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Three different recurrent neural network (RNN) architectures are studied for the prediction
of geomagnetic activity. The RNNs studied are the Elman, gated recurrent unit (GRU), and
long short-term memory (LSTM). The RNNs take solar wind data as inputs to predict the
Dst index. The Dst index summarizes complex geomagnetic processes into a single time
series. The models are trained and tested using five-fold cross-validation based on the
hourly resolution OMNI dataset using data from the years 1995–2015. The inputs are solar
wind plasma (particle density and speed), vector magnetic fields, time of year, and time of
day. The RNNs are regularized using early stopping and dropout. We find that both the
gated recurrent unit and long short-term memory models perform better than the Elman
model; however, we see no significant difference in performance betweenGRU and LSTM.
RNNs with dropout require more weights to reach the same validation error as networks
without dropout. However, the gap between training error and validation error becomes
smaller when dropout is applied, reducing over-fitting and improving generalization.
Another advantage in using dropout is that it can be applied during prediction to
provide confidence limits on the predictions. The confidence limits increase with
increasing Dst magnitude: a consequence of the less populated input-target space for
events with large Dst values, thereby increasing the uncertainty in the estimates. The best
RNNs have test set RMSE of 8.8 nT, bias close to zero, and linear correlation of 0.90.

Keywords: space weather, recurrent neural net, cross-validation, solar wind–magnetosphere–ionosphere coupling,
prediction, dropout

1 INTRODUCTION

In this work we explore recurrent neural networks (RNNs) for the prediction of geomagnetic activity
using solar wind data. An RNN can learn input–output mappings that are temporally correlated.
Many solar terrestrial relations exhibit such behavior that contains both directly driven processes and
dynamic processes that depend on time. The geomagneticDst index has been addressed in numerous
studies and serves as a parameter for general space weather summary and space weather models. The
Dst index is derived frommagnetic field measurements at four near-equatorial stations and primarily
indicates the strength of the equatorial ring current and the magnetopause current (Mayaud, 1980).
The Dst index has attained a lot of attention over the years, both for understanding solar terrestrial
relations and for use in space weather.

An early attempt to predict the Dst index from the solar wind made use of a linear filter (Burton
et al., 1975) derived from the differential equation containing a source term (the solar wind driver)
and a decay term. After removing the variation in Dst that is controlled by the solar wind dynamic
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pressure, one arrives at the pressure-corrected Dstp index
(O’Brien and McPherron, 2000) which is modeled as

dDstp

dt
� Q − Dstp

τ
, (1)

whereQ is the source term that depends on the solar wind and t is
the decay time of the ring current. The decay time t may be a
constant, but it may also vary with the solar wind. (see, e.g., the
AK1 (constant τ) and AK2 (variable τ) models in O’Brien and
McPherron (2000)). As the functional form of Q is not known,
the equation is numerically solved by

Dstp(t + Δt) � Dstp(t) + (Q(t) − Dstp(t)
τ(t) )Δt. (2)

Based on observed solar wind data, for hourly sampled data,
the time step is Δt � 1 hour. The source term Q is a nonlinear
function of the solar wind parameters, and different forms have
been suggested. The AK1 model defines the source term as

Q(V ,Bs) � aVBs nT/h, (3)

where a � −2.47 is a constant, V is the solar wind speed (km/s),
and Bs is

Bs � { 0 , Bz ≥ 0
−Bz , Bz < 0

nT. (4)

Bz is the vertical solar wind magnetic field component. Thus,
as long as Bz < 0, the Dst index will be driven to increasing
negative values; for example, if τ is a constant and the solar wind
conditions are constant with negative Bz , then Dstp will
asymptotically approach Q · τ. With τ � 17 hours (AK1), V �
600 km/s and Bz � −20 nT give VBs � 12mV/m and
Q · τ � −500 nT. The AK1 model has been further extended by
letting τ be a function of Dst and adding components for the
diurnal and seasonal variation that are present in Dst (O’Brien
and McPherron, 2002).

The machine learning (ML) approach could be viewed as a set
of more general algorithms that can model complex functions.
The development of an ML model is more involved and time
consuming. For the prediction of the Dst index, many ML
methods have been applied, and we here list some examples
using different approaches: neural network with input time delays
(Lundstedt and Wintoft, 1994; Gleisner et al., 1996; Watanabe
et al., 2002), recurrent neural network (Wu and Lundstedt, 1997;
Lundstedt et al., 2002; Pallocchia et al., 2006; Gruet et al., 2018),
ARMA (Vassiliadis et al., 1999), and NARMAX (Boaghe et al.,
2001; Boynton et al., 2011).

