- Department of Physics G. Occhialini, University of Milano - Bicocca, Piazza della Scienza 3, Milano, Italy
The author reviews the scientific potential of the Laser Interferometer Space Antenna (LISA), a space-borne gravitational wave (GW) observatory to be launched in the early 30s. Thanks to its sensitivity in the milli-Hz frequency range, LISA will reveal a variety of GW sources across the Universe, from our Solar neighborhood potentially all the way back to the Big Bang, promising to be a game changer in our understanding of astrophysics, cosmology, and fundamental physics. This review dives in the LISA Universe, with a specific focus on black hole science, including the formation and evolution of massive black holes in galaxy centers, the dynamics of dense nuclei and formation of extreme mass ratio inspirals, and the astrophysics of stellar-origin black hole binaries.
1 Introduction
Despite the wealth of revolutionary results already delivered (Abbott et al., 2019), gravitational wave (GW) astronomy is still in its infancy. LIGO (Abbott et al., 2009) and Virgo (Acernese et al., 2015) are in fact only sensitive to binary systems of
The bridging milli-Hz frequency window will be explored from space, thanks to the Laser Interferometer Space Antenna (LISA Amaro-Seoane et al., 2017), one of the next large missions of the European Space Agency with the participation of NASA, to be flown in the early 30s. Being sensitive to the milli-Hz frequency band, from
FIGURE 1. The dimensionless “characteristic strain” of GW sources in the LISA frequency band. The nominal detector sensitivity is shown by the green line. Displayed are tracks of three equal MBHBs at
2 Massive Black Hole Binaries
MBHBs are expected to form in large number along the cosmic history (Volonteri et al., 2003). Pairing in the aftermath of galaxy mergers, they are tracers of structure formation in the Universe and can be seen by LISA out to
FIGURE 2. LISA observational capabilities vs. predicted MBHB merger rates in the chirp mass-redshift plane. In each panel, gray shaded contours show the S/N of LISA observations for equal-mass, nonspinning binaries. The superimposed yellow-green color gradient with black dashed contours represents the differential number of mergers during the planned 4-year mission lifetime. From the upper-left panel, clockwise, we show four different astrophysical models: LS-delayed, LS-stalled, HS-stalled, and HS-delayed (Bonetti et al., 2019, for details). For each model, the upper and right-side panels show the merger rate (blue line) and detection rate (orange line) distributions marginalized over redshift and chirp mass, respectively (Bonetti et al., 2019).
In the case of high-mass seeds from direct collapse shown in the bottom panels of the figure (see Woods et al., 2018, for a recent review), LISA can see essentially every single merger occurring within the observable Universe. If instead seeds are produced as remnants of popIII stars (Madau and Rees, 2001), as in the top panels of the figure, LISA will miss the first round of mergers, but it will still probe the subsequent growth history of MBHs out to
2.1 Extracting Information
MBHBs will generally enter the LISA band during their inspiral, completing thousands of cycles before merging within the detector’s band. This will allow the accumulation of such high S/N that the main source of error in the parameter recovery, at least for the loudest sources, might come from inaccuracies in the available waveforms rather than from the intrinsic detector noise. In fact, currently available inspiral-merger-ringdown (IMR) waveforms (Bohé et al., 2017; Khan et al., 2018) are not even close to the needed level of accuracy. This is particularly critical for tests of GR with, e.g., ringdown spectroscopy (Berti et al., 2006; Gair et al., 2013), which relies on measuring tiny deviations from the higher multipoles of the ringdown radiation compared to GR expectations (Baibhav et al., 2018), especially to extract information from the higher multipoles of the radiation (Baibhav and Berti, 2019).
