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Planned active space experiments and ideas for future active space experiments

are reviewed. Three active experiments being readied are DSX (Demonstration and

Space eXperiments), SMART (Space Measurement of Rocket-released Turbulence),

and BeamPIE (Beam Plasma Interaction Experiment). Ideas for future experiments

include relativistic-electron-beam experiments for magnetic-field-line tracing,

relativistic-electron-beam experiments to probe the middle atmosphere, plasma-wave

launching using superparamagnetic-nanoparticle amplification of magnetic fields, the

heavy-ion mass loading of collisionless magnetic-field-line reconnection, the use of

electrostatically charged tethers to pitch-angle scatter radiation-belt particles, cold

plasma releases to modify magnetospheric plasma physics, and neutral-gas releases

to enhance neutral-particle imaging of the magnetosphere. Technologies that are being

developed to enable future space active experiments are reviewed: this includes the

development of compact relativistic accelerators, superparamagnetic particle amplified

antennae, CubeSats, and a new understanding of how to control dynamic spacecraft

charging. New capabilities to use laboratory facilities to design space active experiments

as well as new computer-simulation capabilities to design and understand space active

experiments are reviewed.

Keywords: active space experiments, plasma physics, magnetospheres, ionosphere, laboratory astrophysics,

space physics

1. INTRODUCTION

Space active experiments are experiments that deliberately perturb the space environment in
ways that can yield new information about the environment. They offer unique ways to gather
scientific information, to study the interaction between space platforms and the space environment,
and to perform space engineering. Active experiments can be used to study ionospheric
physics, magnetosphere-ionosphere coupling, cometary physics, and magnetospheric plasma
waves. Importantly, some experiments can only be performed in space. Space-based plasma-physics
and plasma-astrophysics experiments can uniquely address the physics of large-scale plasmas,
long-range coupling, and truly collisionless physical processes. In general, particle distribution
functions can be obtained with more accuracy and less perturbation in space experiments
than in laboratory plasma experiments. Besides scientific exploration, active experiments also
support national security. For instance, a motivation of future space engineering comes in the
design of active experiments for radiation-belt remediation, whereby an enhanced radiation belt
environment is rapidly weakened by means of an external forcing. For scientific and engineering
experiments in space, there will be needs for other space experiments to gain understanding of the
interaction of those scientific and space-engineering platforms with the space environment.
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There has been a rich history of active experiments in space
(c.f. Grandal, 1982; Winckler, 1992; Raitt, 1995; Unan and
Rietveld, 1995; James et al., 1998; Haerendel, 2018; Pongratz,
2018; Prech et al., 2018; Mishin, 2019; Winske et al., 2019 for
reviews). These past experiments have involved electron and
ion beams, plasma releases, chemical releases, tethers, antennae,
and nuclear detonations. They span several decades, starting
from high-altitude nuclear detonations in the late fifties to the
plasma and chemical release experiments of the mid-nineties. In
more recent years, the active-experiments program has changed,
focusing on ground-based modification of the ionosphere by
intense electromagnetic waves from facilities like HAARP (High
frequency Active Auroral Research Program) and Arecibo.

At the “Active Experiments in Space: Past, Present, and
Future” workshop in September 2017 in Santa Fe, New Mexico
(Delzanno and Borovsky, 2018), several planned and proposed
space active-experiment missions were discussed: these and
other future missions are described in sections 2 and 3 of
this report (Note that, in this paper, we only focus only on
space-based active experiments: We do not review ground-based
ionospheric modification experiments, but we acknowledge
that these experiments are and will remain a very important
component of the overall active-experiments program.). Among
the advantages that future space active experiments will have
over past active experiments are (1) better diagnostics, (2) newer
technologies, and (3) better planning via modern computer
simulations. These aspects are discussed in section 4, while
conclusions are drawn in section 5. Following the “mandate”
from the Santa Fe workshop, the goal of this paper is to
demonstrate the importance and uniqueness of space active
experiments and to generate increased enthusiasm toward an
area that, fostered by many new innovations, can tremendously
improve our understanding of the near-Earth environment.

At the Santa Fe workshop, there was also an overwhelming call
to pass the knowledge and capabilities of active space experiments
on from the older generation to newer scientists.

2. PLANNED EXPERIMENTS

Three interesting active experiments (DSX, BeamPIE and
SMART) are planned in the next few years and their objectives
are briefly reviewed here. Note that all three experiments have
a common objective to investigate wave-generation processes in
space and this fits into the broader picture of how artificially-
injected electromagnetic waves could be used for radiation-
belt remediation (e.g., Inan et al., 2003; Dupont, 2004) or
for communication.

