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Tensor Non-Gaussianity Search:
Current Status and Future Prospects
Maresuke Shiraishi*

Department of General Education, National Institute of Technology, Kagawa College, Takamatsu, Japan

Primordial gravitational waves (GWs) are said to be a smoking gun in cosmic inflation,

while, even if they are detected, the specification of their origins are still required

for establishing a true inflationary model. Testing non-Gaussianity in the tensor-mode

anisotropies of the cosmic microwave background (CMB) is one of the most powerful

ways to identify sources of GW signals. In this paper, we review studies searching

for tensor non-Gaussianities employing the CMB bispectrum and forecast future

developments. No significant signal has so far been found from temperature and

E-mode polarization data, while orders-of-magnitude improvements in detection limits

can be achieved by adding the information of B-mode polarization. There is already

an established methodology for bispectrum estimation, which encourages a follow-up

investigation with next-decadal CMB B-mode surveys.
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1. INTRODUCTION

Recent cosmic-variance-limited-level measurements of the scalar sector in primordial fluctuations
using the temperature and E-mode polarization fields of the cosmicmicrowave background (CMB),
indicate that the Universe experienced an inflationary expansion at very early stages (Aghanim
et al., 2018; Akrami et al., 2018). Now, compelling evidence is expected to lie in the tensor sector;
namely, the primordial gravitational wave (GW). Even without any particular source, primordial
GWs arise naturally from inflationary vacuum fluctuations. Since their amplitude directly reflects
the inflationary energy scale, various observational projects aim at hunting them. There, the
measurements of the large-scale CMB B-mode polarization have attracted everyone’s attention as
it is a distinctive observable of the tensor mode (see e.g., Guzzetti et al., 2016; Kamionkowski and
Kovetz, 2016 and references therein).

In order to investigate the primordial tensor sector using the CMB anisotropies, the power
spectrum (2-point correlation) is primarily employed. In single-field inflation with Einstein gravity,
GWs are nearly Gaussian and hence the higher-order correlations vanish (Acquaviva et al., 2003;
Maldacena, 2003). In this case, only the power spectrum becomes an informative observable. This
paper, however, will address the potential of the bispectrum (3-point correlation) as a probe of
inflationary physics.

One possible way, making it more informative, is the addition of some extra source fields. In
the presence of the gauge field, the anisotropic stress fluctuations are formed, generating GWs.
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Because this is a non-linear process, the resulting GWs are non-
Gaussian (NG) and therefore a large tensor bispectrum can be
realized. In particular, the production of NG GWs becomes more
efficient when the gauge field is coupled to the axion (Namba
et al., 2016; Agrawal et al., 2018a). Moreover, production due to
higher-spinning particles has been studied intensively in recent
years (Goon et al., 2018; Dimastrogiovanni et al., 2019). There
is also the possibility of a post-inflationary generation of NG
GWs due to magnetic fields (Shiraishi et al., 2011c). Another
possible way to produce large tensor NGs comes from non-trivial
non-linear gravitational interactions predicted in some modified
theories of gravity (e.g., Gao et al., 2011, 2013; Maldacena and
Pimentel, 2011; Akita and Kobayashi, 2016; Bartolo and Orlando,
2017; Domenech et al., 2017; Naskar and Pal, 2018; Anninos
et al., 2019; Ozsoy et al., 2019). Then, the induced bispectra
can have distinctive shapes compared with that from the usual
Einstein term.

In this sense, the CMB tensor-mode bispectrum is a key
indicator of the inflationary particle content and/or high energy
gravity. Since a general formalism was established in Shiraishi
et al. (2010, 2011b), various signatures of various theoretical
models in the CMB bispectra have been studied [see (Shiraishi
et al., 2011c, 2012; Shiraishi, 2012, 2013) for primordial magnetic
field (PMF) models (Shiraishi et al., 2013, 2016; Namba et al.,
2016), for the axion inflation ones (Shiraishi et al., 2011a,b;
Domenech et al., 2017; Tahara and Yokoyama, 2018; Bartolo
et al., 2019), for modified gravity ones and (Meerburg et al., 2016;
Kothari andNandi, 2019) for othermotivations]. One of themost
interesting phenomena discovered there (unseen in the scalar
bispectrum analysis) is that the tensor bispectrum can yield the
non-vanishing signal in not only even but also odd ℓ1 + ℓ2 + ℓ3
multipoles. The GW bispectra generate the CMB auto and cross
bispectra including the B-mode polarization. In the usual theories
where the GW bispectra are parity-invariant, the odd ℓ1 +
ℓ2 + ℓ3 signal can arise in TTB, TEB, EEB, and BBB (Shiraishi,
2013; Meerburg et al., 2016; Domenech et al., 2017; Tahara and
Yokoyama, 2018).Moreover, parity-oddGWbispectramotivated
by parity-breaking theories can also induce the non-zero odd
ℓ1 + ℓ2 + ℓ3 signal in TTT, TTE, TEE, TBB, EEE, and
EBB (Shiraishi et al., 2011a, 2013, 2016; Shiraishi, 2012, 2016;
Bartolo et al., 2019).

Now, any type of theoretical bispectrum template is testable
with the temperature and E/B-mode polarization data by use
of a general bispectrum estimator for the even (Fergusson
et al., 2010, 2012; Fergusson, 2014; Shiraishi et al., 2019)
and odd ℓ1 + ℓ2 + ℓ3 domain (Shiraishi et al., 2014, 2019).
The magnitudes of some representative tensor NG templates
have already been estimated from the temperature map of
WMAP (Shiraishi and Sekiguchi, 2014; Shiraishi et al., 2015,
2018) and the temperature and E-mode polarization from
Planck (Ade et al., 2016a,b; Akrami et al., 2019). Absence of
NG reported there, constrains the various inflationary models
mentioned above.

In this paper, besides reviewing previous studies, we discuss
future prospects of the tensor NG search assuming the detection
of B-mode polarization in next-generation CMB experiments.
We found that, in terms of observational limits on the size

of some scale-invariant templates, an improvement up to
three orders of magnitude is expected assuming LiteBIRD-
level sensitivities (Hazumi et al., 2012; Matsumura et al., 2013;
Matsumura et al., 2016).

This paper is organized as follows. In the next section,
we summarize theoretical scenarios predicting characteristic
primordial tensor bispectra. In section 3, we compute the
CMB bispectra and show their behavior. In section 4, we
present the current observational constraints on tensor NGs
and discuss future prospects assuming B-mode polarization
surveys. The final section is devoted to the conclusions of
this paper.