Nonetheless, waveforms employed so far include most of the relevant physics and can therefore provide a reliable estimate of LISA’s capabilities. As an example, Klein et al. (2016) carried out a comprehensive study based on spinning precessing post-Newtonian waveforms, corrected for the enhancement in S/N provided by adding merger and ringdown. They found that LISA can recover individual redshifted masses, i.e.,
2.2 MBH Cosmic History Reconstruction
Because of its excellent parameter estimation capabilities, LISA will deliver an unprecedented catalog of MBHB coalescences that will provide precious information about their formation and evolution along the cosmic history (Sesana et al., 2011). This is because the mass, redshift, and spin distribution of LISA events carry the imprint of the underlying physics driving their formation and evolution, including the origin, abundance, mass function, and redshift distribution of the first seeds; the detailed properties of the subsequent accretion processes driving their mass growth; the dynamical details of the pairing and hardening process of MBHBs forming in the aftermath of galaxy mergers, for example, the seeding mechanism as a direct impact on the number of observable sources. Astrophysical low (popIII) and high (direct collapse) mass seed scenarios have been extensively explored and result in very different number of mergers in the LISA band. Furthermore, the MBH seeding process can be connected to the production of primordial BHs in the early Universe (Khlopov, 2010; Clesse and García-Bellido, 2015), a scenario that can be tested by LISA as more quantitative predictions of merger rates become available. On the other hand, measured MBH spins are mainly determined by the geometry of the accretion flow, with prolonged accretion in a defined plane resulting in efficient MBH spin-ups (Thorne, 1974), in contrast to the spin-down caused by interaction with cold gas clouds incoming from random directions (King et al., 2005). Mergers also play a role in determining the magnitude and relative orientation of the MBH spins: in gas rich environment, interaction with a putative massive circumbinary disk (Perego et al., 2009) tends to align individual spins with the binary angular momentum, whereas spins of MBHBs merging in gas poor environment are expected to be randomly oriented (Bogdanović et al., 2007). Moreover, the redshift distribution of detected systems is strongly affected by the time required for the binary to complete its journey from kpc scales down to final coalescence, following the host galaxy merger (Bonetti et al., 2019; Barausse et al., 2020). One of the main challenges of future astrophysical modeling will be to make the best out of the LISA dataset to address the “inverse problem” of reconstructing the MBHB cosmic history from observations. In a proof-of-concept study, Sesana et al. (2011) showed that LISA can separate different seed models (popIII vs. direct collapse) and accretion geometries (coherent vs. chaotic), with only a handful of events.
2.3 EM Counterparts and Multimessenger Astronomy
Occurring at the very center of galaxy merger remnants, MBHBs form and evolve within a dense environment that might favor the presence of EM signals matching the inspiral and coalescence of the pair. As mentioned above, in gas rich environments, binaries are expected to be surrounded by a massive circumbinary disk. Gas can leak from the inner edge of the disc, feeding minidiscs around individual MBHs (Farris et al., 2014), resulting in a number of distinctive EM signals. For example, feeding of the minidiscs might be modulated over the period of the binary, eventually resulting in a periodicity of their emission (Tang et al., 2018); the cavity evacuated by the binary torques, removing a significant portion of the inner disc, will produce a distinctive shape of the UV continuum (Tanaka et al., 2012); streams can produce periodic nonthermal X-ray bursts upon impact onto the outer edge of the minidiscs (Roedig et al., 2014); finally, the inverse Compton upscatter of photons in the corona might produce distinctive double Kα lines (Sesana et al., 2012).The main challenge will be the detection and identification of all those putative features. Being an omnidirectional detector, LISA sky localization capabilities are mostly determined by the evolution of the antenna response function as it moves along its orbit around the Sun. For MBHBs this will allow localization of
3 Extreme Mass Ratio Inspirals
EMRIs are distinct from MBHBs both in their properties and their origin. As the name indicates, they are binaries involving objects of very different masses, generally a MBH interacting with a CO that can be a WD, NS, or stellar-mass BH. Consequently, their origin is not related to galaxy mergers or, more broadly, to the hierarchical structure formation paradigm but is rooted in the relativistic dynamics of dense nuclei. Sitting at galactic centers, in fact, MBHs are surrounded by a dense distribution of stars and COs. In such a dense environment, the central MBH can “capture” a stellar BH as a result of several dynamical processes, including different flavor of relaxation mechanisms deflecting BHs onto low angular momentum orbits or the tidal breakup of a compact binary close to the MBH. The captured BH will then inspiral onto the central MBH completing millions of orbits before eventually plunging into it (Amaro-Seoane, 2018). The detection of the resulting GW signal poses a major challenge for GW modelers, since it requires matching hundreds of thousands of cycles with accurate enough waveform templates (Barack and Cutler, 2004; Barack, 2009; Chua and Gair, 2015; Chua et al., 2017). But payouts are well worth the investment of theoretical and computational resources. Upon detection EMRIs will deliver unprecedented measurements of the system parameters, including the central MBH mass and spin to a precision of
Capable of detecting EMRIs out to
4 STELLAR-MASS Black Hole Binaries and Multiband Detections
Last but not least, LISA will observe stellar-mass BHBs still far from coalescence, before they enter the ground-based detector band. This was soon realized after the detection of GW150914, a system so massive and nearby that would have been observed by LISA with S/N
Even without multiband observations, detecting stellar-origin BHBs with LISA may have important astrophysical implications. Far from coalescence, LISA can measure the eccentricity (e) of these binaries as long as
5 Conclusion
The future of GW astronomy is going to be loud. Building on the successes of LIGO and Virgo, the GW community is investing in a number of projects that will tremendously expand our knowledge of the dark side of the Universe. 3G ground-based detectors will observe hundreds of thousands CO mergers across the Universe and PTAs will unveil the most massive black hole binaries in the Universe. In this context, LISA will be one of our finest ears on the Universe. By surveying the milli-Hz frequency band, LISA will detect a variety of GW sources, across several decades in the mass scale, from the Solar neighborhood back to the formation of the first cosmic structure, promising an unprecedented revolution in our understanding of the Universe.