2.1. The DSX Dipole Antenna
The Demonstration and Science eXperiments (DSX) of the Air
Force (Scherbarth et al., 2009) is currently scheduled for launch
by the summer of 2019 aboard the Space-X Falcon Heavy.
With an orbit of 6000 × 12000 km, 42 degrees inclination, it
will explore the Medium Earth Orbit (MEO) environment and
particularly the slot region of the electron radiation belts. DSX
carries an 80-m long dipole antenna, which will be the largest,
unmanned, self-supporting structure ever deployed in space, and

a comprehensive suite of space environment sensors. Its primary
science objective is to study Very Low Frequency (VLF) wave
transmission in MEO, including the injected VLF power by
antennae in space and the interaction of VLF waves with the local
particles of the environment. In this regard, DSX will work in
conjunction with the VLF and Particle Mapper (VPM) nanosat
mission in Low Earth Orbit (LEO), which will act as a far-field
probe for DSX. Conjunctions with other spacecraft and ground
stations will also be pursued. The secondary science objectives
are (1) to map the local MEO radiation and plasma environment
and (2) collect data to understand environmental effects and the
degradation of selected spacecraft electronics and materials.

2.2. The Beam-PIE Cerenkov Wave
Emission
The Beam Plasma Interaction Experiment (Beam-PIE) is a
suborbital rocket experiment funded by NASA and led by Los
Alamos National Laboratory. Its launch is planned for the
spring/summer of 2020 from Poker Flat, Alaska. Beam-PIE is
a mother-daughter system (see Figure 1), where the mother
rocket will carry a new, compact electron accelerator technology
driven by high-electron-mobility transistors. The accelerator is
pulsed, designed to provide tens mA of current and energies
up to 54 keV. The daughter system hosts a wave receiver and
particle instrument to characterize the local environment, at
a distance of 1–5 km from the mother rocket. The primary
objectives of BeamPIE are two. The first is to demonstrate
and increase the technology readiness level of the new electron
accelerator technology for space applications. The second is
to study wave generation from pulsed electron beams and
quantify the generation efficiency of whistler waves relative to
extraordinary-mode type waves. If waves of sufficient amplitude
can be generated, a secondary science objective will be the
investigation of wave-particle interaction physics and the changes
to the local particle populations, possibly induced by the beam-
generated waves.

FIGURE 1 | A depiction of the BeamPIE electron beam (green), launching

plasma waves (red), and a secondary rocket payload (cube) diagnosing the

plasma-wave emission.
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2.3. The SMART Barium Shape Charge
Experiment
The Space Measurement of Rocket-released Turbulence
(SMART) is a sounding-rocket experiment concept developed
by the Naval Research Laboratory (Ganguli et al., 2015).
At an altitude of ∼700 km, a shaped-charge explosion will
release 1.5 kg of barium atoms at high velocity (∼10 km/s)
across the Earth’s magnetic field. In ∼30 s, the barium atoms
photo-ionize and create an ion ring distribution in velocity
space that is unstable to electrostatic lower-hybrid waves and
develops broadband lower-hybrid turbulence. SMART targets
a regime of parameters where the linear damping rates are
smaller than the non-linear scattering rates, implying that lower-
hybrid waves can be converted into whistler or magnetosonic
waves (and secondary lower hybrid waves), before significant
dissipation and local plasma heating occurs. Furthermore,
the electromagnetic whistler waves can propagate out of the
ionospheric source region into the magnetosphere and never
return to it. Estimates of the net energy extracted from the
initial ring distribution (∼5–10%) translate into whistler wave
amplitudes of the order of 200 pT (Ganguli et al., 2015), which
are easily detectable from magnetospheric spacecraft. The
SMART rocket will carry the barium release module and an
instrumented payload that will characterize the local turbulent
source region. Operating in conjunction with magnetospheric
spacecraft like THEMIS (Time History of Events and Macroscale
Interactions during Substorms) to detect the SMART-induced
waves, the SMART science objective is to unravel the physics of
lower-hybrid turbulence in magnetized plasmas. An estimated
launch date for SMART is the middle of 2021 (G. Ganguli, 2019,
private communication).

3. POTENTIAL FUTURE EXPERIMENTS

At the “Active Experiments in Space: Past, Present, and
Future” workshop in Santa Fe (Delzanno and Borovsky, 2018),
several concepts for future space active experiments were
presented, and during audience-participation discussions, the
attendees highlighted the need to design active experiments to
investigate (1) magnetic-reconnection onset, (2) the triggering
of substorms by active experiments, (3) the mass loading of
ongoing collisionless reconnection, (4) critical-ionization-
velocity physics, (5) Alfvén-wave transits from one hemisphere
to the other, (6) conjugate traveling-ionospheric-disturbance
phenomena, and (7) magnetosphere-ionosphere coupling.
There were also discussions of the pros and cons of repeating
previous active space experiments with newer experimental
designs and with more-powerful modern diagnostics. Calls were
made by the attendees for active space experiments to address
issues beyond plasma physics and the space environment:
the need for experiments addressing problems in planetary
physics, astrophysics, and extreme environments were suggested.
Some of that workshop discussion has been incorporated
into subsections 3.1–3.7 into section 4. Some of these are
experiments that address large-scale issues of magnetospheric

physics, such as magnetosphere-ionosphere connectivity,
triggering atmospheric discharges, triggering substorms, and
producing pitch-angle scattering ofmagnetospheric particles into
the atmosphere.