2. THEORETICAL MOTIVATIONS

In this section, we briefly review the primordial tensor bispectra
predicted in some theoretical scenarios. For convenience, let us
work with the helicity basis; thus, the primordial perturbation is

represented as ξ
(λ)
k (Shiraishi et al., 2011b). Here, λ denotes the

helicity and takes 0, ±1, and ±2 for the scalar, vector, and tensor

modes, respectively. In practice, we identify ξ
(0)
k and ξ

(±2)
k with

the curvature perturbation ζk and the GW h
(±2)
k , respectively.

Assuming statistical homogeneity, the primordial bispectrum
takes the form:

〈
3∏

n=1

ξ
(λn)
kn

〉
= (2π)3δ(3)

(
3∑

n=1

kn

)〈
3∏

n=1

ξ
(λn)
kn

〉′
. (1)

Then, let us split this in two:

〈
3∏

n=1

ξ
(λn)
kn

〉′
= B

λ1λ2λ3
k1k2k3

A
λ1λ2λ3

k̂1k̂2k̂3
. (2)

In what follows, how the shape, represented by B
λ1λ2λ3
k1k2k3

, and the

angular structure, represented by A
λ1λ2λ3

k̂1k̂2k̂3
, changes depending on

the model is argued.

2.1. Extra Sources
Efficient tensor NG production is realized by adding extra source
fields to the theory. In what follows, we discuss the vector field as
a source.

2.1.1. Inflationary Axion-Gauge Coupling
A characteristic tensor NG is realized in inflationary models
involving the coupling between the axion φ and a gauge field
like f (φ)̃FF, with F and F̃ the gauge field strength tensor
and its dual, respectively (Cook and Sorbo, 2013; Maleknejad,
2016; Namba et al., 2016; Dimastrogiovanni et al., 2017;
Agrawal et al., 2018a,b). In this case, the chirality of the gauge
field is transferred into the GW sector and hence only the
plus mode of GW, h(+2), survives. The resulting production
is efficient at specific scales, and the tensor-tensor-tensor
bispectrum peaks for equilateral configurations, k1 ∼ k2 ∼ k3
(Cook and Sorbo, 2013).
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The detailed spectral feature varies with the shape of the
coupling f (φ) or the axion potential (Namba et al., 2016;
Agrawal et al., 2018b). For example, adopting f (φ) ∝ φ and a
nearly flat potential, one can obtain a scale-invariant shape as
(Shiraishi et al., 2013).

B
λ1λ2λ3
k1k2k3

= 16
√
2

27
f
ttt,eq
NL S

eq
k1k2k3

δλ1 ,2δλ2 ,2δλ3 ,2, (3)

A
λ1λ2λ3

k̂1k̂2k̂3
= e

(−λ1)
ij (k̂1)e

(−λ2)
jk

(k̂2)e
(−λ3)
ki

(k̂3), (4)

where e
(λ)
ij (k̂) is the polarization tensor defined in the helicity

basis obeying e
(λ)
ii (k̂) = k̂ie

(λ)
ij (k̂) = 0, e

(λ)∗
ij (k̂) = e

(−λ)
ij (k̂) =

e
(λ)
ij (−k̂), and e

(λ)
ij (k̂)e

(λ′)
ij (k̂) = 2δλ,−λ′ (Shiraishi et al., 2011b),

and S
eq
k1k2k3

is the usual scalar equilateral bispectrum template,

given by:

S
eq
k1k2k3

≡ 18

5

(
2π2

Pζ

)2
[
−
(

1

k31k
3
2

+ 2 perm

)
− 2

k21k
2
2k

2
3

+
(

1

k1k
2
2k

3
3

+ 5 perm

)]
. (5)

Here Pζ is the amplitude of the curvature power spectrum. A

newly introduced parameter f
ttt,eq
NL quantifies the relative size of

the λ = +2 bispectrum to S
eq
k1k2k3

and satisfies1

f
ttt,eq
NL ≡ lim

ki→k

B
+2+2+2
k1k2k3

A+2+2+2

k̂1k̂2k̂3

S
eq
k1k2k3

. (6)

The expected size of the GW bispectrum, of course, depends
on the case. If the axion is identified with the inflaton
field, the amount of scalar production exceeds the GW one
(Barnaby et al., 2011). Then, the scalar bispectrum measurement
gives much tighter constraints on the model (Ade et al.,
2016b; Akrami et al., 2019). In contrast, in multifield models
where the inflaton field and the axion coexist, more effective
GW production occurs. In the model where the axion is
coupled to the U(1) gauge field, a characteristic bump appears
in the GW bispectrum, and, depending on its location, it
is detectable by the CMB BBB bispectrum measurement
(Namba et al., 2016; Shiraishi et al., 2016). However, at the
same time, a similar bump in the GW power spectrum is
measured with a higher signal-to-noise ratio from the CMB
BB power spectrum. The strongest constraints are obtained
through the GW power spectrum measurement, and the
GW bispectrum provides complementary information. In the
model including a SU(2)-gauge coupling, the GW bispectrum
can dominate the scalar one, and more interestingly, in
some regions of the parameter space, the GW bispectrum
has high detectability compared to the GW power spectrum
(Agrawal et al., 2018a,b). The GW bispectrum is nearly

1This f
ttt,eq
NL is equivalent to f PNL in Shiraishi et al. (2015) and f tensNL in Ade et al.

(2016b), Akrami et al. (2019).

scale-invariant and therefore parameterized by f
ttt,eq
NL , which

is related to the tensor-to-scalar ratio r and the energy
density fraction of the SU(2) gauge field �A according to
Agrawal et al. (2018a).

f
ttt,eq
NL ∼ 2.5

r2

�A
. (7)

This indicates that f
ttt,eq
NL can take detectably large

values, i.e., f
ttt,eq
NL > 1, when �A is smaller

than r2.

2.1.2. Primordial Magnetic Fields
If PMFs, Bi, are created via some non-trivial mechanism
before inflation, they are stretched beyond the horizon by the
inflationary expansion and there remain relic fields at large scales.
Such a scenario has been widely argued to explain galactic or
extragalactic magnetic fields observed at present (for reviews
see Widrow, 2002; Kulsrud and Zweibel, 2008). In this case,
PMFs form the anisotropic stress fluctuations, and they source
the GW at super-horizon scales until neutrino decoupling. The
induced GW is called a passive mode and behaves as the initial
condition of the CMB fluctuations after reentering the horizon
(Shaw and Lewis, 2010).