Acknowledgments
The author is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program ERC-2018-COG under grant agreement No. 818691 (B Massive). The author is also indebted to Emanuele Berti for early contributions to this review.
Author Contributions
The author confirms being the sole contributor of this work and has approved it for publication.
Conflict of Interest
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., et al. (2009). LIGO: the laser interferometer gravitational-wave observatory. Rept. Prog. Phys. 72, 076901. doi:10.1088/0034-4885/72/7/076901
Abbott, B. P., Abbott, R., and Adhikari, R. e. a. (2019). GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040. doi:10.1103/PhysRevX.9.031040
LSST Science Collaboration Abell, P. A., Allison, J., Anderson, S. F., Andrew, J. R., Angel, J. R. P., et al. (2009). LSST science book.Version 2.0. e-prints: arXiv:0912.0201.
Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., et al. (2015). Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001. doi:10.1088/0264-9381/32/2/024001
Event Horizon Telescope Collaboration Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., et al. (2019a). First M87 event Horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1. doi:10.3847/2041-8213/ab0ec7
Event Horizon Telescope Collaboration Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., et al. (2019b). First M87 event Horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6. doi:10.3847/2041-8213/ab1141
Amaro-Seoane, P. (2018). Relativistic dynamics and extreme mass ratio inspirals. Living Rev. Relat. 21, 4. doi:10.1007/s41114-018-0013-8
Amaro-Seoane, P., Audley, H., Babak, S., Baker, J., Barausse, E., Bender, P., et al. (2017). Laser interferometer space antenna. e-prints: arXiv:1702.00786.
Amaro-Seoane, P. (2019). Extremely large mass-ratio inspirals. Phys. Rev. D 99, 123025. doi:10.1103/PhysRevD.99.123025
Arzoumanian, Z., Brazier, A., Burke-Spolaor, S., Chamberlin, S., Chatterjee, S., Christy, B., et al. (2018). The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. ApJS 235, 37. doi:10.3847/1538-4365/aab5b0
Babak, S., Gair, J., Sesana, A., Barausse, E., Sopuerta, C. F., Berry, C. P. L., et al. (2017). Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D 95, 103012. doi:10.1103/PhysRevD.95.103012
Baibhav, V., Berti, E., Cardoso, V., and Khanna, G. (2018). Black hole spectroscopy: systematic errors and ringdown energy estimates. Phys. Rev. D 97, 044048. doi:10.1103/PhysRevD.97.044048
Baibhav, V., and Berti, E. (2019). Multimode black hole spectroscopy. Phys. Rev. D 99, 024005. doi:10.1103/PhysRevD.99.024005
Barack, L., and Cutler, C. (2004). LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 69, 082005. doi:10.1103/PhysRevD.69.082005
Barack, L. (2009). Gravitational self-force in extreme mass-ratio inspirals. Class. Quantum. Grav. 26, 213001. doi:10.1088/0264-9381/26/21/213001
Barausse, E., Yunes, N., and Chamberlain, K. (2016). Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys. Rev. Lett. 116, 241104. doi:10.1103/PhysRevLett.116.241104
Barausse, E., Cardoso, V., and Pani, P. (2014). Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059. doi:10.1103/PhysRevD.89.104059
Barausse, E., Dvorkin, I., Tremmel, M., Volonteri, M., and Bonetti, M. (2020). Massive black hole merger rates: the effect of kpc separation wandering and supernova feedback. Astrophys. J. 904, 16. doi:10.3847/1538-4357/abba7f
Berti, E., Barausse, E., Cholis, I., Garcia-Bellido, J., Holley-Bockelmann, K., Hughes, S. A., et al. (2019). Tests of general relativity and fundamental physics with space-based gravitational wave detectors. Bull. Am. Astron. Soc. Vol. 51, 32.