3.1. Electron Beams and
Magnetic-Field-Line Tracing
The goal of this project is to accurately connect magnetospheric
spacecraft measurements to ionospheric phenomena. Much
of the connection between ionospheric physical processes
and magnetospheric physical processes is not known. This is
particularly true for the aurora and the magnetospheric processes
that cause the aurora (Swift, 1978; Borovsky, 1993; Haerendel,
2011). Without understanding which physical processes act in
the magnetosphere, one cannot assess the impact of auroral
occurrence on the dynamics of the magnetosphere. The
magnetospheric processes are unknown because the space-
physics community has not been able to unambiguously connect
spacecraft measurements in the magnetosphere to specific
auroral forms. Magnetic field models can be used to connect
large-scale regions of the magnetosphere to large-scale regions of
the ionosphere (e.g., Feldstein and Galperin, 1985; Elphinstone
et al., 1991; Galperin and Feldstein, 1996) but the magnetic-
field models fail for the detailed mapping that is needed for
auroral physics (Weiss et al., 1997; Ober et al., 2000; Shevchenko
et al., 2010; Nishimura et al., 2011). The holy grail of auroral
research is the low-latitude auroral arc, where one school of
thought has the arcs in the ionosphere magnetically mapping out
into the dipolar region of the magnetosphere (McIlwain, 1975;
Meng et al., 1979; Mauk and Meng, 1991; Pulkkinen et al., 1991;
Lu et al., 2000; Motoba et al., 2015), while another school has
them mapping into the stretched magneto tail (Birn et al., 2004,
2012; Sergeev et al., 2012a; Hseih and Otto, 2014). One active
experiment methodology, proposed to overcome the problem
of connecting magnetosphere measurements with ionospheric
phenomena, is the use of an electron accelerator on a spacecraft
making measurements in the magnetosphere (Borovsky et al.,
1998; Delzanno et al., 2016). This is depicted in Figure 2.
Firing the electron beam into the atmospheric loss cone and
optically imaging the atmospheric beam spot using ground-based
cameras can unambiguously connect critical magnetospheric
measurements of plasma, flows, fields, and waves to the various
auroral forms. (This spacecraft-deployed electron beam is called
out in the NRC Decadal Survey (National Research Council,
2012) as a needed emerging technology for space physics.) 1 kW
of beam power into the upper atmosphere will produce 3W of
optical emission in the 3914-Å band of N+

2 (Dalgarno et al., 1965;
Marshall et al., 2014). To get 1 kW of beam power, 25mA of beam
current at 40 keV is needed or 1mA of beam current at 1 MeV is
needed; firing the beam for 1 s would remove 0.025C or 0.001C
of negative charge from the spacecraft, respectively. Spacecraft
charging in the tenuous collisionless magnetospheric plasma
is a potential problem. The development of compact, efficient
relativistic-electron accelerators (cf. section 4.1) greatly reduces
the spacecraft-charging problem by reducing the beam current.
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FIGURE 2 | A sketch of a spacecraft in the magnetosphere (blue), firing an

electron beam (red) along the Earth’s magnetic-field line to create an optical

spot in the upper atmosphere to locate the magnetic footpoint of the

spacecraft in the context of optical aurora as viewed by ground-based

cameras (green).

Using a plasma contactor (e.g., Olsen, 1985; Comfort et al.,
1998) on the spacecraft, simulation analysis (Delzanno et al.,
2015a,b; Lucco Castello et al., 2018) finds that the mechanism
of ion emission from the surface of a kilometer-sized plasma-
contactor plume will be able to balance the 1-mA electron-beam
current and keep spacecraft charging to a low level. Magnetic-
field measurements onboard the spacecraft are used to point
the accelerator beam into the atmospheric loss cone. Increasing
the beam energy could further reduce the beam current, which
would further reduce the risk of spacecraft charging. However,
for beams with energies above 1 MeV, beam pointing becomes
a challenging issue, since the atmospheric loss cone shifts away
from the 0◦-pitch-angle direction owing to finite-gyroradius
effects (Mozer, 1966; Il’ina et al., 1993; Porazik et al., 2014).
The present design for the 1-MeV compact accelerator (Lewellen
et al., 2019) yields an electron beamwith an angular divergence of
<0.05◦, including the beam’s electrostatic expansion after exiting
the accelerator (The space charge of the 1-MeV 1-mA beam is
very low.). Such a beam easily fits inside an atmospheric loss
cone that is >1◦. One unfortunate fact is that the electron beam
produces optical emission in the exact same airglow wavelength
bands as does the electron aurora, making it difficult for the
ground-based cameras to identify the spacecraft beam spot in
the presence of active aurora: using a time-coded on-and-off
beam sequence and looking for the blinking beam spot greatly
improves the detection. There is also the possibility of detecting
the beam spot via ground-based radar (Izhovkina et al., 1980;
Uspensky et al., 1980; Zhulin et al., 1980; Marshall et al., 2014,
2018) and of using the relativistic beam to do ionospheric and
atmospheric experiments diagnosed by the radar.

