- 1Dipartimento di Fisica, Università Della Calabria, Rende, Italy
- 2ASI—Italian Space Agency, Rome, Italy
- 3IRAP—Institut de Recherche en Astrophysique et Planétologie, Toulouse, France
- 4Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, United States
Editorial on the Research Topic
Improving the Understanding of Kinetic Processes in Solar Wind and Magnetosphere: From CLUSTER to Magnetospheric Multiscale Mission
The most common matter state in the Universe is plasma (Krall and Trivelpiece, 1986). In the Heliosphere, these plasmas are almost collisionless, magnetized, and quasi-neutral and can mimic a large number of astrophysical plasmas that can only be observed remotely, e.g., the interstellar medium, astrophysical shocks and jets, accretion disks, cluster of galaxies etc.
Single-point space missions have described many properties of near-Earth and heliospheric plasmas by using both in situ measurements and remote sensing observations. From the first observations by the Mariner mission of turbulent solar wind flow (Neugebauer and Snyder, 1966; Neugebauer and Snyder, 1967), and the first computing of power spectra of alfvénic fluctuations (Coleman, 1968), or pioneering observations of large-scale magnetic structures (Burlaga et al., 1977) from the Explorer 43 mission, both making single space observations, the community has advanced a lot in knowledge of plasma phenomena.
However, analyses of space plasma using in situ data from single spacecraft suffer from a spatio-temporal ambiguity, viz., the difficulty of disentangling temporal and spatial variations. This issue is acute for magnetofluid turbulence in the solar wind where it is very difficult to deduce the three-dimensional properties of the turbulent fluctuations from single spacecraft data (Goldstein et al., 2015). A full and realistic description of our plasma environment requires measurements able to determine the three-dimensional, time-dependent features observed in this turbulent system. Indeed, only multi-spacecraft observations are able to exhibit a connection between space and time: the same physical observables are measured not only at different points in space but also at different instants in time. Cluster was the first mission (Escoubet et al., 1997; Escoubet et al., 2001), and until data began to flow from the Magnetospheric Multiscale Mission (MMS), it was the only mission designed to describe the three-dimensional structure of plasma phenomena in geospace. To achieve this, Cluster, launched in the summer of 2000 and currently still in operation, consists of four identical spacecraft flying in a tetrahedral configuration, thereby making it possible to distinguish between spatial and temporal variations.
Beyond detailed analysis of the electromagnetic field and plasma characteristics, thanks to the robust experiments on board the four spacecraft, the goal of the Cluster mission has been to exploit multi-point observations to compute spatial gradients. The curlometer analysis technique (Dunlop et al., 1988; Dunlop et al., 2002a; Dunlop and Eastwood, 2008) allows a direct estimation of the total current density from
Four-spacecraft measurements have been also used to estimate the normal and the speed of a discontinuity (Russell et al., 1983; Dunlop et al., 2002b), by using the so-called timing method. Recently, the timing method has been used to study structures at ion scales in the solar wind turbulence (Perrone et al., 2016; Perrone et al., 2017). Further, measurements from the four satellites, in the appropriate configuration, have allowed to calculate the dispersion relation of several waves ubiquitous in the geospace environment (Narita et al., 2003; Narita and Glassmeier, 2005) by using the wave telescope or k-filtering technique (Pinçon and Lefeuvre, 1991; Motschmann et al., 1996; Glassmeier et al., 2001; Glassmeier, 2003).
Cluster observations have been also used to study turbulence of the plasma which surrounds our local geospace environment. In particular, turbulence correlation scales have been estimated in both Earth’s plasmasheet (Vörös et al., 2005; Weygand et al., 2005) and solar wind (Matthaeus et al., 2005; Weygand et al., 2007). Moreover, for the first time, it has been possible to describe the three-dimensional properties of the inertial range of interplanetary turbulence at ion scales (Narita et al., 2011a; Narita et al., 2011b), where intermittency starts to manifest itself. Further, thanks to high-resolution magnetic field data, Cluster has allowed to study turbulence toward electron scales in the solar wind (Alexandrova et al., 2009; Sahraoui et al., 2009), where dissipation should take place.