Berti, E., Cardoso, V., and Will, C. M. (2006). Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030. doi:10.1103/PhysRevD.73.064030
Blandford, R. D., and Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes. Mon. Notices Royal Astron. Soc. 179, 433–456. doi:10.1093/mnras/179.3.433
Bogdanović, T., Reynolds, C. S., and Miller, M. C. (2007). Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. Lett. 661, L147–L150. doi:10.1086/518769
Bohé, A., Shao, L., Taracchini, A., Buonanno, A., Babak, S., Harry, I. W., et al. (2017). Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 95, 044028. doi:10.1103/PhysRevD.95.044028
Bonetti, M., Sesana, A., Haardt, F., Barausse, E., and Colpi, M. (2019). Post-Newtonian evolution of massive black hole triplets in galactic nuclei–IV. Implications for LISA. Mon. Notices Royal Astron. Soc. 486, 4044–4060. doi:10.1093/mnras/stz903
Breivik, K., Rodriguez, C. L., Larson, S. L., Kalogera, V., and Rasio, F. A. (2016). Distinguishing between formation channels for binary black holes with LISA. Astrophys. J. 830, L18. doi:10.3847/2041-8205/830/1/L18
Caprini, C., and Figueroa, D. G. (2018). Cosmological backgrounds of gravitational waves. Class. Quantum Grav. 35, 163001. doi:10.1088/1361-6382/aac608
Carson, Z., and Yagi, K. (2019). Multi-band gravitational wave tests of general relativity. Class. Quantum Grav. 37. doi:10.1088/1361-6382/ab5c9a
Chamberlain, K., and Yunes, N. (2017). Theoretical physics implications of gravitational wave observation with future detectors. Phys. Rev. D 96, 084039. doi:10.1103/PhysRevD.96.084039
Chua, A. J. K., and Gair, J. R. (2015). Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class. Quantum Grav. 32, 232002. doi:10.1088/0264-9381/32/23/232002
Chua, A. J. K., Moore, C. J., and Gair, J. R. (2017). Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D 96, 044005. doi:10.1103/PhysRevD.96.044005
Clesse, S., and García-Bellido, J. (2015). Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies. Phys. Rev. D 92, 023524. doi:10.1103/PhysRevD.92.023524
Del Pozzo, W., Sesana, A., and Klein, A. (2018). Stellar binary black holes in the LISA band: a new class of standard sirens. Mon. Notices Royal Astron. Soc. 475, 3485–3492. doi:10.1093/mnras/sty057
Desvignes, G., Caballero, R. N., Lentati, L., Verbiest, J. P. W., Champion, D. J., Stappers, B. W., et al. (2016). High-precision timing of 42 millisecond pulsars with the European pulsar timing array. Mon. Notices Royal Astron. Soc. 458, 3341–3380. doi:10.1093/mnras/stw483
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., and Lazio, T. J. L. W. (2009). The Square Kilometre array. Proc. IEEE. 97, 1482–1496. doi:10.1109/JPROC.2009.2021005
Farris, B. D., Duffell, P., MacFadyen, A. I., and Haiman, Z. (2014). Binary black hole accretion from a circumbinary disk: gas dynamics inside the central cavity. Astrophys. J. 783, 134. doi:10.1088/0004-637X/783/2/134
Foster, R. S., and Backer, D. C. (1990). Constructing a pulsar timing array. Astrophys. J. 361, 300. doi:10.1086/169195
Freitag, M. (2003). Gravitational waves from stars orbiting the Sagittarius A* black hole. Astrphys. J. Lett. 583, L21–L24. doi:10.1086/367813
Gair, J. R., Vallisneri, M., Larson, S. L., and Baker, J. G. (2013). Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relat. 16, 7. doi:10.12942/lrr-2013-7
Gair, J. R., Tang, C., and Volonteri, M. (2010). LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 81, 104014. doi:10.1103/PhysRevD.81.104014