An RNN models dynamical behavior through internal states
so that the output depends on both the inputs and the internal
state (see, e.g., Goodfellow et al. (2016)) for an overview. Thus,
structures that are temporally correlated can be modeled without
explicitly parameterizing the temporal dependence; instead, the
weights in the hidden layer that connects to the internal state
units are adjusted during the training phase. An early RNN was
the Elman network (Elman, 1990) which was applied to
geomagnetic predictions (Wu and Lundstedt, 1997) and later

implemented for real-time operation (Lundstedt et al., 2002). The
Elman RNN can model complex dynamical behavior; however, it
was realized that it could be difficult to learn dynamics for
systems with long-range memory (Bengio et al., 1994). To
overcome that limitation, other RNN architectures were
suggested, such as the GRU (Cho et al., 2014) and LSTM
(Hochreiter and Schmidhuber, 1997). The LSTM has been
applied to geomagnetic predictions of the Kp (Tan et al., 2018)
and Dst indices (Gruet et al., 2018; Xu et al., 2020). It should be
noted that Elman RNN is less complex and has the shortest
training times of the three architectures and may be suited for
certain problems, and that it is not clear whether there is a general
advantage of using GRU or LSTM (Chung et al., 2014;
Goodfellow et al., 2016).

In this work, the main goal is to compare the three RNNs:
Elman, GRU, and LSTM. The geomagnetic Dst index is chosen as
target as it captures several interesting features of the geomagnetic
storm with different temporal dynamics. The initial phase is
marked by an increase in Dst caused by a directly driven pressure
increase in the solar wind; the main phase is marked by a sudden
decrease inDstwhen solar wind energy enters the magnetosphere
through mainly reconnection with southward Bz , and later, the
storm enters the recovery phase when energy is dissipated by
internal processes not related to the solar wind condition.

The inputs to the RNNs are solar wind, local time, and time of
year. Specifically, past values of Dst are not used as inputs,
although the autocorrelation is very strong (0.98). Clearly, all
statistical measures of performance will improve for short lead
time predictions when past values ofDst are used. However, as the
solar wind controls the initial and main phases of the storm, the
strong autocorrelation is mainly a result of quiet time variation
and the relatively slow increase in Dst during the recovery phase.
Another aspect is that for real-time predictions, the variable lead
time given by the solar wind must be matched against available
real-timeDst if it is used as input. Also, any errors in real-timeDst
will affect the predictions, and as an example, during the period
June–September 2020, the real-time Dst was offset by about
−30 nT. It is also interesting to note that in a recent Dst
prediction competition1 hosted by NOAA, it was stated that
the models “may not take Dst as an input.”

As the idea here is to compare three RNN architectures that
map from solar wind to Dst, the prediction lead time is not
explored. The solar wind data used have been propagated to a
location close to Earth, and no further lead time is added; thus,
propagated solar wind at time t is mapped to Dst(t). Clearly,
possibilities to increase the lead time are of great interest, and
many attempts have been made with models driven by measured
solar wind (e.g., Gruet et al. (2018); Xu et al. (2020)). However,
without any information other than L1 solar wind measurements,
the initial phase cannot be predicted with any additional lead
time, except that given by the L1-Earth solar wind propagation
time, while the main phase may be predicted with possibly up to
an additional hour due to magnetospheric processes. The effect of

1https://www.drivendata.org/competitions/73/noaa-magnetic-forecasting/
page/278/
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forcing models driven by measured solar wind to predict Kp and
Dst with different lead times was studied in Wintoft and Wik
(2018).

2 MODELS AND ANALYSIS

2.1 Models
A neural network performs a sequence of transforms by
multiplying its inputs with a set of coefficients (weights) and
applying nonlinear functions to provide the output. It has been
shown that the neural network can approximate any continuous
function (Cybenko, 1989). For a supervised network, the weights
are adjusted to produce a desired output, given the inputs, known
as the training phase. The training phase requires known input
and target values, a cost function, and an optimization algorithm
that minimizes the cost.