Assuming Gaussianity of PMFs, the induced GW, hij ∝
(BiBj)

TT , becomes a chi-square random field (Brown and
Crittenden, 2005). When the PMF power spectrum has a scale-
invariant shape, in analogy with the usual local type NG,
the tensor-tensor-tensor bispectrum has the squeezed shape
(Shiraishi et al., 2011c, 2012):

B
λ1λ2λ3
k1k2k3

=
√
2f

ttt,sq
NL Slock1k2k3

, (8)

where the usual scalar local bispectrum template reads:

Slock1k2k3
≡ 6

5

(
2π2

Pζ

)2
(

1

k31k
3
2

+ 2 perm

)
, (9)

and A
λ1λ2λ3

k̂1k̂2k̂3
is given in the same form as Equation (4). A newly

introduced parameter f
ttt,sq
NL represents the relative size of the

λ = +2 bispectrum to Sloc
k1k2k3

and satisfies:

f
ttt,sq
NL ≡ lim

k1→0
k2→k3

B
+2+2+2
k1k2k3

A+2+2+2

k̂1k̂2k̂3

Sloc
k1k2k3

. (10)

As the GW bispectrum has a sextic dependence on PMFs, f
ttt,sq
NL

takes the form:

f
ttt,sq
NL ∼

(
B1Mpc

1 nG

)6

, (11)

where B1Mpc is the PMF strength smoothed on 1Mpc. This

means that f
ttt,sq
NL > 1 is realized if nano-Gauss-level PMFs

exist. Note that, in the same mechanism, the scalar local type
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bispectrum is generated, however, it is subdominant compared
with the GW one (Shiraishi, 2013).

This is the result under the absence of a helical (parity-odd)
term in the PMF power spectrum, however, the bispectrum shape
is modified if it exists (Shiraishi, 2012).

2.2. Modified Gravity
The above scenarios rely on some extra source fields. Let us
discuss another NG GW production through the modification of
Einstein gravity.

2.2.1. Weyl Gravity
In the context of the Weyl gravity, there may exist the Chern-
Simons term f (φ)W̃W, where W is the Weyl tensor and W̃
is its dual. Like the axion inflation models, this term also
sources chiral GWs (Lue et al., 1999; Alexander and Martin,
2005). The tensor-tensor-scalar bispectrum, whose angular
structure reads:

Aλ1λ20

k̂1k̂2k̂3
= (k̂1 · k̂2) e(−λ1)

ij (k̂1)e
(−λ2)
ij (k̂2), (12)

surpasses the tensor-tensor-tensor and tensor-scalar-scalar ones
in amplitude (Bartolo and Orlando, 2017). Due to the parity-
violating nature in the GW sector, the helical bispectrum obeys:

B
λ1λ20
k1k2k3

∝ λ1

2
δλ1 ,λ2 . (13)

One can also construct the cubic actions f (φ)W3 and f (φ)W̃W2

(Maldacena and Pimentel, 2011; Shiraishi et al., 2011a; Soda
et al., 2011). The tensor-tensor-tensor bispectra generated from
both terms have identical angular dependence as Equation (4).
In contrast, the helicity dependence is completely different
(Shiraishi et al., 2011a): the former gives rise to the non-helical
(parity-even) contribution:

B
λ1λ2λ3
k1k2k3

∝ δλ1 ,λ2δλ2 ,λ3 , (14)

while the latter induces the helical (parity-odd) one:

B
λ1λ2λ3
k1k2k3

∝ λ1

2
δλ1 ,λ2δλ2 ,λ3 . (15)

2.2.2. Massive Gravity
In single-field slow-roll inflation with Einstein gravity, the tensor-
scalar-scalar bispectrum is affected by slow-roll suppression
(Maldacena, 2003). However, in a massive gravity model
(Domenech et al., 2017), the size of the bispectrum is controlled
by the graviton mass. The bispectrum, taking the form:

B
λ1 0 0
k1k2k3

= −8
√
2

5
f
tss,sq
NL

(
2π2

Pζ

)2 1

k31k
2
2k

2
3[

−kt +
k1k2 + k2k3 + k3k1

kt
+ k1k2k3

k2t

]
, (16)

Aλ1 0 0

k̂1k̂2k̂3
= e

(−λ1)
ij (k̂1)k̂2ik̂3j, (17)

with kt ≡ k1 + k2 + k3, is amplified at long-wavelength tensor
and short-wavelength scalar configurations (k1 ≪ k2 ∼ k3). A

newly introduced parameter f
tss,sq
NL denotes the relative size of the

λ = +2 bispectrum to Sloc
k1k2k3

, obeying:

f
tss,sq
NL ≡ lim

k1→0
k2→k3

B
+2 0 0
k1k2k3

A+2 0 0

k̂1k̂2k̂3

Sloc
k1k2k3

. (18)

With an upper bound on the tensor-to-scalar ratio r . 0.1,

the prediction in Einstein gravity, f
tss,sq
NL ∼ 0.1 r, indicates

f
tss,sq
NL . 0.01. In contrast, massive gravity model modifies
this as:

f
tss,sq
NL ∼ 0.1 rλsst , (19)

and f
tss,sq
NL > 1 can then be realized depending on the strength

parameter of a non-linear interaction λsst . Note that the spectral
index of the GW power spectrum is also a possible observable of
this model (Domenech et al., 2017) but has been unconstrained
so far.

3. CMB BISPECTRA FROM TENSOR
NON-GAUSSIANITIES

Next, let us discuss the CMB bispectra generated from GWNGs.

3.1. General Formalism for CMB Angular
Bispectrum
We start by reviewing how to compute the CMB bispectra
generated from the primordial scalar, vector, and tensor
NGs based on the general formalism developed in
Shiraishi et al. (2010, 2011b).