Gerosa, D., Ma, S., Wong, K. W. K., Berti, E., O’Shaughnessy, R., Chen, Y., et al. (2019). Multiband gravitational-wave event rates and stellar physics. Phys. Rev. D 99, 103004. doi:10.1103/PhysRevD.99.103004
Ghez, A. M., Salim, S., Weinberg, N. N., Lu, J. R., Do, T., Dunn, J. K., et al. (2008). Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062. doi:10.1086/592738
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., et al. (2009). Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J. 692, 1075–1109. doi:10.1088/0004-637X/692/2/1075
Gnocchi, G., Maselli, A., Abdelsalhin, T., Giacobbo, N., and Mapelli, M. (2019). Bounding alternative theories of gravity with multi-band GW observations. Phys. Rev. D 100, 064024. doi:10.1103/PhysRevD.100.064024
Jani, K., Shoemaker, D., and Cutler, C. (2019). Detectability of intermediate-mass black holes in multiband gravitational wave astronomy. Nat. Astron. 4, 260–265. doi:10.1038/s41550-019-0932-7
Kelley, L. Z., Blecha, L., Hernquist, L., Sesana, A., and Taylor, S. R. (2018). Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays. Mon. Notices Royal Astron. Soc. 477, 964–976. doi:10.1093/mnras/sty689
Kerr, M., Reardon, D. J., Hobbs, G., Shannon, R. M., Manchester, R. N., Dai, S., et al. (2020). The Parkes Pulsar Timing Array project: second data release. Publ. Astron. Soc. Aust. 37, e020. doi:10.1017/pasa.2020.11
Khan, S., Chatziioannou, K., Hannam, M., and Ohme, F. (2018). Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. e-prints: arXiv:1809.10113.
Khlopov, M. Y. (2010). Primordial black holes. Res. Astron. Astrophys. 10, 495–528. doi:10.1088/1674-4527/10/6/001
King, A. R., Lubow, S. H., Ogilvie, G. I., and Pringle, J. E. (2005). Aligning spinning black holes and accretion discs. Mon. Notices Royal Astron. Soc. 363, 49–56. doi:10.1111/j.1365-2966.2005.09378.x
Klein, A., Barausse, E., Sesana, A., Petiteau, A., Berti, E., Babak, S., et al. (2016). Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93, 024003. doi:10.1103/PhysRevD.93.024003
Kocsis, B., Yunes, N., and Loeb, A. (2011). Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys. Rev. D 84, 024032. doi:10.1103/PhysRevD.84.024032
Kowalska, I., Bulik, T., Belczynski, K., Dominik, M., and Gondek-Rosinska, D. (2011). The eccentricity distribution of compact binaries. A&A 527, A70. doi:10.1051/0004-6361/201015777
Kyutoku, K., and Seto, N. (2016). Concise estimate of the expected number of detections for stellar-mass binary black holes by eLISA. Mon. Notices Royal Astron. Soc. 462, 2177–2183. doi:10.1093/mnras/stw1767
Kyutoku, K., and Seto, N. (2017). Gravitational-wave cosmography with LISA and the Hubble tension. Phys. Rev. D 95, 083525. doi:10.1103/PhysRevD.95.083525
Lau, M. Y. M., Mandel, I., Vigna-Gómez, A., Neijssel, C. J., Stevenson, S., and Sesana, A. (2020). Detecting double neutron stars with LISA. Mon. Notices Royal Astron. Soc. 492, 3061–3072. doi:10.1093/mnras/staa002
Levin, Y. (2007). Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band. Mon. Notices Royal Astron. Soc. 374, 515–524. doi:10.1111/j.1365-2966.2006.11155.x
MacLeod, C. L., and Hogan, C. J. (2008). Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys. Rev. D 77, 043512. doi:10.1103/PhysRevD.77.043512
Madau, P., and Rees, M. J. (2001). Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30. doi:10.1086/319848
Mangiagli, A., Klein, A., Bonetti, M., Katz, M. L., Sesana, A., Volonteri, M., et al. (2020). On the inspiral of coalescing massive black hole binaries with LISA in the era of Multi-Messenger Astrophysics. e-prints: arXiv:2006.12513.