The Elman RNN was first developed for Dst predictions by
Wu and Lundstedt (1997) and later implemented for real-time
operation (Lundstedt et al., 2002). In this work, we use the term
Elman network, but it is the same as the simple RNN used in the
Tensorflow package that we use (Abadi et al., 2015). Using linear
units at the output layer, the Elman network at time t is
described by

yt � b +∑J
j�1

vjh
j
t � Vht , (5)

hjt � f⎛⎝aj +∑I
i�1

wjix
i
t +∑J

k�1
ujkh

k
t−1⎞⎠ � f (Wxt + Uht−1)j, (6)

with the output layer bias b, J hidden weights vj, nonlinear
activation function f, J hidden layer biases aj, J × I weights wji,
and J × J recurrent weights ujk. Note that we use superscripts
i, j, and k as indices, not powers. The equations can be written
more condensed using weight matrices W and U, where the bias
terms (aj, b) have been collected into the matrices and increasing
the lengths of xt and ht by adding a constant set to one. For
example, in Lundstedt et al. (2002), there are I � 3 inputs
(Bz , n,V) and J � 4 hidden units.

A minimalistic Elman network can be constructed by using
only one input unit and one linear unit in the hidden layer, thus
b � 0, v1 � 1, leading to

yt � a1 + w11x
1
t + u11yt−1, (7)

which after some rearranging can be written as

yt � yt−1 + a1 + w11x
1
t − (1 − u11)yt−1, (8)

which is identical to Eq. 2 for τ � const and Δt � 1, and by letting
a1 � 0, w11x1t � Q(t), and 1 − u11 � 1/τ. This simple network is
trained using the pressure-corrected Dst index as the target. As
the weights in the network are initiated with random values
before training begins, there will be some variation in the final
weight values if the training is repeated. We find typical values of
w11 and u11 corresponding to a ∈ [−2.4,−2.7] (Eq. 3) and
τ ∈ [14, 16] hours, which are close to the values used by
O’Brien and McPherron (2000). However, the algorithm can

get stuck in local minima that results in quite different values. We
provide code on Github2 for the minimalistic Elman network (see
Model005.py).

The gated recurrent unit (GRU) neural network (Cho et al.,
2014) has a more complex architecture than the Elman network.
We implement a single GRU layer, and the output from the
network is as before, given by yt � Vht (Eq. 5). The GRU layer
output at unit j is

hjt � zjth
j
t−1 + (1 − zjt)~hjt , (9)

where zjt is the update gate and ~h
j
t is the candidate activation. The

update gate is defined as

zjt � σ(Wzxt + Uzht−1)j, (10)

where σ is the sigmoid function with output range 0–1. The
weight matrixWz operates on the input vector xt , and the matrix
Uz operates on the past activation ht−1. The candidate activation
is defined as

~h
j

t � f (Wxt + U(rt⊙ht−1))j, (11)

where f is a nonlinear function with two additional weight
matrices W and U. The U matrix operates on the past
activation weighted by the reset gate

rjt � σ(Wrxt + Urht−1)j, (12)

which has a further set of weights matrices Wr and Ur . Clearly,
the GRU network is more complex than the Elman network, and
it has approximately 3 times more weights than the Elman
network for the same number of units. As the update and
reset gates have outputs between 0 and 1, we see that when
both produce ones [(zjt , rjt) � (1, 1)], the GRU network simplifies
to the Elman network. On the other hand, when zjt � 0, no
information of the current input xt is used, only the past state
ht−1. Finally, when rjt � 0, no information of past states goes
through the candidate activation (Eq. 11); information on past
states only goes through Eq. 9 and is weighted by 1 − zjt .

The long short-term memory (LSTM) neural network
(Hochreiter and Schmidhuber, 1997) was introduced before
GRU and has further complexity with the number of weights
approximately four times that of the Elman network, given the
same number of units. We will not repeat the equations here but
instead refer to for example, Chung et al. (2014). The LSTM has
three gating functions, instead of GRU’s two, that control the flow
of information: the output gate, the forget gate, and the input gate.
When they have values 1, 0, and 1, respectively, the LSTM
simplifies to the Elman network.

Given a network with a sufficient number of weights, it can be
trained to reach zero MSE; however, such a network will have
poor generalizing capabilities; that is, it will have large errors on
predictions on samples not included in the training data.
Different strategies exist to prevent over-fitting (Goodfellow

2https://github.com/spacedr/dst_rnn
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et al., 2016). We apply early stopping and dropout (Srivastava
et al., 2014; Gal and Ghahramani, 2016).

