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We briefly review the general insight of the indirect searches of dark matter. We discuss

the primary equation in a three-level multimessenger approach (gamma rays, neutrinos,

and antiprotons), and we introduce the reader to themain topics and related uncertainties

(e.g., dark matter density distribution, cosmic rays, particle physics). As an application

of the general concept, we focus on the multi-TeV dark matter candidate among other

weak interactive massive particles. We present the state-of-the-art on this sub-field, and

we discuss open questions and experimental limitations.
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1. INTRODUCTION: DARK MATTER, AN OPEN QUESTION

More than 80 years ago, Zwicky applied the virial theorem to the Coma Cluster and determined
that a large amount of non-luminous matter must be present to keep the system bound together
(Zwicky, 1933); nearly 40 years later, Rubin observed similar gravitational evidence by studying the
rotation curve of spiral galaxies (Rubin and Thonnard, 1980; Broeils, 1992; Persic et al., 1996).
From then on, many astrophysical and cosmological evidence hints at some inconsistencies in
our understanding of the Universe as a whole. Many theories have been proposed in order to
account for the gravitational observations: they include both modified gravity (e.g., Milgrom, 2015)
or a dark component of matter (Bradac et al., 2006; Ade et al., 2014, 2016; Lage and Farrar,
2014). In particular, the need for non-baryonic Dark Matter (DM) is favored by a variety of
independent estimates of the matter density in the Universe, that points to a value larger than
the value provided by baryons alone, according to nucleosynthesis (see e.g., Bergstrom, 2000 for a
general overview). DM candidates cover a broad range of masses from 10−35 to 1018 GeV (Gardner
and Fuller, 2013) (see e.g., Bertone et al., 2005). Among them, and beyond the Standard Model
(SM) of particle physics, the Weak Interactive Massive Particle (WIMP) represents one plausible
candidate, compatible with both cosmological constraints and large-scale structure (galaxies and
galaxy clusters) formation and evolution models and simulations (Naab and Ostriker, 2017).
In particular, TeV WIMP stands as an open possibility and one of the next frontiers for the
DM community (Livio and Silk, 2014). Up to masses of 100 TeV, DM candidates still conserve
cosmological properties of thermal candidates. Thermal relics were as abundant as photons in the
primordial hot plasma, being freely created and destructed in pairs in the thermal bath. Due to the
cooling of the Universe, their relative number density then started to be suppressed as annihilations
proceeded. When the temperature dropped below their mass, the annihilation processes froze out
and their final abundance would be the observed 27% of the whole content of the Universe at
present (Ade et al., 2014, 2016).

WIMPs searches based on different approaches and methodologies, have been developed in
order to investigate different energy scales. They are commonly classified in three main classes:
experiments of direct and indirect searches of DM and colliders. DM searches at colliders, such
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as the Large Hadron Collider (LHC) among others (Munoz,
2004; Bertone, 2010; Penning, 2018), focus on the possibility
to produce DM particles through the interaction of two SM
particles and the subsequent production of unknown particles
(SM-SM → DM-DM, see e.g., Figure 2.1 of Gammaldi (2015)
for a schematic visualization of different processes). Due to both
experimental and theoretical limitations, the highest particle
mass that can be studied at this experiment is a few TeV, and
they are strongly dependent on the particle physics model of
interest (Hong, 2017). Therefore, the study of particle physics
nature of the multi-TeV DM candidate at colliders is a challenge
and represents a new frontier in physics. Similar limitations affect
the experiments of direct searches (Drukier and Stodolsky, 1984;
Goodman and Witten, 1985; Bertone, 2010; Baudis, 2014). The
latter are underground experiments designed to investigate the
SM-DM → SM-DM interaction, that is, the scattering angle
between the prospective DM particles within the MilkyWay halo
with heavy nuclei. This kind of experiment mainly addresses
the DM particle mass of 1 − 104 GeV depending on the spin
dependence (Munoz, 2004; Bertone, 2010; Marrodan Undagoitia
and Rauch, 2016). The DAMA Collaboration claimed for a
periodic signal that could be explained with a DM particle
mass of a few (tens) GeV (Bernabei et al., 2008, 2013, 2018;
Baum et al., 2019). However, strong tension emerges between
the DAMA/NaI and DAMA/LIBRA claim and the null results
from several underground experiments (Savage et al., 2009),
such as CDMS (Ahmed et al., 2009), XENON10 (Angle et al.,
2008), CRESST I (Lang and Seidel, 2009), CoGeNT (Aalseth
et al., 2008), TEXONO (Lin et al., 2009), and Super-Kamiokande
(SuperK)(Desai et al., 2004).