Finally, Cluster data have elucidated aspects of reconnection that occurs in the solar wind, magnetosheath, and magnetosphere. For example, multi-point measurements allowed to unambiguously determine the characteristics of the near-Earth’s reconnection line on the ion scale (Runov et al., 2003), and to lead to a significant progress in understanding the microphysics of this processes, revealing the subsequent both adiabatic and non-adiabatic particle energization (Retinò et al., 2007; Sundkvist et al., 2007).
In March of 2015, the MMS, consisting of four identical spacecraft, similar to Cluster, was launched, providing multi-point measurements in near-Earth space (Burch et al., 2016a). The spacecraft are flying at significantly smaller separations, down to
The main motivation in organizing this special issue in Frontiers of Astronomy and Space Sciences, twenty years after the first multi-point observations, is to give an overview of the achievements in the understanding of kinetic processes in both the Earth’s magnetosphere and the solar wind as well as to present the current efforts of the scientific community in this field. This special issue collects mainly papers on observations in turbulent space plasmas. Contributions from numerical studies are also present to support the observational evidences and improve the understanding of turbulent collisionless plasmas.
Author Contributions
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication. In detail, AG wrote the initial draft. DP added several paragraphs. BL gave comments, and AC took the final look.
Funding
AC was supported in part by the NASA MMS project, and the NASA Grant No. 80NSSC19K1469.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Acknowledgments
The authors would like to acknowledge all the contributors to this research topic. The authors would like to thank the Cluster experiment teams for making available their data and recognize the tremendous effort in developing and operating the MMS spacecraft and instruments.
References
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A, Mitchell, J, Schwartz, S. J., et al. (2009). Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16), 165003. doi:10.1103/PhysRevLett.103.165003
Bandyopadhyay, R., Chasapis, A., Chhiber, R., Parashar, T. N., Matthaeus, W. H., Shay, M. A., et al. (2018). Incompressive energy transfer in the earth’s magnetosheath: magnetospheric multiscale observations. Astrophys. J. 866, 106. doi:10.3847/1538-4357/aade04
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016a). Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 5–21. doi:10.1007/s11214-015-0164-9
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., et al. (2016b). Electron-scale measurements of magnetic reconnection in space. Science 352 (6290), aaf2939. doi:10.1126/science.aaf2939
Burlaga, L. F., Lemaire, J. F., and Turner, J. M. (1977). Interplanetary current sheets at 1 AU. J. Geophys. Res. 82 (22), 3191–3200. doi:10.1029/JA082i022p03191
Chanteur, G. (1998). “Spatial interpolation for four spacecraft: theory,” in Analysis methods for multi-spacecraft data. Editors G. Paschmann, and P. W. Daly. ISSI Scientific Reports Series, (Bern: ESA/ISSI), Chap. 14, Vol. 1, 371–394, ISBN 1608-280X.
Chhiber, R., Chasapis, A., and Bandyopadhyay, R. (2018). Higher-order turbulence statistics in the earth’s magnetosheath and the solar wind using magnetospheric multiscale observations. J. Geophys. Res. Space Phys. 123 (12), 9941–9954. doi:10.1029/2018JA025768
Coleman, P. J. (1968). Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371–388. doi:10.1086/149674
Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P. (2002a). Four-point Cluster application of magnetic field analysis tools: the curlometer. J. Geophys. Res. 107 (A11), 1384. doi:10.1029/2001JA005088
Dunlop, M. W., Balogh, A., and Glassmeier, K.-H. (2002b). Four-point Cluster application of magnetic field analysis tools: the discontinuity analyzer. J. Geophys. Res. 107 (A11), 1385. doi:10.1029/2001JA005089
Dunlop, M. W., and Balogh, A. (2005). Magnetopause current as seen by Cluster. Ann. Geophys. 23 (3), 901–907. doi:10.5194/angeo-23-901-2005
Dunlop, M. W., and Eastwood, J. P. (2008). “The curlometer and other gradient based methods,” in Multi-spacecraft analysis methods revisited. Editors G. Paschmann, and P. W. Daly. ISSI Scientific Reports Series, (ESA/ISSI), 17–26, ISBN 987-92-9221-937-6.