In order to make a robust estimation of the performance of the
networks, we apply k-fold cross-validation (Goodfellow et al.,
2016). During a training session, one subset is held out for testing
and the remaining k − 1 subsets are used for training and
validation, and out of the k − 1 subsets, one is used for
validation and the remaining k − 2 subsets for the training.
During training, the validation mean squared error (MSE) is
monitored, and the network with lowest validationMSE is chosen
(early stopping). In practice, to know that the minimum
validation MSE has been reached, the training is continued for
a number of epochs after the lowest MSE has been reached. The
final evaluation of the models is performed on the k different test
sets (see Section 2.2 to know how the different sets are selected).

2.2 Data Sets
The hourly solar wind data and Dst index are obtained from the
OMNI dataset (King and Papitashvili, 2005). The inputs are the
solar wind magnetic field magnitude B, the y- and z-components
(By,Bz) in the geocentric solar magnetospheric (GSM)
coordinate system, the particle density n, and speed V. To
provide information on diurnal and seasonal variations
(O’Brien and McPherron, 2002), four additional variables are
added: the day of year parameterized as sine and cosine of
2πDOY/365, and local time as sine and cosine of 2πUT/24.
Thus, in total, nine input variables. Several previous
geomagnetic prediction models also use diurnal and seasonal
inputs (e.g., Temerin and Li (2006); Wintoft et al. (2017); Wintoft
and Wik, (2018)). Many different coupling functions (Q) for the
dayside reconnection rate have been suggested and investigated
(Borovsky and Birn, 2014), but as the neural network can
approximate any function, the exact function does not have to
be specified as long as the relevant inputs are available.

The target variable (Dst) depends on both the solar wind and
past states of the system, where past states can be described by
past values of Dst itself or by past values of the solar wind. We
choose to only include solar wind, thereby not relying on past
observed or predicted values of Dst. For the RNN training
algorithm, the data are organized so that the past T solar wind
observations are presented at each time step. The input data are
thus collected into a N × T × 9 tensor, and the target data have
N × 1 dimension, where N is the number of samples in the set.
The input history should be long enough to capture typical
storm dynamics, and we found that validation errors leveled

out at T � 120 hours (see also the results regarding T in Sections
2.3 and 2.4).

To implement the k-fold cross-validation (CV), the dataset
must be partitioned into subsets; we perform a five-fold CV. We
choose the five sets to each have similar target (Dst) mean and
standard deviation so that training, validation, and testing are
based on comparable data. If a more blind approach were done,
then there is a high risk that training is performed on data
dominated by storms, while testing is performed on more quiet
conditions. Further, the samples in a subset cannot be randomly
selected because there will be considerable temporal overlap
between samples of different subsets due to the T � 120 hour
window. Instead, we build the subsets from data covering
complete years. The data we use cover the years 1995 to 2015,
extending over almost two solar cycles and with few solar wind
data gaps. We define five subsets based on the data for the years
shown in Table 1. The datasets used for training, validation, and
test are selected by cycling through the subsets. For the first CV
(CV-1) subset, one is selected as test set; subsets two, four, and
five for training; and subset three for validation. The process is
repeated according to Table 2.

The input and target values span very different numerical
ranges, whereas the training algorithm should receive input-
target data that have similar numerical ranges. Therefore, the
input and target data are normalized, where the normalization
coefficients are found from the training set. By subtracting the
mean and dividing with the standard deviation for each variable
separately, the training set will have zero mean and one standard
deviation on all its inputs and target variables. However, as the
distributions for each variable are highly skewed, they result in
several normalized values with magnitudes much larger than one.
Another way to normalize is to instead rescale the minimum and
maximum values to the range [-1, 1]. This guarantees that there
will be no values outside this range for the training set. We found
that the min–max normalization gave slightly better results,
especially at the large values.

2.3 Hyperparameters
There are a number of hyperparameters (HPs) that control the
model complexity and training algorithm that need to be tuned,
but it is not feasible to make an exhaustive search. Initially, a
number of different combinations of HP values were manually
tested to provide a basic insight into reasonable choices and how
the training and validation MSEs vary with epochs. In this initial
exploration, we found the Tensorboard (Abadi et al., 2015)
software valuable in monitoring the MSE.

TABLE 1 | Summary of the five subsets showing the years, number of samples,
the mean (nT), standard deviation (nT), and minimum Dst (nT).

Years Count Mean Std Min

1 1995, 2003, 2006, 2010 34,890 −15.0 19.8 −422
2 2001, 2002, 2009, 2011 35,021 −13.2 23.4 −387
3 1998, 2004, 2008, 2012 35,089 −11.3 20.9 −374
4 1996, 2000, 2013, 2015 35,059 −13.0 21.0 −301
5 1997, 1999, 2005, 2014 34,754 −12.7 19.2 −247

TABLE 2 | Selection of subsets for the different cross-validation (CV) sets.