Searches of multi-TeV DM candidates can be addressed
by means of cosmic-ray experiments, that allow the energy
range of a few MeV to PeV to be investigated. In particular,
detectors of very high energy (VHE) cosmic rays investigate
the TeV energy scale. Indirect searches of DM focus on the
DM-DM → SM-SM interaction, that is the production of SM
particles by DM annihilation or decay events in astrophysical
targets (Gammaldi, 2015), with a process similar to that taking
place in the primordial plasma before particle decoupling. The
benchmark thermal annihilation cross-section is 〈σv〉ann =
3 × 10−26cm3s−1 and the decay half-life is tuned to τdec ≈
1026s. WIMPs annihilate or decay into SM particles, which then
produce secondary fluxes of cosmic rays (gamma-rays, neutrinos,
antimatter) that are collected by detectors. These class of searches
are independent of the particle physics model, and only depend
on the energy of the primary annihilation/decay event. The
multimessenger approach for DM searches implies the collection
of complementary information given by different cosmic rays
and experiments.

In this review, we focus on a subclass of cosmic-ray
experiments.We briefly introduce the reader to the fundamentals
of themultimessenger approach for the indirect search ofWIMPs
(section 2). In particular, in section 3 we will discuss recent results
of TeV DM studies. We provide very general information about
brane world theory as a possibility for multi-TeV DM candidates
in section 4. Finally, we will tray the main conclusions and the
prospective of future studies in section 5.

2. MULTIMESSENGER APPROACH TO
INDIRECT SEARCHES OF DM

The multimessenger approach is the next frontier for DM
searches. Signatures of DM annihilation or decay events
in astrophysical sources may be observed in cosmic-ray
fluxes by Cerenkov telescopes such as VERITAS (Park and
VERITAS Collaboration, 2015), HESS (Gottschall et al., 2015),
MAGIC(Sitarek et al., 2015), HAWC (Mostafa, 2014), and CTA
(Maier et al., 2017); neutrino telescopes such as ANTARES
(Bouwhuis and for the ANTARES collaboration, 2009) or
IceCube (Chianese, 2017); satellites such as PAMELA (Galper
and Spillantini, 2018), AMS (Cuoco et al., 2017), and Fermi
(Collaboration, 2012) or balloon experiments like CAPRICE
(Ambriola et al., 1999) or BESS (Mitchell, 2010) (for a general
overview see e.g., Gaskins, 2016). The secondary products of
annihilation and decay of DM particles contribute to the cosmic-
ray differential flux as (Gammaldi, 2016a):
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where:

• ηcr depends on the secondary particles of interest (cosmic rays)
and their propagation; ηcr = 1 for gamma rays, otherwise it
depends on neutrino oscillations or the velocity of the charged
particle for antimatter studies;

• The total flux is given by decay (a = 1) and/or annihilation
(a = 2) events of DM particle into the i-th SM particle
(annihilation/decay channel). The ζ factor discerns between

these two cases: ζ
(1)
i = 1/τ

decay
i and ζ

(2)
i = 〈σiv〉 are,

respectively the inverse of the decay time and thermal averaged
annihilation cross section times velocity. The probability that
DM annihilates or decays into the i-th channel depends on the
nature of DM;

• The differential number dN(cr)
i /dE of cosmic rays produced

at the source by subsequent events of annihilation or decay
of SM particles is simulated by means of Monte Carlo
events generator software, such as PYTHIA or HERWIG .
A Particle Physicist Cookbook for Dark Matter (PPPC4DM)
(Cirelli et al., 2011) provides the cosmic-ray fluxes for an
immediate application. In particular, electroweak corrections
are important for multi-TeV events (Ciafaloni et al., 2011).
Some uncertainties may be introduced in the evaluation of

both the ζ
(a)
i and κcr factor due to the choice of the Fortran or

C++ versions of PYTHIA or HERWIG software, as discussed in
Cembranos et al. (2013a) for gamma-ray fluxes;

• The κcr factor depends on the astrophysics of DM distribution
as well as on the cosmic-ray propagation. For neutral cosmic-
rays (n-cr) (e.g., gamma rays and neutrinos) it is the so-called
astrophysical J-factor

κ (a)
n-cr ≡ 〈J〉1� =

1

1�

∫
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d�

∫ lmax

lmin

ρ(a)[r(l)]dl(α) . (2)
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Here, ρ(r) is the DM density distribution. The line of sight (l.o.s)
l is the distance from the observer to any observed source. The
radial distance r from the center of the target to a given point
inside it, is related to l by r2 = l2 + d2 − 2dl cosα, where d is the
distance from the Earth to the center of the target. The distance
from the Earth to the edge of the DM halo in the direction
α is lmin/max(r, d,α) = d cosα +

√
r2 − d2 sinα. For neutral

particles, directional observations are achievable. In this case, the
flux must be averaged over the solid angle of the detector, that is
typically of order of 1� = 2π(1 − cos θ), being θ the angular
resolution of the telescope. Further details about the calculation
of the astrophysical factor can be found e.g., in Appendix B of
Gammaldi et al. (2018).