The CMB field is characterized by temperature and two linear
polarizations called E and Bmodes. All of these are spin-0 fields,
and the temperature and E-mode fields have even parity, while
the B mode is parity-odd. Since temperature (X = T), E-mode
(X = E), and B-mode (X = B) fields are distributed on the 2D
sphere, they can be expanded using the spherical harmonic basis
according to

X(n̂) =
∑

ℓm

aXℓmYℓm(n̂), (20)

where we have assumed the spatial flatness of the Universe. The
spherical harmonic coefficients aXℓm are given by the sum of the
scalar, vector, and tensor modes as:

aXℓm = a
X(s)
ℓm + a

X(v)
ℓm + a

X(t)
ℓm . (21)

Note that the scalar mode cannot generate a B-mode signal due to
zero helicity. The coefficients of the scalar (z = s), vector (z = v),
and tensor (z = t) modes have the structure:

a
X(z)
ℓm = 4π(−i)ℓ

∫
d3k

(2π)3
T

X(z)
ℓ,k

∑

λ

[sgn(λ)]λ+xξ
(λ)
k −λY

∗
ℓm(k̂) ,

(22)
where x changes depending on the parity of the CMB field
according to x = 0 for X = T,E and x = 1 for X = B,
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and recall that λ represents helicity as λ = 0 for z = s,
λ = ±1 for z = v, and λ = ±2 for z = t. The linear transfer
function T

X(z)
ℓ,k

represents the time evolution of the CMB

fluctuations originating from the primordial perturbation ξ
(λ)
k .

Using Equation (22), one can form the CMB bispectrum as:

〈
3∏

n=1

a
Xn(zn)
ℓnmn

〉
=




3∏

n=1

(−i)ℓn
∫

d3kn

2π2
T

Xn(zn)
ℓn ,kn

∑

λn

[sgn(λn)]
λn+xn−λnY

∗
ℓnmn

(k̂n)



〈

3∏

n=1

ξ
(λn)
kn

〉
. (23)

The primordial curvature perturbation and the primordial
GW act as initial conditions of the scalar and tensor CMB
anisotropies, respectively; thus, ξ

(0)
k = ζk and ξ

(±2)
k = h

(±2)
k .

Employing the harmonic expansion:

ξ
(λ)
k =

∑

ℓm

ξ
(λ)
ℓm (k)−λYℓm(k̂), (24)

the above formula is rewritten as:

〈
3∏

n=1

a
Xn(zn)
ℓnmn

〉
=




3∏

n=1

(−i)ℓn
∫ ∞

0

k2ndkn

2π2
T

Xn(zn)
ℓn ,kn

∑

λn

[sgn(λn)]
λn+xn



〈

3∏

n=1

ξ
(λn)
ℓnmn

(kn)

〉
, (25)

where,
〈

3∏

n=1

ξ
(λn)
ℓnmn

(kn)

〉
=
[

3∏

n=1

∫
d2k̂n −λnY

∗
ℓnmn

(k̂n)

]〈
3∏

n=1

ξ
(λn)
kn

〉
.

(26)
This is further simplified once the explicit formula of〈∏3

n=1 ξ
(λn)
kn

〉
is given. The computation procedure is as follows:

1. Expand
〈∏3

n=1 ξ
(λn)
kn

〉
using the (spin-weighted) spherical

harmonics in terms of k̂1, k̂2, and k̂3.
2. Perform the angular integrals,

∫
d2k̂1,

∫
d2k̂2, and

∫
d2k̂3,

of the resultant spherical harmonics and convert them into
products of Wigner symbols.

3. Simplify the resultant products of the Wigner symbols by
adding angular momenta.

If the primordial bispectrum
〈∏3

n=1 ξ
(λn)
kn

〉
respects rotational

invariance, via the above computation, the Wigner 3j symbol(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
is singled out in

〈∏3
n=1 ξ

(λn)
ℓnmn

(kn)
〉
and hence the

resulting CMB bispectrum takes the form:

〈
3∏

n=1

a
Xn(zn)
ℓnmn

〉
=
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)
B
X1X2X3

(z1z2z3)ℓ1ℓ2ℓ3
. (27)

In this case, the non-zero signal is confined to the tetrahedral
domain:

|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2. (28)

3.2. Practical Examples
In the following, we demonstrate the CMB bispectrum
computation in the context of the practical cases discussed in
section 2.

3.2.1. Three Tensors
First, we discuss the CMB bispectra sourced by primordial

tensors where we examine the axion model f
ttt,eq
NL template (3)

(Shiraishi et al., 2013), theW3 model (14) (Shiraishi et al., 2011a),
the W̃W2 model (15) (Shiraishi et al., 2011a), and the PMFmodel

f
ttt,sq
NL (8) (Shiraishi et al., 2011c). Since A

λ1λ2λ3

k̂1k̂2k̂3
takes the identical

form,
〈∏3

n=1 h
(λn)
ℓnmn

(kn)
〉
can be computed in a similar way.

For the first step, in order to simplify the R.H.S.

of Equation (26), we expand A
λ1λ2λ3

k̂1k̂2k̂3
and the Dirac

delta function:

e
(−λ1)
ij (k̂1)e

(−λ2)
jk

(k̂2)e
(−λ3)
ki

(k̂3)

= − (8π)3/2

10

√
7

3

[
3∏

n=1

∑

µn

λnY
∗
2µn

(k̂n)

](
2 2 2
µ1 µ2 µ3

)
,(29)

δ(3)

(
3∑

n=1

kn

)

= 8

∫ ∞

0
y2dy




3∏

n=1

∑

LnMn

(−1)Ln/2jLn (kny)Y
∗
LnMn

(k̂n)




×h0 0 0
L1L2L3

(
L1 L2 L3
M1 M2 M3

)
, (30)

where

h
s1s2s3
l1l2l3

≡
√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
s1 s2 s3

)
. (31)

For the second step, the angular integrals of the resultant
spherical harmonics are performed, such that:

∫
d2k̂n −λnY

∗
ℓnmn

(k̂n)Y
∗
LnMn

(k̂n) λnY
∗
2µn

(k̂n) = h
λn0−λn
ℓnLn2

(
ℓn Ln 2

mn Mn µn

)
.