CV Training Validation Test

1 2, 4, 5 3 1
2 1, 4, 5 3 2
3 1, 4, 5 2 3
4 1, 3, 5 2 4
5 1, 3, 4 2 5
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The Adam learning algorithm (Kingma and Lei, 2015), which
is a stochastic gradient descent method, has three parameters:
learning rate ϵ and two decay rates for the moment estimates
(β1, β2). We fix the latter to the suggested values β1, β2 �
0.9, 0.999 and vary ε ∈ [5 · 10− 4, 1 · 10− 3, 2 · 10− 3].

The learning algorithm updates the weights in batches of
samples from the training set, where the number of samples in
each batch NB is much smaller than the total number of training
samples (NB ≪N). We test batch sizes of NB ∈ [32, 64, 128]. One
training epoch includes approximately N/NB training iterations
in which the weights are updated at each iteration.

The model capacity is determined by the number of weights and
the network architecture. In this work, we have one input layer, a
recurrent layer (hidden layer), and a single output. Thus, the capacity
is determined by the network type (M ∈ [Elman,GRU, LSTM]) and
the number of hidden units (NH).

The current state (ht) in the RNN depends on both its inputs
(xt) and the past state (ht−1). For computational performance
reasons, past states are not kept indefinitely; instead, there is a
limit T on the length of the memory. We explored
T ∈ [48, 72, 96, 120] hours and found that the validation MSE
decreased with increasing T, but that it leveled out for large T. We
therefore set T � 120 hours. This also means that any dynamical
processes extending past 120 h cannot be modeled internally by
the RNN. The choice of T for the Elman and GRU networks is
studied on simulated Dst data in the next section.

The dropout is controlled by parameters that specify the
fraction of network units in a layer that are randomly selected
per epoch and temporarily disregarded. The dropout can be
applied to all layers: the input layer (di), the recurrent layer
(dr), and the hidden layer (dh). The dropout is a number between
0 and 1, where 0 means all units are included and 1 that all units
are unused.

For each combination of HP that we explore, we train three
networks initiated with different random weight values as there is
no guarantee that the training algorithm will find a good local
minimum. The network with the lowest validation error is
selected. Note that here validation refers to the split into
training and validation sets used during training, which is
different from the cross-validation sets that make up the
independent test set.

2.4 Training Network on Simulated Data
It is interesting to study the RNNs on data generated from a
known function relating solar wind to Dst, and for this purpose,
we use the AK1model (O’Brien andMcPherron, 2000). Using the
datasets defined in the previous section, we apply the AK1 model
to the solar wind inputs and create the target data. Thus, there
exists an exact relation between input and output, and the
learning process of the RNN will only be limited by the
amount of data, network structure (type of RNNs), and
network capacity (size of RNNs). We showed that the
minimalistic Elman network (Eq. 7) can model the pressure-
corrected Dst. The AK1 model also includes the pressure term,
and its inputs are Bz , n, and V. The five-fold CV is applied to
Elman and GRU networks, and we vary the time window T and
the network size NH .

In Figure 1, the validation errors as function of T are shown
for the Elman and GRU networks. At each T, the optimal
networks with respect to NH are used. We see that for small
T, the RMSE is large, but it is similar for the two network types. At
small T, only part of the storm recovery phase can be modeled.
But as T is increased, the RMSE becomes much smaller for the
GRU network than for the Elman network. It is likely that the
Elman network suffers from the vanishing gradient problem
(Bengio et al., 1994): the reason for introducing GRU and
LSTM networks. We also see that the GRU network reaches
an RMSE of lower than 0.6 nT, which could be further decreased
by increasing T. Thus, the GRU network can learn the AK1model
using the observed solar wind data.

2.5 Result for the Dst Index
As described in Section 2.2, the inputs to the Dstmodel are solar
wind magnetic field (B, By,Bz), density (n), and speed (V); the
day of year parameterized as sine and cosine of 2πDOY/365; and
local time as sine and cosine of 2πUT/24. The DOY and UT are
added to model the seasonal and diurnal variations in Dst
(O’Brien and McPherron, 2002).

We perform a search in the hyperparameter space as described
above and conclude that training is not very sensitive on the
learning rate (ϵ) or batch size (NB), and therefore fix them at
(ε,NB) � (10−3, 128).

