2 deviates from the linear dispersion relation,
and why this deviation increases with βe,‖(t � 0). These
fluctuations, coded with colors in Figure 2, represent the total
magnetic field power, integrated over the whole interval of time
simulation, and because the temperature components and

anisotropy change during the run, as shown in Figure 3, the
corresponding dispersion of the whistler fluctuations also change,
thus explaining the deviations, more or less significant, obtained
in Figure 2. These deviations also seem to depend on the noise
level in the simulations, both increasing with plasma beta, as
argued in Ref. (Lazar et al., 2019). from a comparison of the
results obtained for βe,‖(t � 0) � 0.1, and βe,‖(t � 0) � 2.0.

Temporal variations from Figure 3 compare very well with
those obtained from a QL approach, not shown here, but
provided in Ref. (Lazar et al., 2019), showing that the level of
whistler fluctuations driven by a moderate electron temperature
anisotropy, similar to the solar wind observations, does not reach
very high amplitudes. Associated with the anisotropy of electrons,
i.e., anisotropic temperature, heat flux, whistler wave fluctuations
measured in the solar wind confirm such low level of amplitudes
(Wilson et al., 2013; Tong et al., 2019b). Therefore, highly non-
linear effects, like non-linear wave-wave interaction (e.g.,
interaction of three-waves, non-linear wave damping) or
particle trapping may not involve, and the QL saturation is
only the result of the scattering of electrons by enhanced
fluctuations, which leads to the relaxation of their temperature
anisotropy.

3.2 Electron Firehose Instabilities (Ae < 1)
Firehose instabilities are excited by an anisotropy (excess) of
temperature in direction parallel to the magnetic field, i.e., Ae �
Te,⊥/Te,‖ < 1. We first discuss the electron firehose (EFH)
instabilities, which have two distinct branches of unstable
modes. Thus, the finite frequency firehose modes (ω ≠ 0,
periodic) may propagate along the magnetic field and at small
angles, while the aperiodic firehose mode (ω � 0), propagates only
in oblique directions, and develops more rapidly with

FIGURE 3 | Temporal variation of whistler instability from PIC simulations for bi-Kappa (red) and bi-Maxwellian electrons (blue): magnetic field power (A), plasma
betas (B) and temperature anisotropy (C). Initial parameters are Ae(0) � 4.0, βe,‖(0) � 0.1 (top) and βe,‖(0) � 1.0 (bottom).
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(maximum) growth rates much higher than the periodic mode (Li
and Habbal, 2000; Camporeale and Burgess, 2008; Shaaban et al.,
2019a); see, for instance, Figure 4, top panel, in Ref. (Shaaban
et al., 2019a). Because of this, only the oblique EFH (O-EFH)
instability is revisited here, based on a retrospective of linear
approach for bi-Kappa distributed electrons (Shaaban et al.,
2019a), but also on the results from long-term runs of this
instability in 2D PIC simulations (López et al., 2019).

In Figure 4 we show temporal evolution from 2D PIC
simulations for the magnetic energy density (left), electron
plasma beta components (middle), and the relaxation of
temperature anisotropy (right). These results are obtained for
an initial anisotropy Ae(t � 0) � 0.2 and plasma beta βe,‖(t � 0)
� 4 (with the same normalized time τ � Ωet), and reproduce those
from Ref. (López et al., 2019). In order to outline the effects of
suprathermals we compare the evolution obtained for the bi-Kappa
electrons (κ � 3, red lines) with that for bi-Maxwellian limit (κ �∞,
blue line). These temporal profiles show a significant stimulation of

the instability, with the magnetic wave energy of the O-EFH
fluctuations enhanced in the presence of suprathermal
electrons, which in turn leads to a deeper relaxation of the
initial temperature anisotropy. However, the resulting firehose
fluctuations remain at low levels (much lower than whistler
fluctuations above), which may explain the difficulty in
detecting them directly in-situ.

Figure 5 combines very suggestively the growth rates (iso-
contours) predicted by the linear theory for the O-EFH
instability, with the fluctuation power spectra (color coded)
obtained from PIC simulations. These results are displayed
here depending on the propagation angle θ and the (total)
wave number κ, and show a very good qualitative agreement.
Comparison with the bi-Maxwellian limit (right panel)
reconfirms the enhancement of firehose fluctuations in the
presence of suprathermals (left panel). Also, the maximum
(peaking) growth rate moves to slightly higher oblique angles
and lower wave-numbers.

FIGURE 4 | The results from PIC simulations of the O-EFH instability for bi-Kappa (red) and bi-Maxwellian (blue) electrons: temporal evolution for the magnetic wave
energy (A), proton plasma beta components (B), and the relaxation of temperature anisotropy (C).