(32)
As a final step, the summation of the Wigner 3j symbols

appearing above over angular momenta is computed
according to:

∑

M1M2M3
µ1µ2µ3

(
L1 L2 L3
M1 M2 M3

)(
2 2 2

µ1 µ2 µ3

)(
ℓ1 L1 2

m1 M1 µ1

)

×
(

ℓ2 L2 2

m2 M2 µ2

)(
ℓ3 L3 2

m3 M3 µ3

)
=
(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)


ℓ1 ℓ2 ℓ3

L1 L2 L3
2 2 2



.(33)
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Consequently, we obtain:

〈
3∏

n=1

h
(λn)
ℓnmn

(kn)

〉
=
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

×−(8π)3/2

10

√
7

3

∑

L1L2L3

(−1)
L1+L2+L3

2 h0 0 0
L1L2L3

×





ℓ1 ℓ2 ℓ3
L1 L2 L3
2 2 2





∫ ∞

0
y2dy

[
3∏

n=1

4π jLn (kny)h
λn0−λn
ℓnLn2

]
B

λ1λ2λ3
k1k2k3

. (34)

Here, the prefactor

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
is due to rotational

invariance of the primordial bispectrum. Inserting this into
Equation (25) and simplifying the resultant equation, we find that
the CMB bispectra take the rotational-invariant form (27) with:

B
X1X2X3

(ttt)ℓ1ℓ2ℓ3
= −(8π)3/2

10

√
7

3
(−i)ℓ1+ℓ2+ℓ3

∑

L1L2L3

×(−1)
L1+L2+L3

2 h0 0 0
L1L2L3





ℓ1 ℓ2 ℓ3

L1 L2 L3
2 2 2





×
∫ ∞

0
y2dy

[
3∏

n=1

2

π

∫ ∞

0
k2ndknT

Xn(t)
ℓn ,kn

jLn (kny)

]

×




3∏

n=1

∑

λn=±2

[sgn(λn)]
xnh

λn0−λn
ℓnLn2


B

λ1λ2λ3
k1k2k3

. (35)

The ℓ-space domain containing the non-zero signal is
determined by the summation over the helicities λ1, λ2, and λ3.
In the W̃W2 model, performing the summation of Equation (15)
leads to the non-vanishing condition: (Shiraishi et al., 2011a)

ℓ1 + ℓ2 + ℓ3 + x1 + x2 + x3 = odd. (36)

On the other hand, in theW3 and PMFmodels, due to the helicity
dependence in Equations (14) and (8), the non-vanishing signal
is confined to Shiraishi et al. (2011a,c):

ℓ1 + ℓ2 + ℓ3 + x1 + x2 + x3 = even. (37)

In the axion model, however, the helicity dependence
in Equation (3) does not yield any restriction, allowing
a non-vanishing signal in the whole tetrahedral domain
(Shiraishi et al., 2013).

The left and center panels of Figure 1 show the intensity
distributions of the temperature bispectra from the axion model

f
ttt,eq
NL template (3) and the PMF model f

ttt,sq
NL template (8),

respectively. As expected, it is confirmed that the signal comes
mostly from the equilateral (ℓ1 ∼ ℓ2 ∼ ℓ3) and squeezed
(ℓ1 ≪ ℓ2 ∼ ℓ3, ℓ2 ≪ ℓ3 ∼ ℓ1 and ℓ3 ≪ ℓ1 ∼ ℓ2) configurations,
respectively. The decaying nature for ℓ & 100 due to the lack of
the tensor-mode integrated Sachs-Wolfe contribution (Shiraishi
et al., 2011c, 2013) is also visually apparent.

3.2.2. Two Tensors and One Scalar
Here, we compute the CMB tensor-tensor-scalar bispectrum
from the W̃W model (13) (Bartolo et al., 2019). The angular

dependence in Aλ1λ20

k̂1k̂2k̂3
(12) is decomposed according to:

(k̂1 · k̂2)e(−λ1)
ij (k̂1)e

(−λ2)
ij (k̂2)

= 32π2

15

∑

Jµ

λ1Y
∗
Jµ(k̂1)λ2Y

∗
J−µ(k̂2)(−1)µ+1+J

h0λ1−λ1
1 2 J h0λ2−λ2

1 2 J

2J + 1
. (38)

By means of the above methodology, we obtain
(Bartolo et al., 2019):

B
X1X2X3

(tts)ℓ1ℓ2ℓ3
= 32π2

15
(−i)ℓ1+ℓ2+ℓ3

∑

L1L2

(−1)
L1+L2+ℓ3

2 h0 0 0
L1L2ℓ3

×
∑

J

(−1)1+J+L2+ℓ1

2J + 1

{
ℓ1 ℓ2 ℓ3

L2 L1 J

}

×
∫ ∞

0
y2dy

[
2∏

n=1

2

π

∫ ∞

0
k2ndknT

Xn(t)
ℓn ,kn

jLn (kny)

]

× 2

π

∫ ∞

0
k23dk3T

X3(s)
ℓ3 ,k3

jℓ3 (k3y)

×




2∏

n=1

∑

λn=±2

[
sgn(λn)

]xn h0λn−λn
Ln ℓn J h

0λn−λn
1 2 J


B

λ1λ20
k1k2k3

. (39)

Performing the summation over λ1 and λ2 with Equation (13),
we find that the non-vanishing signal obeys (Bartolo et al., 2019):

ℓ1 + ℓ2 + ℓ3 + x1 + x2 = odd. (40)

3.2.3. One Tensor and Two Scalars
We here compute the CMB bispectrum from the massive gravity

model f
tss,sq
NL template (16) (Domenech et al., 2017). The spherical

harmonic expansion of Aλ1 0 0

k̂1k̂2k̂3
(17) then reads:

e
(−λ1)
ij (k̂1)k̂2ik̂3j = (8π)3/2

6

∑

µ1µ2µ3

λ1Y
∗
2µ1

(k̂1)Y
∗
1µ2

(k̂2)Y
∗
1µ3

(k̂3)

(
2 1 1
µ1 µ2 µ3

)
. (41)

In the same manner, we can derive the CMB bispectrum as
(Shiraishi et al., 2011b; Domenech et al., 2017):

B
X1X2X3
(tss)ℓ1ℓ2ℓ3

= (8π)3/2

6
(−i)ℓ1+ℓ2+ℓ3

∑

L1L2L3

(−1)
L1+L2+L3

2

×h0 0 0L1L2L3
h0 0 0ℓ2L21

h0 0 0ℓ3L31





ℓ1 ℓ2 ℓ3
L1 L2 L3
2 1 1





×
∫ ∞

0
y2dy

2

π

∫ ∞

0
k21dk1T

X1(t)
ℓ1 ,k1

jL1 (k1y)

×
[

3∏

n=2

2

π

∫ ∞

0
k2ndknT

Xn(s)
ℓn ,kn

jLn (kny)

]

×
∑

λ1=±2

[sgn(λ1)]
x1h

λ10−λ1
ℓ1L12

B
λ10 0
k1k2k3

. (42)
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By summing over λ1, we confirm that, because of the absence
of the helicity dependence in Equation (16), the non-vanishing
signal is distributed on (Shiraishi et al., 2011b; Domenech et al.,
2017):

ℓ1 + ℓ2 + ℓ3 + x1 = even. (43)

The right panel of Figure 1 describes the intensity distribution
of the resultant temperature bispectrum showing explicitly that

it is amplified in the squeezed limit. Differently from the f
ttt,sq
NL

case, the squeezed signal survives even for ℓ & 100 because of the
presence of the scalar-mode acoustic oscillation.