Dunlop, M. W., Haaland, S., Escoubet, P.-C., and Dong, X.-C. (2016). Commentary on accessing 3-D currents in space: experiences from Cluster. J. Geophys. Res. 121, 7881–7886. doi:10.1002/2016JA022668
Dunlop, M. W., Southwood, D. J., Glassmeier, K.-H., and Neubauer, F. M. (1988). Analysis of multipoint magnetometer data. Adv. Space Res. 8 (9–10), 273–277. doi:10.1016/0273-1177(88)90141-X
Dunlop, M. W., Yang, J.-Y., Yang, Y.-Y., Xiong, C., Lühr, H., Bogdanova, Y. V., et al. (2015). Simultaneous field-aligned currents at Swarm and Cluster satellites. Geophys. Res. Lett. 42 (10), 3683–3691. doi:10.1002/2015GL063738
Eastwood, J. P., Balogh, A., Dunlop, M. W., and Smith, C. W. (2002). Cluster observations of the heliospheric current sheet and an associated magnetic flux rope and comparisons with ACE. J. Geophys. Res. 107 (A11), 1365. doi:10.1029/2001JA009158
Escoubet, C. P., Fehringer, M., and Goldstein, M. (2001). Introduction: the cluster mission. Ann. Geophys. 19, 1197–1200. doi:10.5194/angeo-19-1197-2001
Escoubet, C. P., Schmidt, R., and Goldstein, M. L. (1997). Cluster–science and mission overview. Space Sci. Rev. 79, 11–32. doi:10.1023/A:1004923124586
Forsyth, C., Lester, M., Cowley, S. W. H., Dandouras, I., Fazakerley, A. N., Fear, R. C., et al. (2008). Observed tail current systems associated with bursty bulk flows and auroral streamers during a period of multiple substorms. Ann. Geophys. 26 (1), 167–184. doi:10.5194/angeo-26-167-2008
Glassmeier, K.-H. (2003). Correction to ‘Cluster as a wave telescope-first results from the fluxgate magnetometer. Ann. Geophys. (21), 1071.
Glassmeier, K.-H., Motschmann, U., Dunlop, M., Balogh, A., Acuña, M. H., Carr, C., et al. (2001). Cluster as a wave telescope-first results from the fluxgate magnetometer. Ann. Geophys. 19 (10), 1439–1447. doi:10.5194/angeo-19-1439-2001
Goldstein, M.-L., Escoubet, P., Hwanh, K.-J., Wendel, D. E., Viñas, A.-F., Fung, S. F., et al. (2015). Multipoint observations of plasma phenomena made in space by Cluster. J. Plasma Phys. 81 (2), 325810301. doi:10.1017/S0022377815000185
Greco, A., Perri, S., Servidio, S., Yordanova, E., and Veltri, P. (2016). The complex structure of magnetic field discontinuities in the turbulent solar wind. Astrophys. J. Lett. 823 (2), L39. doi:10.3847/2041-8205/823/2/L39
Gurgiolo, C., Goldstein, M. L., Viñas, A. F., and Fazakerley, A. N. (2010). First measurements of electron vorticity in the foreshock and solar wind. Ann. Geophys. 28 (12), 2187–2200. doi:10.5194/angeo-28-2187-2010
Harvey, C. C. (1998). “Spatial gradients and the volumetric tensor,” in Analysis methods for multi-spacecraft data. Editors G. Paschmann, and P. W. Daly (Bern), Chap. 12, 307–322. ISSI Scientific Report SR-001.