FIGURE 5 | Power spectra (color coded) of O-EFH fluctuations (δBz component) from PIC simulations, for bi-Kappa protons with κe � 3 (A) and bi-Maxwellian limit
κ → ∞ (B). Contours of the linear growth rates (c/Ωe) show a very good agreement with the simulations.
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4 INSTABILITIESDRIVENBYANISOTROPIC
PROTONS

4.1 EMIC Instability (Ap > 1)
The electromagnetic ion-cyclotron (EMIC) modes with
frequencies below the proton (subscript p here in the next)
gyro-frequency Ωp � |e|B0/mpc are destabilized by the
anisotropic protons with temperature anisotropy Ap � Tp,⊥/Tp,‖
> 1 (Gary, 1993). Enhanced EMIC fluctuations are constantly
detected in the solar wind, at various heliographic coordinates
(Jian et al., 2009; Podesta and Gary, 2011;Wicks et al., 2016; Klein
et al., 2018), but also in the Earth’s magnetosphere (Anderson
et al., 1991; Nguyen et al., 2007), motivating the interest for
understanding not only their origin, but also their implications,
and, especially, in the presence of suprathermal protons (Lazar,
2012; Yoon and Seough, 2012; Shaaban et al., 2016; Shaaban et al.,
2021a). Recently, significant progress has been made by
elaborating a new QL theoretical formalism, see Ref. (Shaaban
et al., 2021a), capable of describing these effects of suprathermal
protons, by using, for the first time, a relevant Kappa approach,
such as that described in Section 2 above. Here we revisit and test
the results from Ref. (Shaaban et al., 2021a), using the same QL
theory and numerical solvers to obtain unstable EMIC solutions
for different initial conditions, but still specific to space plasmas.

Figure 6 displays the same temporal variations as in Figure 3,
this time for the total (normalized) wave energy density Wt �∫d~k δW(~k) of the EMIC fluctuations (left), and proton
parameters, namely, the plasma beta components (middle) and
temperature anisotropy (right). These results are obtained from a
QL approach (Shaaban et al., 2021a) for bi-Kappa (red) and bi-
Maxwellian (blue) protons with an initial anisotropy Ap(t � 0) �
3.0, and two distinct cases for low βp,‖ � 0.1 (top) and high βp,‖ �
1.0 (bottom). All these temporal profiles resemble those
corresponding to Figure 1 for whistlers, which are destabilized
by the same cyclotron resonance, but with electrons. For a low

(initial) βp,‖ � 0.1 (top panels) the resulting fluctuations reach low
amplitudes (even at the saturation), and does not contribute
much to the relaxation of anisotropy. Suprathermal protons have
the same stimulating effect on the EMIC fluctuations, which in
turn determine larger variations of the plasma beta components
and a deeper relaxation of the anisotropy. In the second case
(bottom panels), plasma beta is one order of magnitude higher,
and the wave energy density reached at the saturation is also
markedly increased, contributing also to a deeper relaxation of
the anisotropy. The effect of suprathermals is reduced, as reflected
not only by the wave energy density, but also the proton
parameters.

Corresponding to these two cases, in Figure 7 we show the
variation in time of the spectral (normalized) wave energy density
W(~k) � δB2(~k)/B2

0 (color coded), from high to low wave-
numbers, and even much lower in the presence of
suprathermal protons. The significant enhancement of the
EMIC fluctuations reached at the saturation is also evident,
not only in the presence of suprathermals, but also with the
increase of βp,‖. The wave-number decreases, especially after
saturation, because temperature anisotropy decreases.
Accordingly, growth rates also become lower, see linear theory
(Shaaban et al., 2021a), but remain high enough to amplify
already large amplitude fluctuations (after saturation), and to
explain increased levels of Wt(~k).

4.2 Proton Firehose Instabilities (Ap < 1)
If protons exhibit an opposite anisotropy, i.e., Ap � Tp,⊥/Tp,‖ < 1,
the theory predicts two other branches of proton firehose (PFH)
instabilities, similar to the EFH instabilities (Gary, 1993; Hellinger
et al., 2006; Maneva et al., 2016; Hunana and Zank, 2017).
However, in this case the periodic PFH instability, propagating
parallel to the magnetic field, can be more competitive, with
growth rates exceeding those of the aperiodic (oblique) branch
(Gary, 1993; Hellinger et al., 2006; Maneva et al., 2016; Hunana

FIGURE 6 |QL evolution of the EMIC instability for bi-Kappa (red) and bi-Maxwellian protons: magnetic energy (A), components of proton plasma beta (B) and the
subsequent relaxation of the anisotropy (C), obtained for Ap(t � 0) � 3.0 and βp‖(t � 0) � 0.1 (top) and βp‖(t � 0) � 1.0 (bottom).
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and Zank, 2017). Therefore, we will restrict our present analysis
only to the P-PFH instability, and focus on the influence of
suprathermal protons by using the same relevant comparison
described in Section 2. We have used the new QL formalism
reported recently in Ref. (Shaaban et al., 2021b), but to derive
unstable PFH modes for (slightly) different initial parameters of
proton population, thus testing the consistency of previous
results.