4. MEASUREMENTS OF CMB
TENSOR-MODE BISPECTRA

In this section, we examine the present and future constraints on
GWNGs through the CMB bispectrum measurements.

4.1. Optimal Tensor-Mode Bispectrum
Estimation
Let us begin by explaining how to estimate the overall magnitude
of the primordial bispectrum, dubbed as fNL, from the CMB data.

An optimal fNL estimator takes the form
(Komatsu et al., 2005):

f̂NL = 1

F

∑

ℓ1ℓ2ℓ3

(−1)ℓ1+ℓ2+ℓ3
Bthℓ1ℓ2ℓ3B

obs
ℓ1ℓ2ℓ3

6Cℓ1Cℓ2Cℓ3

, (44)

where Cℓ is the CMB angular power spectrum, Bthℓ1ℓ2ℓ3 is the
theoretical template of the angle-averaged CMB bispectrum

one wants to measure [corresponding to B
X1X2X3

(z1z2z3)ℓ1ℓ2ℓ3
in

Equation (27) for fNL = 1],

Bobsℓ1ℓ2ℓ3
≡

∑

m1m2m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

) [
aℓ1m1aℓ2m2aℓ3m3

−
(〈
aℓ1m1aℓ2m2

〉
aℓ3m3 + 2 perm

)]
(45)

is the bispectrum reconstructed from the observed aℓm, and

F ≡
∑

ℓ1ℓ2ℓ3

(−1)ℓ1+ℓ2+ℓ3

(
Bthℓ1ℓ2ℓ3

)2

6Cℓ1Cℓ2Cℓ3

(46)

is the Fisher matrix. The bestfit value and the error bar on
fNL is obtained computing f̂NL from the observed data and the
simulation maps, respectively. The straightforward computation
of Equation (44) is not a wise manner since the O(ℓ5max)
numerical operation required here is quite time-consuming and
practically unfeasible for ℓmax & 100.

To reduce the computational cost, factorizing the summation
as
∑

ℓ1ℓ2ℓ3
f (ℓ1, ℓ2, ℓ3) = [

∑
ℓ1
a(ℓ1)][

∑
ℓ2
b(ℓ2)][

∑
ℓ3
c(ℓ3)] is

a tested approach2. This idea was implemented in Komatsu
et al. (2005) for the first time, enabling the analysis for

2See Bucher et al. (2016) for another approach by binning the ℓ-space domain

originally separable templates such as local, equilateral and
orthogonal NGs. Later, it was generalized by developing the
modal decomposition technique of any originally non-separable
Bthℓ1ℓ2ℓ3 (Fergusson et al., 2010, 2012). The original version of
the modal methodology is for the analysis of even ℓ1 + ℓ2 +
ℓ3 domain, while the spin-weighted version developed recently
(Shiraishi et al., 2014, 2015) can also cover odd ℓ1 + ℓ2 + ℓ3
domain. As seen in section 3, the tensor-mode CMB bispectrum
is generally non-separable and does not always vanish in the
odd ℓ1+ℓ2+ℓ3 domain. In this sense, the modal methodology is
an indispensable tool for the tensor NG search. In fact, except for
the results obtained brute forcing the ℓ-space summation with
ℓmax = 100 (Shiraishi and Sekiguchi, 2014), all observational
constraints reported so far have been obtained by it Shiraishi et al.
(2015, 2018), Ade et al. (2016a,b), Akrami et al. (2019). In what
follows, for simplicity, we explain the modal methodology for the
auto bispectra (TTT, EEE, and BBB) based on Fergusson et al.
(2010, 2012), Shiraishi et al. (2014, 2015), while one can deal with
the cross bispectra (TTE, TTB, TEE, TEB, TBB, EEB, and EBB) in
the very similar way (Fergusson, 2014; Shiraishi et al., 2019).

Let us introduce the reduced bispectrum according to:

Bℓ1ℓ2ℓ3 ≡ h
{xyz}
ℓ1ℓ2ℓ3

bℓ1ℓ2ℓ3 , (47)

where,

h
{xyz}
ℓ1ℓ2ℓ3

≡ 1

6
h
x y z
ℓ1ℓ2ℓ3

+ 5 perm in x, y, z. (48)

Here and hereinafter, we follow the notation for the symmetric
operation A{xAyAz} ≡ 1

6A
xAyAz + 5 perm in x, y, z. The spined

weight (x, y, z) is fixed to be, e.g., (0, 0, 0) and (1, 1,−2) for
even and odd ℓ1 + ℓ2 + ℓ3 analysis, respectively. The reduced
bispectrum of the theoretical template is decomposed in the
odd/even ℓ1 + ℓ2 + ℓ3 domain separately, according to:

vℓ1vℓ2vℓ3

σ
√
Cℓ1Cℓ2Cℓ3

b
th(o/e)
ℓ1ℓ2ℓ3

=
∑

ijk

α
(o/e)
ijk

Qijk(ℓ1, ℓ2, ℓ3), (49)

where the separable modal basisQijk is composed of the products
of the eigenfunctions qi(ℓ) ∈ R as:

Qijk(ℓ1, ℓ2, ℓ3) ≡ q{i(ℓ1)qj(ℓ2)qk}(ℓ3)

= 1

6
qi(ℓ1)qj(ℓ2)qk(ℓ3)+ 5 perm in i, j, k.(50)

The σ factor, defined by:

σ ≡
{
1 : ℓ1 + ℓ2 + ℓ3 = even

i : ℓ1 + ℓ2 + ℓ3 = odd
, (51)

makes the L.H.S of Equation (49) real, so the modal coefficients

α
(o/e)
ijk

are always real. The convergence speed of the modal

decomposition relies on the choice of the vℓ weighting and qi(ℓ).
Employing the Qijk templates, we define a matrix according to:

γ
(o/e)
np ≡

〈
Qn(ℓ1, ℓ2, ℓ3)Qp(ℓ1, ℓ2, ℓ3)