Matthaeus, W. H., Dasso, S., Weygand, J. M., Milano, L. J., Smith, C. W., and Kivelson, M. G. (2005). Spatial correlation of solar-wind turbulence from two-point measurements. Phys. Rev. Lett. 95 (23), 231101. doi:10.1103/PhysRevLett.95.231101
Motschmann, U., Woodward, T. I., Glassmeier, K. H., Southwood, D. J., and Pinçon, J. L. (1996). Wavelength and direction filtering by magnetic measurements at satellite arrays: generalized minimum variance analysis. J. Geophys. Res. 101 (A3), 4961. doi:10.1029/95JA03471
Nakamura, R., Baumjohann, W., Fujimoto, M., Asano, Y., Runov, A., Owen, C. J., et al. (2008). Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. 113 (A7), A07S16. doi:10.1029/2007JA012760
Narita, Y., and Glassmeier, K.-H. (2005). Dispersion analysis of low-frequency waves through the terrestrial bow shock. J. Geophys. Res. 110 (A12), A12215. doi:10.1029/2005JA011256
Narita, Y., Glassmeier, K.-H., Goldstein, M. L., Motschmann, U., and Sahraoui, F. (2011a). Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales. Ann. Geophys. 29 (10), 1731–1738. doi:10.5194/angeo-29-1731-2011
Narita, Y., Glassmeier, K.-H., Sahraoui, F., and Goldstein, M. L. (2011b). Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104 (17), 171101. doi:10.1103/PhysRevLett.104.171101
Narita, Y., Glassmeier, K.-H., Schäfer, S., Motschmann, U., Sauer, K., Dandouras, I., et al. (2003). Dispersion analysis of ULF waves in the foreshock using Cluster data and the wave telescope technique. Geophys. Res. Lett. 30 (13), 1710. doi:10.1029/2003GL017432
Narita, Y., Nakamura, R., and Baumjohann, W. (2013). Cluster as current sheet surveyor in the magnetotail. Ann. Geophys. 31, 1605–1610. doi:10.5194/angeo-31-1605-2013
Neugebauer, M., and Snyder, C. W. (1966). Mariner 2 observations of the solar wind: 1. average properties. J. Geophys. Res. 71, 4469–4484. doi:10.1029/JZ071i019p04469
Neugebauer, M., and Snyder, C. W. (1967). Mariner 2 observations of the solar wind: 2. relation of plasma properties to the magnetic field. J. Geophys. Res. 72, 1823–1828. doi:10.1029/JZ072i007p01823
Panov, E., Büchner, J., Fränz, M., Korth, A., Khotyaintsev, Y., Nikutowski, B., et al. (2006). CLUSTER spacecraft observation of a thin current sheet at the Earth’s magnetopause. Adv. Space Res. 37 (7), 1363–1372. doi:10.1029/2006GL026556
Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., et al. (2016). Compressive coherent structures at ion scales in the slow solar wind. Astrophys. J. 826, 196. doi:10.3847/0004-637X/826/2/196
Perrone, D., Alexandrova, O., Roberts, O. W., Lion, S., Lacombe, C., Walsh, A., et al. (2017). Coherent structures at ion scales in fast solar wind: cluster observations. Astrophys. J. 849, 49. doi:10.3847/1538-4357/aa9022
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., et al. (2018). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557, 202–206. doi:10.1038/s41586-018-0091-5
Pinçon, J. L., and Lefeuvre, F. (1991). Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space. J. Geophys. Res. 96 (1), 1789–1802. doi:10.1029/90JA02183
Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M., and Owen, C. J. (2007). In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys. 3 (4), 236–238. doi:10.1038/nphys574
Runov, A., Nakamura, R., Baumjohann, W., Treumann, R. A., Zhang, T. L., Volwerk, M., et al. (2003). Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30 (11), 1579. doi:10.1029/2002GL016730
Runov, A., Nakamura, R., and Baumjohann, W. (2006). Multi-point study of the magnetotail current sheet. Adv. Space Res. 38 (1), 85–92. doi:10.1016/j.asr.2004.09.024
Russell, C. T., Mellott, M. M., Smith, E. J., and King, J. H. (1983). Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals. J. Geophys. Res. 88 (A6), 4739. doi:10.1029/JA088iA06p04739