3.2. Relativistic Electron Beams Into the
Middle Atmosphere
Ionospheric and atmospheric experiments could be performed
with a relativistic-electron beam fired downward from the
magnetosphere, or fired from a low-altitude spacecraft, a
rocket (e.g., Nunz, 1990; O’Shea et al., 1991), or even from
a balloon if the beam energy is high enough (See depiction

FIGURE 3 | A depiction of a relativistic-electron beam fired downward along

the Earth’s magnetic field into the middle atmosphere, being diagnosed by

ground-based radar, ground-based optical, and balloon-based x-rays and

gamma rays [After Figure 1 of Marshall et al. (2014)].

in Figure 3). Electrons with energies of a few MeV range out
at about 40–50 km altitude (Marshall et al., 2014), where the
atmospheric number density and collision density is about
the same as in a 1-Torr vacuum chamber. Ionization and
recombination/attachment experiments have been suggested
by Banks et al. (1988, 1990), Neubert et al. (1996), and
by Neubert and Gilchrist (2004); these experiments could be
diagnosed by ground-based radar (cf. Figure 3). Issues that
could be investigated include the decay of electrical conductivity,
electron-attachment rates, and the transport of negative and
positive ions in the atmospheric electric field (Borovsky, 2017).
The stimulation of atmospheric-electricity discharges by the
electrical-conductivity paths, provided by relativistic-electron-
beam ionization columns above thunderstorms, have been
suggested by Banks et al. (1988, 1990), Neubert et al. (1990),
Neubert and Gilchrist (2004), and Marshall et al. (2018) with the
discharge current flowing between the top of a thunderstorm and
the ionosphere. The energy deposition of a 1 kWbeam is about 50
times the energy deposition of a naturally occurring relativistic-
electron microburst (Lorentzen et al., 2001; Borovsky, 2017).
These triggered thunderstorm discharges could be diagnosed by
ground-based optics or by ground-based electric (Thomas et al.,
2004; Sonnenfeld and Hager, 2013), magnetic (Whitley et al.,
2011), or electromagnetic (Rhodes et al., 1994; Qin et al., 2012)
measurements. The observation of upward accelerated energetic
particles from the triggered discharges (e.g., Lehtinen et al., 2000,
2001) has also been suggested by Neubert and Gilchrist (2004);
such observations can be made from the spacecraft or rocket
that carries the relativistic-electron accelerator. Atmospheric
chemistry modification by relativistic electron beams has also
been explored (Neubert et al., 1990; Marshall et al., 2018), with
the suggestion of diagnostic via ground-based spectroscopy;
the chemistry of NOx, HOx, and ozone production in the
middle atmosphere by energetic electron precipitation is of
particular interest for the information it can supply about
the interaction of the Earth’s radiation belt with the Earth’s
climate system (Rodger et al., 2010; Andersson et al., 2012;
Verronen et al., 2013).
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3.3. Modifying Magnetic Reconnection
With Heavy Ions
Gaining an understanding of the factors that control the
onset of collisionless reconnection and the factors that control
reconnection rates is of great importance to magnetospheric
physics and solar-coronal physics. Using an artificial plasma
cloud tomodify collisionless reconnection (to initiate the onset of
reconnection or to mass load and reduce ongoing reconnection)
is a possibility. The onset of collisionless reconnection is an
outstanding science issue that would improve the prediction of
substorm occurrence (McPherron et al., 1973; Sergeev et al.,
2012b) and of solar-flares occurrence (Priest, 1986; Li et al.,
2017). It has been speculated both that the introduction of
heavy ions to a plasma will make it (a) easier for the plasma
to reach conditions for the onset of field-line reconnection
(Baker et al., 1982, 1985, 1989) or (b) harder for it to reach the
onset of reconnection (Liu et al., 2013; Liang et al., 2016).
The onset of reconnection in collisionless plasmas is usually
thought to be the caused by the thinning of a current sheet to
a thickness below ion-inertial-length or ion-gyroradius spatial
scales (Hesse and Birn, 2000; Liu et al., 2014). It has been
variously speculated that introducing heavy ions (1) alters tearing
modes that thin the current sheet, or (2) changes the ratio
of current sheet thickness to gyroradii, or (3) mass loads
current sheets. More simulation work with modern kinetic
simulation codes (e.g., Karimabadi et al., 2011; Pritchett, 2013;
Birn and Hesse, 2014) is needed to verify these conjectures.
The mass loading of ongoing reconnection is an important
concept for the reduction of solar-wind/magnetosphere coupling
via magnetospheric feedback (Borovsky et al., 2013; Walsh et al.,
2014). A cloud consisting of 1 kg of barium ions (e.g., Bryant
et al., 1985), with a diameter of 1,000 km, has a mass density
of about 1,000 AMU/cm3, which is about 20 times higher than
the mass density of the magnetosheath plasma at the dayside
reconnection site. This barium mass density is sufficient to
effectively turn off dayside reconnection within the cloud, if the
barium cloud could be released close enough to the dayside
reconnection site. Figure 4 depicts the fact that getting the cloud
(#1, purple) over the reconnection diffusion region (red) is
helped by the fact that the barium ions will be carried into the
reconnection line by the Mach-0.1 inflow of ambient plasma
into the line. If the barium ions at the dayside magnetosphere
could be optically imaged, the reconnection rate could be gauged
by the speed of the barium ions carried in the reconnection
outflow. Targeting reconnection away from the nose of the
magnetosphere may allow ground-based imaging of the barium
cloud via cameras located beyond the solar terminator. Since the
location of the reconnection X-line may be difficult to predict,
experiments on the mass loading of the reconnection outflow fan
(which can extend across the entire dayside magnetopause) with
barium releases, may be easier to implement. This is depicted as
cloud #2 in Figure 4. Getting barium into the reconnection fan
is again aided by the Mach-0.1 inflow of ambient plasma into
the fan. Comparison of Earth’s reconnection regimes (with and
without heavy ions) with reconnection observations by MAVEN
at Mars with O+ and O2+ ions (e.g., Harada et al., 2015) and by