Figure 8 displays in the same format the most relevant
variations in time of the wave energy density (left),
components of proton beta parameter (middle), and
temperature anisotropy (right). To outline the effects of
suprathermal protons, we contrast the results obtained for
anisotropic protons with bi-Kappa (red) and bi-Maxwellian
(blue) distributions, with initial parameters Ap(t � 0) � 0.5
and βp‖(t � 0) � 3.0. As also shown in Ref. (Shaaban et al.,
2021b), suprathermals lead to higher wave energy density (Wt,
left panel), and the enhanced fluctuations naturally determine
stronger variations of the proton plasma beta components

(middle panel), and a deeper relaxation of their anisotropy
(right panel). However, in this case the instability ignites
much faster in the presence of suprathermals, that seems
characteristic to lower plasma beta conditions (compare, for
instance, cases in Figure 6).

Thresholds of PFH instabilities are often invoked to explain
the limits of proton temperature anisotropy (Kasper et al., 2002;
Hellinger et al., 2006; Bale et al., 2009; Shaaban et al., 2017),
usually at sufficiently large heliocentric distances, where the
observations do not confirm a pure adiabatic expansion of the
solar wind (Chew et al., 1956; Matteini et al., 2007; Matteini et al.,
2012), and particle-particle collisions are too rare to play, alone,
the role of an anisotropy constraint (Bale et al., 2009). Enhanced
fluctuations observed at 1 AU have been associated with these
anisotropies (Bale et al., 2009), although suprathermal proton
populations have not been considered yet to provide a complete
observational confrontation. In Figure 9 we show thresholds of
the PFH instability, derived in terms of proton parameters,
i.e., Ap( < 1) vs. βp‖, again, by comparison, for bi-Kappa (red)

FIGURE 7 | Temporal variation of the wave-number spectra of EMIC magnetic wave energy density for the same cases in Figure 6.
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and bi-Maxwellian (blue) protons (Shaaban et al., 2021b). These
thresholds are derived from linear theory, see, e.g., in Ref.
(Shaaban et al., 2017), and correspond to small maximum
growth-rates cm � 10−3Ωp (near the marginal stability, cm �
0). Here the stimulating effect of suprathermal protons becomes
also evident, causing a significant reduction of the instability
threshold. We also display a number of dynamical paths, as
obtained from QL theory for bi-Kappa protons in the left panel,
and for bi-Maxwellian protons in the right panel (Shaaban et al.,
2021b). For each of these runs the instability develops from
different initial conditions, i.e., different values of βp‖, and the
final states after saturation align, quite well, along the thresholds
derived from the linear theory, providing a supplementary
confirmation of these thresholds.

For the sake of completeness, in the same diagrams from
Figure 9, but in the upper half (for Ap > 1), we also plot the
anisotropy thresholds and the QL dynamical paths for EMIC
instability (Shaaban et al., 2021a) discussed in Section 4.1. This
time thresholds correspond to maximum growth-rates cm � 2.5 ×
10−3Ωp (approaching marginal stability, cm � 0), and are derived
from linear theory for bi-Kappa (red) and bi-Maxwellian (blue)
protons. Their comparison confirms the significant stimulating

effect of suprathermal protons on EMIC instability, markedly
lowering the anisotropy instability (red lines). The QL dynamical
paths for the EMIC instability are also contrasted, for bi-Kappa
(left) and bi-Maxwellian (right) protons, and confirm a deeper
and more efficient relaxation of the anisotropy in the presence of
suprathermal protons. For all cases, the final states after
saturation align again along the thresholds predicted by the
linear theory. Relaxation of temperature anisotropy (A ≶ 1) is
a direct consequence of the action of fluctuations generated by
instabilities, either EMIC or PFH instabilities. The levels of wave
energy density (Wt) of both the EMIC and PFH fluctuations are
color coded along dynamical paths, and confirm their
enhancement in the presence of suprathermal protons (left
panel).