McGee, S., Sesana, A., and Vecchio, A. (2020). Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nat. Astron. 4, 26–31. doi:10.1038/s41550-019-0969-7
McWilliams, S. T., Thorpe, J. I., Baker, J. G., and Kelly, B. J. (2010). Impact of mergers on LISA parameter estimation for nonspinning black hole binaries. Phys. Rev. D 81, 064014. doi:10.1103/PhysRevD.81.064014
Milosavljević, M., and Phinney, E. S. (2005). The afterglow of massive black hole coalescence. Astrophys. J. Lett. 622, L93–L96. doi:10.1086/429618
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., et al. (1995). Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature 373, 127–129. doi:10.1038/373127a0
Nelemans, G., Yungelson, L. R., and Portegies Zwart, S. F. (2001). The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A&A 375, 890–898. doi:10.1051/0004-6361:20010683
Nishizawa, A., Berti, E., Klein, A., and Sesana, A. (2016). eLISA eccentricity measurements as tracers of binary black hole formation. Phys. Rev. D 94, 064020. doi:10.1103/PhysRevD.94.064020
Nishizawa, A., Sesana, A., Berti, E., and Klein, A. (2017). Constraining stellar binary black hole formation scenarios witheLISAeccentricity measurements. Mon. Notices Royal Astron. Soc. 465, 4375–4380. doi:10.1093/mnras/stw2993
Nissanke, S., Vallisneri, M., Nelemans, G., and Prince, T. A. (2012). Gravitational-wave emission from compact galactic binaries. Astrophys. J. 758, 131. doi:10.1088/0004-637X/758/2/131
Palenzuela, C., Lehner, L., and Liebling, S. L. (2010). Dual jets from binary black holes. Science 329, 927–930. doi:10.1126/science.1191766
Perego, A., Dotti, M., Colpi, M., and Volonteri, M. (2009). Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc. Mon. Notices Royal Astron Soc. 399, 2249–2263. doi:10.1111/j.1365-2966.2009.15427.x
Punturo, M., Abernathy, M., Acernese, F., Allen, B., Andersson, N., Arun, K., et al. (2010). The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002. doi:10.1088/0264-9381/27/19/194002
Ravi, V., Wyithe, J. S. B., Hobbs, G., Shannon, R. M., Manchester, R. N., Yardley, D. R. B., et al. (2012). Does a “stochastic” background of gravitational waves exist in the pulsar timing band? Astrophys. J. 761, 84. doi:10.1088/0004-637X/761/2/84
Reitze, D., Adhikari, R. X., Ballmer, S., Barish, B., Barsotti, L., Billingsley, G., et al. (2019). Cosmic explorer: the U.S. Contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 35.
Reynolds, C. S. (2014). Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. 183, 277–294. doi:10.1007/s11214-013-0006-6
Roedig, C., Krolik, J. H., and Miller, M. C. (2014). Observational signatures of binary supermassive black holes. Astrophys. J. 785, 115. doi:10.1088/0004-637X/785/2/115
Rossi, E. M., Lodato, G., Armitage, P. J., Pringle, J. E., and King, A. R. (2010). Black hole mergers: the first light. Mon. Notices Royal Astron Soc. 401, 2021–2035. doi:10.1111/j.1365-2966.2009.15802.x
Samsing, J., and D’Orazio, D. J. (2018). Black hole mergers from globular clusters observable by LISA I: eccentric sources originating from relativistic N-body dynamics. Mon. Notices Royal Astron Soc. 481, 5445–5450. doi:10.1093/mnras/sty2334
Sesana, A. (2013). “Detecting massive black hole binaries and unveiling their cosmic history with gravitational wave observations,” in 9th LISA Symposium, Paris, May 21–25, 2012 Editors G. Auger, P. Binétruy, and E. Plagnol, Vol. 467. 103. Astron. Soc. Pac. Conf. Ser.