FIGURE 4 | Magnetic-field-line reconnection on the dayside of the Earth is

depicted with the solar-wind plasma to the left and the magnetospheric plasma

to the right. The reconnection diffusion region is marked in red. There is a flow

(green arrows) everywhere into the vertical plane of the current sheet that feeds

plasma into the reconnection site or into the reconnection-outflow fan. Two

barium clouds are depicted: Cloud #1 is being drawn into the reconnection

diffusion region and cloud #2 is being drawn into the reconnection outflow fan.

Juno at Jupiter with S+ ions could be useful for preparing and
planning heavy-ion active experiments as described above.

3.4. Plasma-Wave Launching With
Rotating-Magnet Antenna
Efficient ways to launch plasma waves into the magnetosphere
are of interest for future technologies, such as radiation-belt
remediation (Inan et al., 2003; Dupont, 2004). A space
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experiment has been suggested (Dennis Papadopoulos, private
communication 2018) for the launching of whistler, EMIC
(electromagnetic ion-cyclotron), and Alfvén waves, from a low-
Earth-orbit spacecraft or a rocket using a superparamagnetic-
nanoparticle-amplified rotating magnetic antenna. A rotating
magnetic field can by created with an orthogonal pair of magnetic
coils driven by sinusoidal currents with a 90◦ phase difference
between the two coils. At the center of the orthogonal-coil
pair, a vacuum vessel containing ∼1 kg of superparamagnetic
nanoparticles (Raikher et al., 2004) would act to amplify the
strength of the rotating magnetic field by a factor of about
100, greatly amplifying the efficiency of the coils to launch
whistler waves, EMIC waves, or Alfvén waves, depending on
the frequency applied to the coils. Alfvén waves are important
for understanding magnetosphere-ionosphere coupling (Goertz
and Boswell, 1979) and whistler and EMIC waves are important
for coupling the evolution of the radiation belt to the evolution
of other magnetospheric plasmas (Borovsky and Valdivia,
2018). Without the superparamagetic nanoparticles, the two-
coil rotating-magnetic-field concept has been successfully tested
in the laboratory for the launching of Alfvén waves (Gigliotti
et al., 2009; Karavaev et al., 2011) and whistler waves (Karavaev
et al., 2010). As discussed in section 4, this proposed active
experiment is being enabled by the technology development
of superparamagnetic nanoparticles. A similar active space
experiment has been suggested by Karavaev (2010) and de
Sonria-Santacruz et al. (2014), using a mechanically rotating
superconducting magnetic coil.

3.5. Space Tether Experiments
Tethers are a powerful technology tool that can be used
to facilitate space experiments (Johnson et al., 2017; Huang
et al., 2018): enabling multipoint measurements, launching
whistler and Alfvén waves, acting as an antenna, and providing
propulsion. Past active experiments using tethers (Lorenzini
and Sanmartin, 2004; Cartmell and McKenzie, 2008) involved
examining the dynamics and electrodynamics of tethers, the
electrodynamic interaction between tethers and the space
plasma environment, and the emission of plasma waves.
More space experiments are needed to further understand
the interactions of electrodynamic tethers with the plasma
environment (e.g., Choiniere et al., 2001; Siguier et al., 2013;
Janeski et al., 2015) and to explore wave launching by
tethers (Estes, 1988; Luttgen and Neubauer, 1994; Sanchez-
Arriaga and Sanmartin, 2010). One suggested active experiment
is to use a kV-charged tether to electrostatically pitch-
angle scatter radiation-belt particles into the atmospheric
loss cone as the particles pass through the tether’s sheath
(Hoyt and Minor, 2005; Huboda de Badyn et al., 2016), although
estimated time scales for remediation appear too long (∼1 yr).
Another interesting active experiment involving a tape tether
used to explore the upper atmosphere has been suggested
by Sanmartin (Sanmartin et al., 2006; Sanmartin, 2010):
ambient ions would be accelerated into a long, negatively
biased tape producing secondary electrons which are then
accelerated off the tape to excite an artificial aurora in the
upper atmosphere.