For each of the five splits, we select the corresponding training
set (Tables 1,2), and RNNs are trained with different number of
hidden units (NH) and different dropout rates (di, dr, dh). For
each combination of (NH , di, dr , dh), three networks are trained
starting from different random initial weights. During training,
the validation error is monitored, and the network with lowest
validation error is selected. The training is stopped 20 epochs
after the minimum validation error has been reached, and the

FIGURE 1 | The average validation RMSE as function of memory size (T
in hours) for the Elman and GRU networks.
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network at minimum validation error is saved. Typically, the
minimum validation RMSE is found after 40 to 80 epochs. This
results in five different networks for each HP combination that
can be tested using the CV approach. See Appendix for software
used and typical training times.

The coupling function from solar wind to observed Dst is
subject to a number of uncertainties, and to provide a few
examples: the solar wind data have been measured at different
locations upstream of Earth, mostly from orbit around the L1
location, and then shifted to a common location closer to Earth
(King and Papitashvili, 2005); We rely on a point measurement;
there may be both systematic and random errors in the derived
Dst index. The uncertainties introduce errors in the input–output
mapping, and to reduce their effect and improve generalization,

we apply dropout. From a search of different combinations of
(NH , di, dr , dh), it was found that dropout on the inputs (di)
always led to poor performance, which can be understood as
several inputs individually are critical, for example Bz . Therefore,
we set di � 0. The performance improved when dropout was
applied on the recurrent and hidden layers. Figure 2 shows the
training and validation RMSE as a function of NH for different
dropouts. In the case with no dropout (left panel), it is seen that
the GRU and LSTM validation errors are similar and significantly
below the Elman validation errors. There is also a large gap
between the training and validation errors, indicating over-fitting
on the training set. When dropout is introduced (middle and
right panels), the network size must be increased to reach similar
validation RMSE as when no dropout is applied, which is
expected as only a fraction of units are active at any one time.
But we also see that the gap between training and validation
errors decreases. We also applied dropout on the Elman network,
but the validation errors became large when dr > 0; therefore, the
results are not included in the middle and right panels. When
dr � 0.5 and dh � 0.5 (right panel), the optimal GRU and LSTM
networks haveNH � 50 andNH � 40, respectively. In terms of the
number of weights, they are of similar sizes, 9,051 and 8,041,
respectively. When dropout is applied, the number of active
weights drops to 2,651 and 2,421

For each CV set, we select the GRU and LSTM networks with
minimum validation RMSE with and without dropout, and run
them and collect the 5 CV sets into one set. We thereby get an
estimate of the generalization performance for the whole 1995 to
2015 period. Figure 3 shows scatterplots of predicted Dst vs.
observed Dst on the test sets for different networks. Table 3
summarizes the performance on the training, validation, and test
sets. The 95% confidence intervals have been estimated by both
assuming independent data points and taking into account the
autocorrelation (Zwiers and von Storch, 1995). It is clear that
using dropout significantly improves the generalization
capability. We also see that there is no significant difference
between the GRU and LSTM networks. The bias (mean of errors)
and linear correlation coefficient are computed on the test set and
shown in Table 4.

The performance of the networks varies with the level of Dst;
the errors have a tendency to increase with the magnitude of Dst.

FIGURE 2 | The average training (dashed lines) and validation (solid lines) RMSE as function of the number of hidden units (NH ) for the Elman, GRU, and LSTM
networks. The panels show errors, from left to right, when no dropout is applied (dr � 0,dh � 0), dropout dr � 0.5,dh � 0.3, and dropout dr � 0.5,dh � 0.5. Note that the
dropout on the inputs is di � 0. Gray horizontal line marks the minimum validation RMSE.

FIGURE 3 | Scatterplots of predicted vs. observed Dst based on the five
CV test sets. The left panels show predictions without dropout using GRU and
LSTM networks (gru-10 and lstm-10), while the right panels are predictions
based on networks trained using dropout of (dr ,dh) � (0.5, 0.5) (gru-50
and lstm-40).
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Figure 4 shows the RMSE binned by observed Dst. Down to
Dst � −300 nT, the networks with dropout have the lowest
RMSE. The bin at Dst � −400 nT has too few samples to be
interpretable. The main reason the errors increase with the
magnitude of Dst is that there are very few samples around
the extremes; thus, the uncertainty of the function estimation will
be large. In Wintoft et al. (2017), this problem was addressed by
using an ensemble of networks; the predictions from several
networks with different weights were averaged. In this work, we
study the use of dropout not only in the training phase but also in
the prediction phase. The algorithm that temporarily cancels