〉
o/e

, (52)
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FIGURE 1 | Intensity distributions of the CMB temperature bispectra from the axion model f
ttt,eq
NL template (3), the PMF model f

ttt,sq
NL one (8), and the massive gravity

model f
tss,sq
NL one (16) in the ℓ-space tetrahedral domain where the axes correspond to ℓ1, ℓ2, and ℓ3, respectively. Here, the bispectra are rescaled using a constant

Sachs-Wolfe template (Fergusson et al., 2010). Dense red (blue) color expresses a larger positive (negative) signal. The current and future observational limits on

f
ttt,eq
NL , f

ttt,sq
NL , and f

tss,sq
NL are discussed in sections 4.2 and 4.3, respectively.

where the triples ijk in Qijk are labeled by means of a single index
n, and the bracket 〈· · ·〉o/e denotes the summation in terms of the
odd/even ℓ1 + ℓ2 + ℓ3 domain as:

〈
Fℓ1ℓ2ℓ3

〉
o/e

≡
∑

ℓ1+ℓ2+ℓ3=odd/even


 h

{xyz}
ℓ1ℓ2ℓ3

vℓ1vℓ2vℓ3




2

Fℓ1ℓ2ℓ3 . (53)

Then, the modal coefficients are computed according to the
inverse operation:

α(o/e)
n =

∑

p

(
γ (o/e)

)−1

np

〈
vℓ1vℓ2vℓ3b

th(o/e)
ℓ1ℓ2ℓ3

σ
√
Cℓ1Cℓ2Cℓ3

Qp(ℓ1, ℓ2, ℓ3)

〉

o/e

.

(54)
Using Equation (49) and the identity:

h
s1s2s3
l1l2l3

(
l1 l2 l3
m1 m2 m3

)

=
∫

d2n̂−s1Yl1m1
(n̂)−s2Yl2m2

(n̂)−s3Yl3m3
(n̂), (55)

the sum over ℓ1, ℓ2, and ℓ3 in the estimator (44) is rewritten into
the sum over finite eigenmodes as:

f̂NL =
∑

n α
(o)
n β

(o)
n +

∑
n α

(e)
n β

(e)
n

∑
np α

(o)
n γ

(o)
np α

(o)
p +

∑
np α

(e)
n γ

(e)
np α

(e)
p

, (56)

where the β
(o/e)
n coefficients, reading:

β
(o/e)
ijk

= 1

σ

∫
d2n̂

∑

a+b+c=o/e

[
{−xM

(a)
{i (n̂)−yM

(b)
j (n̂)−z}M

(c)
k} (n̂)

−3
〈
{−xM

(a)
{i (n̂)−yM

(b)
j (n̂)

〉
−z}M

(c)
k} (n̂)

]
, (57)

are computed from the filtered maps:

xM
(o/e)
i (n̂) ≡

∑

ℓ=odd/even

∑

m

qi(ℓ)
aℓm

vℓ

√
Cℓ

xYℓm(n̂). (58)

The most time-consuming task is the computation of 〈· · ·〉o/e
in α

(o/e)
n , however, it requires, at most, O(ℓ3max) operations

(assuming that the modal decomposition converges within a
reasonable time), and hence the separable estimator (56) makes
the tensor bispectrum analysis feasible.

4.2. Current Observational Limits
Table 1 summarizes the current CMB limits on f

ttt,eq
NL , f

ttt,sq
NL , and

f
tss,sq
NL obtained from the WMAP and Planck maps3. Regarding

f
ttt,eq
NL and f

ttt,sq
NL , the consistency between the WMAP T only

results and Planck T only ones is confirmed there. Note that the
unimproved constraints are expected because, as inferred from
Figure 1, Bthℓ1ℓ2ℓ3 decays rapidly for ℓ & 100 and hence the
estimator sum (44) saturates well below the WMAP resolution
(ℓmax = 500). In contrast, for f

tss,sq
NL the current constraint from

WMAP is expected to be much improved by Planck since the
squeezed-limit signal survives even for high ℓ (Shiraishi et al.,
2011b; Domenech et al., 2017).We also confirm the improvement

of the constraint on f
ttt,eq
NL by analyzing the temperature and

E-mode polarization data jointly.
As seen in Table 1, no significant deviation from Gaussianity

has been found so far.

4.3. Future Prospects
Finally, we discuss future prospects of detecting these tensor
NGs by adding B-mode polarization to the data analysis.

Here, we evaluate expected 1σ errors 1f
ttt,eq
NL and 1f

ttt,sq
NL from

BBB, and 1f
tss,sq
NL from BTT, through the computation of the

Fisher matrix. The covariance matrices [corresponding to the
denominator of Equation (46)] are given by CBB

ℓ1
CBB

ℓ2
CBB

ℓ3
and

CBB
ℓ1
CTT

ℓ2
CTT

ℓ3
, respectively. Note that these are estimated under

the diagonal covariance matrix approximation. The B-mode
power spectrum is computed by summing up the primordial
contribution parameterized by the tensor-to-scalar ratio r, the
lensing B-mode one and the experimental noise spectrum as

CBB
ℓ = C

prim
ℓ (r) + Clens

ℓ + Nℓ. Then, let us examine three
cleanliness levels of the B-mode data: a perfectly-delensed and
noiseless full-sky case (i.e., Clens

ℓ = Nℓ = 0), a non-delensed
and noiseless full-sky one (i.e., Nℓ = 0), and a non-delensed
realistic case where experimental uncertainties due to beam,
noise, mask and residual foreground in LiteBIRD (Hazumi et al.,

3See (Shiraishi et al., 2015) for the CMB limits on a few other shapes
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TABLE 1 | CMB constraints on three tensor non-linearity parameters: f
ttt,eq
NL (6), f

ttt,sq
NL (10), and f

tss,sq
NL (18).

f
ttt,eq
NL

f
ttt,sq
NL

f
tss,sq
NL

WMAP T only 600± 1500 (Shiraishi et al., 2015) 220± 170 (Shiraishi and Sekiguchi, 2014) 84± 49 (Shiraishi et al., 2018)

Planck T only 600± 1600 (Akrami et al., 2019) 290± 180 (Ade et al., 2016a) –

Planck E only 2900± 6700 (Akrami et al., 2019) – –

Planck T + E 800± 1100 (Akrami et al., 2019) – –

The central values and 1σ errors estimated from the WMAP temperature data only (first row), the Planck temperature data only (second one), the Planck E-mode polarization data only

(third one), and the Planck temperature and E-mode polarization data jointly (fourth one) are shown. The results of f
ttt,eq
NL are obtained by analyzing both even and odd ℓ1 + ℓ2 + ℓ3

multipoles, while those of f
ttt,sq
NL and f

tss,sq
NL come from only even ℓ1 + ℓ2 + ℓ3 modes.