3.6. Cold-Plasma Releases
The idea of using cold-plasma releases in the magnetosphere,
to trigger instabilities that stimulate electron and/or ion
precipitation and produce artificial auroras, has been suggested
since the seventies (Brice, 1970; Brice and Lucas, 1971; Cuperman
and Landau, 1974). In the magnetosphere, EMIC waves are
driven by hot-ion temperature anisotropies associated with
magnetospheric convection and charge exchange, and whistler-
mode chorus waves are driven by hot-electron temperature
anisotropies associated with substorm injections. The addition
of cold ions to the magnetosphere by a plasma release will
change the growth rates and saturation amplitudes of EMIC
waves (Fu et al., 2016; Gary et al., 2016). Whereas, the addition
of cold electrons to the magnetosphere by a plasma release
will change the growth rates and saturation amplitudes for
whistler waves (Cuperman et al., 1973; Cuperman and Sternlieb,
1975; Gary et al., 2012). The cold ions and electrons also
change the energetic-particle resonance conditions for EMIC
waves and whistler waves, respectively (Summers et al., 1998).
Provided that certain conditions on the anisotropy of the
distribution function are met, a plasma injection can allow
more particles to precipitate in concert with the development
of the instability and the generation of electromagnetic waves.
A likely location in the magnetosphere for such a cold-plasma
experiment is in the nightside of the dipolar region, where
there can be anisotropic hot populations to drive waves, and
where ordinarily, there is an absence of cold ions and electrons
owing to magnetospheric convection bringing plasma in from
the magnetotail.

Magnetospheric barium and lithium release experiments were
performed in the ActiveMagnetospheric Particle Tracer Explorer
(AMPTE) (Krimigis et al., 1982) and the Combined Release
and Radiation Effects Satellite (CRRES) programs, with several
scientific goals including substorm triggering and stimulation
of particle precipitation. In particular, three lithium releases
(G-5, G-6 and G-7), by CRESS at ∼33,000 km, did not show
enhanced aurora that would be a sign of enhanced wave-
particle interactions (Bernhardt, 1992). Two barium releases (G-
8 and G-10) showed increased auroral activity within 5min
from the release, although the definitive association with the
release was uncertain (Bernhardt, 1992). Similarly, a magnetotail
barium release by AMPTE, during the development of a
substorm, showed the barium cloud moving antisunward and
was interpreted with the formation of a reconnection plasmoid
(Baker et al., 1989).

Given the importance of substorms and wave-particle-
interaction physics for magnetospheric dynamics, cold-plasma
release active experiments should be pursued in the future with
modern technology to test relevant theories of magnetosphere-
ionosphere coupling.

3.7. Hydrogen-Gas Releases for Enhancing
Energetic-Neutral-Atom Imaging of the
Magnetosphere
Information (densities and temperatures) about the global
distribution of hot plasma in the Earth’s magnetosphere is
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obtained by imaging the energetic neutral atoms that are
produced when energetic plasma ions charge exchange with the
Earth’s neutral-hydrogen geocorona (e.g., Roelof et al., 1985;
Gruntman, 1997). One difficulty with the neutral-atom-imaging
technique is that the measured fluxes of neutral atoms are line-
of-sight integrated through the entire magnetosphere. Scime
and Keesee (2018) propose a method to focus the neutral-atom
measurements on a single point in space by releasing neutral
hydrogen gas at that point in space to greatly enhance the number
of charge exchange collisions, and hence greatly enhance the flux
of energetic neutral atoms originating from the release site. This
would provide higher spatial resolution measurements of the
magnetospheric hot plasmas of the magnetosphere at the same
time as global images are being obtained.

4. CRITICAL TECHNICAL ADVANCES

For the future of space active experiments, several technical
advances are being made that will facilitate new and improved
experiments. Further, there is presently improved laboratory and
computer simulation support capabilities for the design of future
space experiments.

4.1. Advances in Electron Accelerators
For future electron-beam experiments in the magnetosphere,
the research and development advances of compact relativistic-
electron accelerators has been crucial. Accelerators that have
relatively high efficiency (bus power to beam power) are in
development (Lewellen et al., 2019): this increased efficiency
saves battery weight on the spacecraft and reduces battery
recharging time from solar panels, the latter enabling more
beam time. The critical thermal issue of heat removal from the
accelerator has been reduced by the development of a method
for re-tuning the frequency fed to the linear accelerator, as
the accelerator changes temperature and mechanically expands.
Designs for the remote operation of fault-tolerant linear
accelerators are in development.

4.2. Superparamagnetic Nanoparticles
As discussed in section 4, advances in the development of
superparamagnetic nanoparticles for amplifying AC magnetic
fields is making the design of more-powerful space-based wave
antennas possible.

4.3. CubeSats
The development and availability of low-cost CubeSats has
increased access to low-Earth orbit for experiments (Bahcivan
et al., 2012; Poghosyan and Golkar, 2017) and diagnostics
(Blum et al., 2013; Fish et al., 2014). Active-space-experiment
diagnostics with constellations of CubeSats (Glumb et al., 2016;
Deng et al., 2017) is a new possibility.

4.4. Controlling Spacecraft Charging
As discussed in section 3, the advancement in our understanding
of methods to ameliorate spacecraft charging in electron-
beam experiments is allowing for lower-risk experiments
to be designed. A significant advance has been made by

the interpretation of plasma contactors in the collisionless
magnetosphere, working as ion emitters rather than electron
collectors (Delzanno et al., 2015a,b; Lucco Castello et al., 2018).
This work was guided by new plasma-simulation capabilities (see
section 4.6).