units at random during training can also be applied during
prediction. This means that there is practically an indefinitely
number of weight combinations that can be used to produce an
arbitrary number of predictions at each time step. For the GRU
network with (NH , dr , dh) � (50, 0.5, 0.5), there are more than
1028 possible combinations. There is a Bayesian interpretation of
dropout as the estimation of model uncertainty (Gal and
Ghahramani, 2016b). The idea is that the weights are random
variables leading to a distribution of predictions for fixed inputs.
For each sample, a large number of predictions can be generated,
which randomly use different combinations of network units. For
each sample, we generate 100 predictions and compute the mean
and standard deviation. Figure 5 shows two examples, the first a
severe geomagnetic storm and the second a major storm. The
mean predictions with dropout come close to the predictions
without dropout. The prediction uncertainty is small during quiet
times (Dst close to zero) and increases with storm magnitude.
Again, this is a result of the greater uncertainty in parameter
estimates in regions which are poorly sampled.

As time of day and season are included in the inputs, the
network can model diurnal and seasonal variations in Dst. These
variations are not strong, and the left panel in Figure 6 shows Dst
for all years averaged over month and UT hour. Running the
GRU networks on the test data from the five CV sets reveals a very
similar pattern (second panel from left). Thus, the network shows
similar long-term statistics considering that it is driven only by
solar wind and time information. The two left panels contain
contributions from all levels ofDst from quiet conditions to storm
conditions. But we may now simulate solar wind conditions that
we can define as quiet conditions. The two right panels show
predicted Dst, assuming solar wind flowing out from the Sun
(GSEQ system) along the Parker spiral with a 45+ angle at L1 at
two different speeds, 350 km/s and 400 km/s, respectively. In this
configuration, Bz � 0 in the solar coordinate system, but via
geometric effects (Sun’s and Earth’s tilts with respect to the
ecliptic and Earth’s dipole tilt), Bz will be nonzero in the GSM
system showing diurnal and seasonal variations (Lockwood et al.,
2020).

3 DISCUSSION AND CONCLUSION

There is a close correspondence between Elman networks and
models expressed in terms of the differential equation for the Dst
index. A minimalistic Elman network trained on simulated data
from the pressure-corrected Dst index (Eq. 1) results in weights
that translate to values around a � 2.45 and τ � 15, close to those
used in Eqs 2,3. However, using solar wind data from the years
1995–2015 and targeting simulated Dst from the AK1 model, we
find that the RMSE for Elman network basically levels out for
temporal history of Ta40 hours. This is not the case for the GRU
network, which has similar RMSE up to(20 hours but continues
to improve for T > 20 hours. We interpret this as an effect of the
vanishing gradient problem (Bengio et al., 1994) that is solved in
the GRU and LSTM networks. It should be noted that the Elman
network takes less time to train, and if the dynamics of the system
can be captured in less than about 20 time steps, then the Elman

TABLE 3 | Training, validation, and test RMSE (nT) for networks with and without
dropout. The training and validation RMSE are averages over the five CV splits,
while the test RMSE is computed from the combined five CV test sets. Networks
with NH � 10 have no dropout and the larger networks have dropout
(dr ,dh) � (0.5, 0.5). The 95% RMSE confidence interval is approximately
± 0.03 nT assuming independent errors but increases to ± 0.17 nT if the
autocorrelation is taken into account.

Net NH Train Val Test

GRU 10 7.21 8.79 9.24
GRU 50 8.43 8.67 8.85
LSTM 10 7.06 8.84 9.37
LSTM 40 8.34 8.77 8.81

TABLE 4 |BIAS, RMSE, and CORR for the GRU and LSTMmodels on the test set.
BIAS and RMSE are in units of nT. The 95% confidence intervals are ± 0.04 to
± 0.2 nT for BIAS, ± 0.03 to ± 0.17 nT for RMSE (same as Table 3), and
± 0.001 to ± 0.01 for CORR. The lower limits assume independence and the
higher limits take into account the autocorrelations.

Gru-10 Gru-50 Lstm-10 Lstm-40

BIAS −0.41 −0.10 −0.59 0.16
RMSE 9.24 8.85 9.37 8.81
CORR 0.89 0.90 0.89 0.90

FIGURE 4 | The test RMSE binned by observed Dst. The RMSE is
computed on the five CV test sets. Bins are 100 nT wide, and the numbers
show the number of samples in each bin. Legend: GRU (gru-10) and LSTM
(lstm-10) networks without dropout, and GRU (gru-50) and LSTM (lstm-
40) networks with dropout dr � 0.5,dh � 0.5.
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network could be sufficient. In the future, it would be interesting
to perform similar experiments for other solar terrestrial
variables, for example, other geomagnetic indices with
different temporal dynamics. Another line of experimenting
could be to separate processes with different dynamics in the
construction of the RNN.