Sesana, A., Gair, J., Berti, E., and Volonteri, M. (2011). Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83, 044036. doi:10.1103/PhysRevD.83.044036
Sesana, A., Lamberts, A., and Petiteau, A. (2020). Finding binary black holes in the Milky Way with LISA. Mon. Notices Royal Astron Soc. 494, L75–L80. doi:10.1093/mnrasl/slaa039
Sesana, A. (2017). Multi-band gravitational wave astronomy: science with joint space- and ground-based observations of black hole binaries. J. Phys. Conf. Ser. 840, 012018. doi:10.1088/1742-6596/840/1/012018
Sesana, A. (2016). Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett. 116, 231102. doi:10.1103/PhysRevLett.116.231102
Sesana, A., Roedig, C., Reynolds, M. T., and Dotti, M. (2012). Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries. Mon. Notices Royal Astron Soc. 420, 860–877. doi:10.1111/j.1365-2966.2011.20097.x
Sesana, A., Vecchio, A., and Colacino, C. N. (2008). The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. Mon. Notices Royal Astron Soc. 390, 192–209. doi:10.1111/j.1365-2966.2008.13682.x
Sesana, A., Vecchio, A., and Volonteri, M. (2009). Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays. Mon. Notices Royal Astron Soc. 394, 2255–2265. doi:10.1111/j.1365-2966.2009.14499.x
Seto, N. (2016). Prospects of eLISA for detecting Galactic binary black holes similar to GW150914. Mon. Notices Royal Astron. Soc. Lett. 460, slw060. doi:10.1093/mnrasl/slw060
Shapiro, C., Bacon, D. J., Hendry, M., and Hoyle, B. (2010). Delensing gravitational wave standard sirens with shear and flexion maps. Mon. Notices Royal Astron Soc. 404, 858–866. doi:10.1111/j.1365-2966.2010.16317.x
Tamanini, N., Caprini, C., Barausse, E., Sesana, A., Klein, A., and Petiteau, A. (2016). Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens. J. Cosmol. Astropart. Phys. 2016, 002. doi:10.1088/1475-7516/2016/04/002
Tamanini, N., and Danielski, C. (2019). The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA. Nat. Astron. 3, 858–866. doi:10.1038/s41550-019-0807-y
Tanaka, T., Menou, K., and Haiman, Z. (2012). Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays. Mon. Notices Royal Astron Soc. 420, 705–719. doi:10.1111/j.1365-2966.2011.20083.x
Tang, Y., Haiman, Z., and MacFadyen, A. (2018). The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band. Mon. Notices Royal Astron. Soc. 476, 2249–2257. doi:10.1093/mnras/sty423
Thorne, K. S. (1974). Disk-accretion onto a black hole. II. Evolution of the hole. Astrophys. J. 191, 507–520. doi:10.1086/152991
Tso, R., Gerosa, D., and Chen, Y. (2018). Optimizing LIGO with LISA forewarnings to improve black-hole spectroscopy. arXiv e-prints.
Van Den Broeck, C. (2014). Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope. J. Phys. Conf. Ser. 484, 012008. doi:10.1088/1742-6596/484/1/012008
Verbiest, J. P. W., Lentati, L., Hobbs, G., van Haasteren, R., Demorest, P. B., Janssen, G. H., et al. (2016). The international pulsar timing array: first data release. Mon. Notices Royal Astron. Soc. 458, 1267–1288. doi:10.1093/mnras/stw347
Volonteri, M., Haardt, F., and Madau, P. (2003). The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573. doi:10.1086/344675
Woods, T. E., Agarwal, B., Bromm, V., Bunker, A., Chen, K.-J., Chon, S., et al. (2018). Titans of the early universe: the prato statement on the origin of the first supermassive black holes. arXiv e-prints: arXiv:1810.12310.
Keywords: gravitational waves, black hole physics, binary systems, cosmology, tests of gravity
Citation: Sesana A (2021) Black Hole Science With the Laser Interferometer Space Antenna. Front. Astron. Space Sci. 8:601646. doi: 10.3389/fspas.2021.601646
Received: 01 September 2020; Accepted: 14 January 2021;
Published: 18 February 2021.
Edited by:
Rosalba Perna, Stony Brook University, United StatesReviewed by:
Cs Unnikrishnan, Tata Institute of Fundamental Research, IndiaMaxim Yurievich Khlopov, UMR7164 Astroparticule et Cosmologie, France
Copyright © 2021 Sesana. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Alberto Sesana, YWxiZXJ0by5zZXNhbmFAdW5pbWliLml0