4.5. Laboratory Support for Developing
Space Experiments
Laboratory experiments are becoming increasingly important
for our understanding of plasma and space physics and in
support of (active or inactive) space experiments, as reinforced
in a recent review (Howes, 2018) that coined the term
“laboratory space physics.” Often driven by similar advances in
diagnostics and technology, laboratory experiments complement
space experiments by allowing a more controlled environment
that can be diagnosed much more extensively. On the other
hand, laboratory experiments operate with plasma densities,
temperatures and, more importantly, collisionality that can be
very different from those of the space environment, thus allowing
scaled experiments where only ratios of relevant quantities
controlling the physics of interest can be kept in the same
range. Laboratory experiments are ideally suited to isolate
particular physics aspects of more complex problems, while their
size limitation makes it difficult to explore things like long-
range coupling.

In the US, there are several facilities with a history of
significant contributions to space physics and the interested
reader is referred to Howes (2018) and references therein for
a summary. See also Koepke (2008). Here, we only focus on
the connection between laboratory and active experiments and
highlight relevant experiments.

The Basic Plasma Science Facility (BAPSF) at the University
of California Los Angeles is a national user facility that hosts
the LArge Plasma Device (LAPD), a 19-m long, 75-cm diameter
cylindrical plasma column (Gekelman et al., 2016). LAPD
operates with typical densities of 1012 cm−3 and electron
temperatures of few eV (with lower values in the afterglow
plasma). The high reproducibility of the experiments, combined
with extensive diagnostics, make detailed three-dimensional
characterization of the plasma an important feature of LAPD.
To guide the design and interpretation of planned electron-
beam experiments in space, electron-beam experiments are being
performed on LAPD. While earlier experiments used a low-
energy (3 keV) electron beam to explore the excitation of
chirped whistler waves (Van Compernolle et al., 2015; An et al.,
2016), a 1-MeV linac (Jenkins et al., 2018) is being installed on
LAPD. The new experiments will study relativistic-beam stability
and the generation of plasma waves, with application to solar
radio bursts as well as to electron-beam active experiments for
radiation-belt remediation. LAPD experiments involving a laser-
generated plasma and its explosive dynamics across a magnetic
field are investigating processes associated with the formation of
a diamagnetic cavity and collisionless shocks (Niemann et al.,
2013, 2014; Winske et al., 2019), and are relevant to early nuclear
detonation experiments in space.
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The Space Physics Simulation Chamber at the Naval
Research Laboratory, shown in Figure 5, also allows for studies
across different parameter regimes targeting ionospheric and
magnetospheric conditions. Examples include the role of shear-
driven ion-cyclotron waves in ion heating and initiation of
ionospheric outflows (Amatucci et al., 1998), electron-ion hybrid
instabilities important for the plasma sheet boundary layer
(Amatucci et al., 2003), and the generation of electromagnetic
ion cyclotron waves through shear flows (Tejero et al.,
2011). More recent experiments have focused on non-linear
scattering processes, successfully demonstrating the conversion
of electrostatic lower-hybrid waves to electromagnetic whistler
waves above an amplitude threshold (Tejero et al., 2015). This
is a key aspect of the non-linear weak-turbulence physics that
the SMART barium-release experiment aims to demonstrate (cf.
section 2.3).

The 6m × 9m Large Vacuum Test Facility (LVTF) and the
2m ×0.6m Cathode Test Facility (CTF) at the University of
Michigan’s Plasmadynamics and Electric Propulsion Laboratory
(PEPL) (Gallimore et al., 1996; Gilchrist et al., 2002) have
been used for experimental validation of spacecraft charging
mitigation induced by high-power electron beams. LVTF is
capable of reaching 10−7 (10−8) Torr and is the biggest vacuum
chamber in the US. In the LVTF experiments, an isolated
hollow-cathode represents the spacecraft. The hollow cathode
emits a high-density charge-neutral plasma (known as the
plasma contactor), while the emission of the spacecraft electron
beam is mimicked through a separate power supply operated
in constant-current mode. Several Langmuir probes, emissive
probes and a retarding potential analyzer provide measurements
of key quantities, identified by the space-experiment modeling
work (Delzanno et al., 2015a,b; Lucco Castello et al., 2018).
Remarkable agreement between theory and experiments has been
obtained (Miars et al., 2018), thus validating the ion-emission
model for spacecraft-charging mitigation for the operation of
electron-beam experiments in the low-density magnetosphere
(cf. section 4.4).

FIGURE 5 | The 7.6-m long Space Physics Simulation Chamber at the Naval

Research Laboratory in Washington DC (Photo courtesy of Erik Tejero).

A Community-Coordinated Modeling-Challenge Facility that
uses laboratory facilities at West Virginia University, combined
with high-performance-computing modeling from interested
parties, is also being proposed to study spacecraft-environment
interactions (Koepke and Marchand, 2017).

4.6. Simulation Support for Designing
Space Experiments
Another major advance in support of the design and planning
of (active or inactive) space experiments comes from numerical
simulations. This is the result of both the increased power and
availability of modern high-performance computers, and also of
the recent advances in development of new numerical algorithms
to tackle the multiscale nature of plasmas. The major challenge
comes from the large spatial and temporal scale separation typical
of magnetized, collisionless plasmas. This occurs already at the
microscopic/kinetic level, due to the mass difference between
electrons and ions, but quickly becomes overwhelming when one
compares microscopic scales with system scales.