The GRU (Cho et al., 2014) and LSTM (Hochreiter and
Schmidhuber, 1997) networks include gating units that control
information flow through time. However, it is not clear if one
architecture is better than the other (Chung et al., 2014). In order
to reliably study the differences between the two RNNs, we applied
five-fold cross-validation. Further, it was also essential to apply
dropout (Gal and Ghahramani, 2016) to reduce over-fitting and
achieve consistent results. Using solar wind data and observed Dst
from 1995 to 2015, we see no significant difference between the two

architectures. However, the GRU network is slightly less complex
than the LSTM and will therefore have shorter training times.

An interesting effect of using dropout is that it can also be applied
during the prediction phase as a way of capturing model uncertainty
(Gal and Ghahramani, 2016b). Using dropout during prediction is
similar to ensemble prediction based on a collection of networks with
identical architectures but different specific weights (Wintoft et al.,
2017), but with the great advantage that the predictions can be based
on, in principle, unlimited number of models. However, it is different
from using an ensemble of different types of models like in Xu et al.
(2020). We illustrated the prediction uncertainty using dropout for a
couple of storms from the test set. Estimating the prediction
uncertainty is important and was addressed by Gruet et al. (2018)
using a combination of LSTM network and a Gaussian process (GP)
model. In that case, the LSTMnetwork provides themean function to

FIGURE 5 | Two geomagnetic storms predicted with the GRU network using the test set. Panels show observed Dst (blue solid), predicted Dst without dropout
during prediction phase (dashed green), and mean prediction with dropout (orange solid). The dark orange regions show the predicted ± σ and the light orange regions
the ± 2σ. The dash-dotted curve is the quiet time variation. Note that the intensity of the storms is different and that the y-scales span different ranges.

FIGURE 6 | The panels show averageDst binned bymonth and UT hour. From left to right, the averages are based on all observed Dst (Dst), predictedDst from the
CV test sets (Predicted), predicted Dst from quiet solar wind at 350 km/s (Quiet 350), and predicted Dst from quiet solar wind at 400 km/s (Quiet 400) (see text for
definition of quiet solar wind).
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the GP model from which a distribution of prediction can be made.
For future work, it will be interesting to further study the use of
dropout for estimating model uncertainty.

Predictions based on the test sets using the GRU networks
show very good agreement with observedDstwhen averaged over
month and UT (Figure 6). The semiannual variation (Lockwood
et al., 2020) is clear, with a deeper minimum in autumn than in
spring and a weak UT variation. It is a combination of
geometrical effects that cause the asymmetric semiannual
variation leading to a modulation of the Bz component in the
GSM system, and, together with the nonlinear solar
wind–magnetosphere coupling, gives rise to the variation in
Dst. The two rightmost panels in Figure 6 show predictions
based on simulated data with Bz � 0 in the GSEQ system using
two different speeds. In these cases, the semiannual variation is
only caused by geometrical effects, while the two panels to the left
also contain storms caused by different solar wind disturbances
like coronal mass ejections. We also see that the difference
between the spring and autumn minima is about 6 nT for
both observed and predicted Dst, while the difference is about
14–18 nT for quiet time-simulated Dst. In this work, we only
showed that the semiannual variation is reproduced by the

simulations, but for the future, other types of simulations that
contain CME structures could be performed to provide further
insights into the semiannual variations.
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APPENDIX: SOFTWARE AND HARDWARE

The code has been written in Python where we rely on several
software packages: Pandas for data analysis (T. pandas-dev/
pandas: Pandas, 2020); Matplotlib for plotting (Hunter, 2007);
and TensorFlow and TensorBoard for RNN training (Dataset]
Abadi et al., 2015).

The simulations have been run on an Intel Core i9-7960X
CPU at 4.2 GHz with 64 GB memory. In total, 32 threads can be

run in parallel. Typical training time for one Elman network with
30 hidden units for 50 epochs ranges between 5 and 15 min,
where the shorter time is due to that the process could be
distributed on multiple threads. We noted that one training
process could be distributed over four threads, when the
overall load was low. A GRU network with 10 hidden units
could take between 30 min and slightly more than 1 h for
50 epochs. A 10-hidden unit LSTM network ranged between
50 min and 1.5 h.
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