5 CONCLUSION

In this paper we have reviewed a number of recent results on the
instabilities induced by the temperature anisotropy of plasma
particles, under conditions typical for the solar wind and
planetary environments, e.g., in Refs. (Lazar et al., 2019; López

FIGURE 8 | QL evolution of the periodic PFH instability: magnetic energy (A), proton plasma beta (B) and the subsequent relaxation of the anisotropy (C) for
anisotropic protons with bi-Kappa (red) or bi-Maxwellian (blue) distributions. Initial parameters are Ap(t � 0) � 0.5, and βp,‖(t � 0) � 3.0.

FIGURE 9 | Dynamical paths from QL theory, and the subsequent deeper relaxation of the anisotropy for bi-Kappa electrons (A) comparing to bi-Maxwellian limit
(B): the evolution of the anisotropy (Ap) vs. parallel proton beta (βp,‖) triggered by the EMIC (top) and PFH (bottom) instabilities.
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et al., 2019; Shaaban et al., 2021b; Shaaban et al., 2021a). The
interest is to outline and show how these instabilities are
influenced by suprathermal populations (with energies up to
1 keV), which are often ignored despite their ubiquity in space
plasmas (Gary, 1993; Yoon, 2017). The recent studies we have
referred to have the merit of using a rigorous modeling and
interpretation of suprathermal populations based on the
(anisotropic) Kappa distribution functions, see Section 2
(Lazar et al., 2015; Lazar et al., 2016). What motivated our
analysis even more was the fact that all these recent results
showed a systematic stimulation of the instabilities induced by
temperature anisotropy, whether they are induced by different
species (i.e., electrons, protons), or are instabilities of different
nature (e.g., cyclotron or firehose) (Lazar et al., 2015; Lazar et al.,
2016; Shaaban et al., 2019a; Lazar et al., 2019; López et al., 2019).
Therefore, our intention was not only to revisit but also to test
these results, as well as theoretical approaches (i.e., linear and QL)
and numerical simulations, which were re-applied for the same or
slightly modified set-ups, but keeping a parameterization specific
to space plasmas.

By formulating these conclusions, we can indeed confirm that
suprathermal populations, both electrons and protons, have a
systematic stimulating effect not only on cyclotron instabilities,
i.e., whistler and EMIC, but also on firehose instabilities, both
branches of periodic (or parallel) and aperiodic (or oblique)
firehose modes. The unstable fluctuations, quantified by their,
e.g., wave power or energy density, can be markedly enhanced
by the suprathermal populations, especially when the low-energy
(core) populations are initially in low plasma beta conditions.
Indeed, comparisons between low and high beta conditions, clearly
show that suprathermal populations contribute with an additional
kinetic (free) energy, producing similar results as those obtained by
increasing the plasma beta parameter. From now on, in-situ
measurements can explain the increased levels of these specific
fluctuations not only by association with temperature anisotropy
(Bale et al., 2009) but also by the presence of suprathermal
populations. On the other hand, the resulting enhanced
fluctuations should act back on the anisotropic particles, and
the results from long runs indicate stronger variations of their
parameters in the presence of suprathermals, also leading to a
deeper relaxation of temperature anisotropy.

The same stimulating effect is also reflected by the anisotropy
thresholds of these instabilities, which can be significantly
lowered by the suprathermals. Suggestive examples are shown
in Figure 9, in a diagram of proton anisotropy (Ap) vs. proton
(parallel) beta parameter (βp‖), not only by the thresholds of

proton firehose (PFH) instability (Ap < 1), but also by the
thresholds of EM ion-cyclotron (EMIC) instability in the
upper part (Ap > 1) of this diagram (Shaaban et al., 2021a;
Shaaban et al., 2021b). The anisotropy thresholds of electron
instabilities are not shown here, but undergo the same influence
in the presence of suprathermal electrons (Lazar et al., 2017b;
Shaaban et al., 2019a; Lazar et al., 2019). This is another
consequence of the presence of suprathermal populations,
which can indirectly contribute to the accumulation of quasi-
stable states in between these thresholds, near and along the
isotropy condition A ≃ 1, as shown by the observations, not only
for protons (Kasper et al., 2002; Bale et al., 2009) but also for
electrons (Štverák et al., 2008). Other instabilities induced by
beams or drifting populations (Verscharen et al., 2019; López
et al., 2020; Micera et al., 2020; Schroeder et al., 2021), may show
less systematic behavior when modeled by Kappa distributions
(Shaaban et al., 2018a; Shaaban et al., 2020). Present resultss and
recent advances in modeling the dispersion and stability of these
anisotropic populations (López et al., 2021) should motivate
future investigations to decode even more complex spectra of
wave instabilities, as triggered by the interplay of various kinetic
anisotropies of solar wind plasma populations, e.g., temperature
anisotropy and relative drifts (Shaaban et al., 2018b; Shaaban and
Lazar, 2020; Vasko et al., 2020), but also density gradients in
phase space (Page et al., 2021).
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