Recent advances in the development of kinetic Vlasov-
Maxwell solvers include the implicit particle-in-cell (PIC)
method (where implicit refers to the temporal discretization of
the method) (Chen et al., 2011; Markidis and Lapenta, 2011)
and the use of discontinuous-Galerkin discretization techniques
(Juno et al., 2018). Moreover, electrostatic PIC methods that
employ some form of non-uniform mesh (either conforming or
through adaptive mesh refinement, structured, or unstructured)
are commonly used to study dynamic spacecraft-environment
interactions (Mandell et al., 2006; Roussel et al., 2008; Marchand,
2012; Delzanno et al., 2013; Meierbachtol et al., 2017).

In terms of global codes for large-scale dynamics, hybrid
(kinetic ions and fluid electrons) codes, running on high-
performance computing platforms, are now routinely applied to
study the dynamic of the Earth’s magnetosphere (Karimabadi
et al., 2014; Lin et al., 2017; Palmroth et al., 2018). Furthermore,
methods for “fluid-kinetic coupling” are also being developed
for large-scale simulations that include microscopic physics. One
approach is based on a regional kinetic code locally embedded
in a large-scale fluid-like simulation (which is typically from
a magnetohydrodynamic code) (Sugiyama and Kusano, 2007;
Kolobov and Arslanbekov, 2012; Daldorff et al., 2014; Tóth et al.,
2016; Ho et al., 2018). This approach has been successfully
applied to study flux-transfer events and Earth’s dayside
reconnection (Chen et al., 2017). Other approaches are based
on higher-order fluid moments with suitable closures (Wang
et al., 2015). A new method that encompasses both techniques
described above has been developed in the SpectralPlasmaSolver
(SPS) code (Delzanno, 2015; Vencels et al., 2016). It is based
on a spectral expansion of the plasma distribution function
in Hermite functions, such that the low-order terms of the
expansion are akin to a fluid description of the plasma, while
kinetic physics is retained by adding (possibly locally in the
simulation domain) more terms to the expansion. As such, fluid-
kinetic coupling is an intrinsic feature of SPS, but the method
is not constrained to a fixed number of moments and the
transition between fluid and kinetic regimes can be handled as
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smoothly as necessary. SPS has been successfully applied to the
turbulent cascade in the solar wind (Roytershteyn and Delzanno,
2018; Roytershteyn et al., 2019). Global space weather models,
such as the SHIELDS (Space Hazards Induced near Earth by
Large Dynamic Storms) framework (Jordanova et al., 2018), are
now beginning to incorporate some of these innovations (which
also include data-assimilation techniques to assimilate available
observational data) and will be very important in the future to
put spacecraft observations into better context, particularly for
geomagnetically active times.

Finally, besides some of the more technical innovations
highlighted above, we mention the Community Coordinated
Modeling Center (CCMC, https://ccmc.gsfc.nasa.gov/index.php)
(Bellaire, 2006; Rastatter et al., 2012), which hosts a large number
of heliospheric, magnetospheric, and ionospheric simulation
codes and models, and offers free “runs on request” using the
computational resources of the center. CCMC’s goal is to provide
access to modern space science simulations for the international
research community.

5. CONCLUDING REMARKS ON THE
FUTURE

There are still many open questions that need to be answered by
future active experiments. Three examples from three research
fields are given to highlight the breadth of future active
experiments. For plasma astrophysics: (1) Under what conditions
does the critical-ionization-velocity effect operate? For space
physics: (2) What is the magnetic-field connectivity between
ionospheric regions and processes and magnetospheric regions
and processes? For space engineering: (3) What is the most
effective way to generate various types of plasma waves from
a space platform? There are also technology capabilities that
need to be developed via space experiments: e.g., (i) radiation-
belt remediation and (ii) power transmission between Earth and
space. And there are also new, modern technologies (in a broad
sense that encompasses also diagnostics, laboratory experiments
and computer simulations), perhaps best exemplified by the
fact that a Tesla automobile is currently traveling in deep-
space orbit (Chang, 2018), that justify new and more ambitious
active experiments.

In addition, active experiments that are not necessarily
associated with plasma or space physics will also be extremely
important. An example is the Stratospheric Controlled
Perturbation Experiment (SCoPEx, https://projects.iq.harvard.
edu/keutschgroup/scopex) experiment, which plans to release

aerosols in the stratosphere as a possible way to reduce or
eliminate ozone loss and mitigate global warming.

Active experiments have a rich history of important
contributions to the field of space physics. As the spiral of
knowledge advances, revisiting active experiments holds a key to
finally closing fundamental questions.

Some of these grand-challenge problems can only be
addressed successfully with a broad cross-disciplinary team
at the intersection between theory, modeling, observations,
experiments (in laboratory and, ultimately, in space) and,
importantly, technology. It is, however, extremely hard
to develop and maintain these large collaborations until
suitable opportunities open up. One potential remedy and
recommendation would be to reinvigorate and expand the active
space-based experiments program, which flourished in the 1970s
and 1980s to test basic scientific ideas and new technologies
in space, but it has reduced its footprint in recent decades
(Delzanno and Borovsky, 2018).

For the field of space active experiments, the future looks busy.
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