Sahraoui, F., Goldstein, M. L., Robert, P., and Khotyaintsev, Yu. V. (2009). Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102 (23), 231102. doi:10.1103/PhysRevLett.102.231102
Servidio, S., Chasapis, A., Matthaeus, W. H., Perrone, D., Valentini, F., Parashar, T. N., et al. (2017). Magnetospheric multiscale observation of plasma velocity-space cascade: hermite representation and theory. Phys. Rev. Lett. 119 (20), 205101. doi:10.1103/PhysRevLett.119.205101
Shen, C., Rong, Z. J., Li, X., Dunlop, M., Liu, Z. X., Malova, H. V., et al. (2008). Magnetic configurations of the tilted current sheets in magnetotail. Ann. Geophys. 26 (11), 3525. doi:10.5194/angeo-26-3525-2008
Shen, C., Yang, Y. Y., Rong, Z. J., Li, X., Dunlop, M., Carr, C. M., et al. (2014). Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms. J. Geophys. Res. 119 (4), 2458. doi:10.1002/2013JA019460
Shi, J. K., Cheng, Z. W., Zhang, T. L., Dunlop, M., Liu, Z. X., Torkar, K., et al. (2010). South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster. J. Geophys. Res. 115 (A7), A07228. doi:10.1029/2009JA014446
Stawarz, J. E., Eastwood, J. P., Phan, T. D., Gingell, I. L., Shay, M. A., Burch, J. L., et al. (2019). Properties of the turbulence associated with electron-only magnetic reconnection in earth’s magnetosheath. Astrophys. J. Lett. 877 (2), L37. doi:10.3847/2041-8213/ab21c8
Sundkvist, D., Retinò, A., Vaivads, A., and Bale, S. D. (2007). Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99 (2), 025004. doi:10.1103/PhysRevLett.99.025004
Torbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., et al. (2018). Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362 (6421), 1391–1395. doi:10.1126/science.aat2998
Turner, A. J., Gogoberidze, G., Chapman, S. C., Hnat, B., and Müller, W.-C. (2011). Nonaxisymmetric anisotropy of solar wind turbulence. Phys. Rev. Lett. 107 (9), 095002. doi:10.1103/PhysRevLett.107.095002
Vörös, Z., Baumjohann, W., Nakamura, R., Runov, A., Volwerk, M., Schwarzl, H., et al. (2005). Dissipation scales in the earth’s plasma sheet estimated from Cluster measurements. Nonlinear Process. Geophys. 12, 725–732. doi:10.5194/npg-12-725-2005
Vallat, C., Dandouras, I., Dunlop, M., Balogh, A., Lucek, E., Parks, G. K., et al. (2005). First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data. Ann. Geophys. 23, 1849–1865. doi:10.5194/angeo-23-1849-2005
Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Thompson, S. M., McPherron, R. L., et al. (2005). Plasma sheet turbulence observed by Cluster II. J. Geophys. Res. 110, A01205. doi:10.1029/2004JA010581
Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G., and Walker, R. J. (2007). Taylor scale and effective magnetic Reynolds number determination from plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 112 (A10), A10201. doi:10.1029/2007JA012486
Keywords: plasma turbulence, magnetic reconnection, waves, instabilities, dissipation mechanisms, kinetic plasma processes, in situ observations, numerical simulations
Citation: Greco A, Perrone D, Lavraud B and Chasapis A (2020) Editorial: Improving the Understanding of Kinetic Processes in Solar Wind and Magnetosphere: From CLUSTER to Magnetospheric Multiscale Mission. Front. Astron. Space Sci. 7:549935. doi: 10.3389/fspas.2020.549935
Received: 07 April 2020; Accepted: 29 September 2020;
Published: 30 October 2020.
Edited and reviewed by:
Rudolf Von Steiger, University of Bern, SwitzerlandCopyright © 2020 Greco, Perrone, Lavraud and Chasapis. This is an open-access article distributed under the terms of the Creative Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Antonella Greco, YW50b25lbGxhLmdyZWNvQGZpcy51bmljYWwuaXQ=