FIGURE 2 | Expected 1σ errors: 1f
ttt,eq
NL (red lines) and 1f

ttt,sq
NL (blue lines) from BBB, and 1f

tss,sq
NL (green lines) from BTT, as a function of the maximum multipole

number ℓmax (left panel) and the tensor-to-scalar ratio r (right panel). The left panel is depicted adopting r = 10−3, and 1f
tss,sq
NL in the right panel is computed with

ℓmax = 2000. The linestyle discriminates the cleanliness level of the B-mode data: a perfectly-delensed and noiseless full-sky case (dot-dashed lines in left panel), a

non-delensed and noiseless full-sky one (solid lines in both panels), and a LiteBIRD-like realistic one (dashed lines in right panel).

2012; Matsumura et al., 2013, 2016) are considered4. The first
example provides the theoretical limits. In this case, the size of
the covariance matrix is determined by r alone and, accordingly,
the errors simply scale like:

1f
ttt,eq
NL ∝ r3/2, 1f

ttt,sq
NL ∝ r3/2, 1f

tss,sq
NL ∝ r1/2. (59)

Comparing this with Equations (7) or (19), one can see that
the error on a model parameter of the axion model, �−1

A ,
or that of the massive gravity model, λsst , is proportional
to r−1/2.

The left panel of Figure 2 describes the ℓmax dependence of
1fNL in the perfectly-delensed and non-delensed cases with r =
10−3 and Nℓ = 0. From the former results (corresponding to
the dot-dashed lines), the sensitivity improvement by increasing
ℓmax is confirmed. From the latter results (corresponding to

the solid lines), it is visually apparent that 1f
ttt,eq
NL and 1f

ttt,sq
NL

immediately saturate because Clens
ℓ dominates over CBB

ℓ for ℓ >

O(10). In contrast, 1f
ttt,sq
NL is free from such a degradation since

4In the third case, we compute Nℓ by taking into account the contamination due

to residual foregrounds in the same manner as Shiraishi et al. (2016); namely, we

assume that foregrounds due to galactic dust emission and synchrotron radiation

are subtracted using 9 channels (corresponding to 40-89 GHz and 280-402 GHz)

and therefore reduce to the 2% level in CMBmaps. Any higher-order contribution

is not considered for simplicity

the dominant signal in the Fisher matrix comes from large-
scale B modes, more precisely, long-wavelength B and short-
wavelengthT squeezed configurations (ℓB1≪ℓT2 ∼ ℓT3 ) (Meerburg

et al., 2016; Domenech et al., 2017). However, of course, 1f
ttt,sq
NL

would also saturate at very small scales, i.e., ℓT & 3000,
where the scalar-mode lensing contamination dominates CTT

ℓ .
Higher-order lensing contributions introduce non-vanishing off-
diagonal components in the covariance matrix; thus, the above
simple Fisher matrix computation would no longer be credible.
In the left panel of Figure 2, the results of the LiteBIRD-like
experiment are not shown, however, they have similar ℓmax

scalings and the slightly larger overall sizes in comparison with
the no-delensed and noiseless full-sky results.

In the right panel of Figure 2, the r dependence of 1fNL for
the no-delensed and noiseless case (corresponding to the solid
lines) and a LiteBIRD-like experiment (corresponding to the

dashed lines) is presented. For large r, C
prim
ℓ dominates over CBB

ℓ

within a wide range of ℓ and hence the r dependence reaches
the ideal case (59). On the other hand, for decreasing r, Clens

ℓ

or Nℓ starts to dominate and errors converge. We find that

LiteBIRD could measure anO(1) signal of f
ttt,eq
NL , f

ttt,sq
NL , or f

tss,sq
NL .5

5Comparable detectability is expected in the other next-generation CMB

experiments such as CMB-S4 (Abazajian et al., 2016) and CORE (Delabrouille

et al., 2018)
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If detected, as discussed in section 2, we will have compelling
evidence for a deviation from Einstein gravity or the existence of
extra source fields, which will help establish an improved picture
of the early Universe.

Finally, it is worth mentioning the impact of late-time
secondary bispectra. Via gravitational lensing, primordial
temperature and E-mode polarization fields induce secondary
BTT signals (Hu, 2000; Lewis et al., 2011). Fortunately, this

has a very weak correlation with the f
tss,sq
NL bispectrum template

(Domenech et al., 2017). Similarly, secondary BBB is also
induced, while this is subdominant compared to primordial BBB

at interesting f
ttt,eq
NL or f

ttt,sq
NL (Shiraishi et al., 2016). Besides of

these leading-order contributions, higher-order ones exist due
to post-Born lensing (Marozzi et al., 2016; Pratten and Lewis,
2016). Secondary polarized bispectra can also be generated via
the Sunyaev-Zel’dovich effect (Sunyaev and Zeldovich, 1972)
and extragalactic foreground (Jung et al., 2018; Coulton and
Spergel, 2019). These impacts are still non-trivial and should
therefore be solved for more precise discussions.

5. CONCLUSIONS

The search for tensor NG is theoretically well-motivated, and
the methodology for testing with the CMB temperature and
E/B-mode polarization data has already been established.
Observational constraints on some templates from the
WMAP temperature and the Planck temperature and E-
mode polarization data do exist. Any significant signal has not
yet been discovered, implying the smallness of tensor NGs. There
is still a chance of approaching such a small signal by including
B-mode polarization in the data analysis. As we have found,

an O(1) signal of f
ttt,eq
NL , f

ttt,sq
NL , or f

tss,sq
NL would be detectable in

LiteBIRD; current constraints are expected to be updated in the
next decade.

Throughout this paper, we have focused mainly on scale-
invariant cases, while specific scale dependences can be generated
for tensor NGs depending on the shapes of the inflationary
potentials and non-linear interactions. The detectability is then
enhanced at specific multipoles (Shiraishi et al., 2016) or outside
the CMB scales. In the latter case, the information from
other probes such as an intereferometric GW survey (e.g.,

Bartolo et al., 2018; Tsuneto et al., 2019), the galaxy one (e.g.,
statistical anisotropy in the galaxy power spectrum Jeong and
Kamionkowski, 2012) and the 21-cm line one also becomes
indispensable. A more comprehensive analysis based on multi-
wavelength observations remains an interesting and important
future issue.
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