For charged cosmic-rays (c-cr), directional observations are
not feasible. In fact, charged particles observed in a given
direction might have been produced everywhere in the sky. In
this case the κc-cr factor is proportional to a diffusion term:

κ (a)
c-cr ≡

(ρ⊙
M

)(a)
Rc-cr(r⊙,E). (3)

The diffusion factor at the position of the Sun Rc-cr(r⊙,E)
for charged cosmic rays (e±, p±) is the solution of a diffusion
equation that depends on the particle of interest and DM
distribution. It describes the diffusion of particles in the Galaxy
and the production of secondary cosmic rays due to the
interaction with the Interstellar Medium (ISM). The final flux at
the position of the Earth also includes Solar magnetic field effect
(Perko, 1987).

Each of the previous points require further investigations, yet
this is beyond the scope of this review. In the following section
we will apply such a primary equation to the specific case of TeV
DM candidates. We will show recent results for several cosmic
rays (cr = gamma rays, neutrinos and antiprotons), focusing on

annihilation events (a = 2 and ζ
(2)
i = 〈σiv〉).

3. INDIRECT SEARCHES AND
MULTI-TEV DM

Multi-TeV DM candidates have been proposed in literature
e.g., in order to explain the cut-off at TeV energy scale
observed by the HESS telescopes at the Galactic Center (CG)
(Aharonian, 2009; Abdallah et al., 2016). The interpretation
of these fluxes as DM signal has been widely discussed
from the very early days of the publications of the observed
data (Bergström et al., 2005a; Bergstrom et al., 2005b;
Profumo, 2005; Aharonian, 2006). At a first moment, it
was concluded that the spectral features of these gamma
rays disfavoured the DM origin (Aharonian and Neronov,
2005; Aharonian, 2006). More recently, combined analyses of
Fermi LAT and HESS data have allowed new interpretations
(Belikov et al., 2012; Cembranos et al., 2012b, 2013b).

Before going into further details and in order to avoid any
misunderstanding, it should be noted that we do not refer to
Fermi-LAT signal commonly known as the GeV-excess. In fact,
Fermi LAT among other experiments (e.g., MAGIC Aleksic
et al., 2011), have allowed to set stringent constraints on the

DM particle mass and annihilation cross-section (Bertoni et al.,
2015; Di Mauro and Donato, 2015; Ahnen et al., 2016; Caputo
et al., 2016; Albert et al., 2017; Lisanti et al., 2018) as well as
to increase the number of claims of gamma-ray signatures from
DM (Geringer-Sameth et al., 2015; Bertoni et al., 2016; Li et al.,
2016; Albert et al., 2017). However, most of these studies deal
with DM particle mass between few MeV and hundreds of GeV.
In particular, the GC-excess has been largely interpreted both
in terms of DM signatures (Alves et al., 2014; Calore et al.,
2014, 2015; Cerdeno et al., 2014; Huang et al., 2014; Achterberg
et al., 2015; Bertone et al., 2016; Karwin et al., 2017) and of
astrophysical signal from Millisecond Pulsars (MSPs) (Brandt
and Kocsis, 2015; Cholis et al., 2015; Petrovic et al., 2015;
Bartels et al., 2016; Hooper and Linden, 2016, 2018; Hooper and
Mohlabeng, 2016; Lee et al., 2016; Haggard et al., 2017). On
the other hand, the combined analysis of Fermi-LAT data with
TeV experiments open new avenues to different interpretations.
If the high energy (HE) Fermi-LAT data are assumed as the
background component for the HESS observations in the GC
region, the fit of the VHE HESS data improves with respect to
previous works (Belikov et al., 2012; Cembranos et al., 2012b,
2013b; Gammaldi, 2015). In particular, the HESS data show a
spectral cut-off within a region of tens of parsecs from the GC
(Aharonian, 2009) and no spectral cut-off in a region of hundreds
of parsecs from the GC. The latter emission let researchers think
about the existence of a pevatron accelerator (Abramowski et al.,
2016), and an astrophysical origin from GeV to TeV energy scale
(Gaggero et al., 2017). Some efforts have been also pursued to
explain the TeV cut-off as a combined signal of TeV DM and
MSPs (Lacroix et al., 2016).

In the following, we assume the astrophysical origin for the
GeV-excess, and we focus on the multi-TeV DM interpretation
of the HESS data. In the upper left panel of Figure 1, we show
the fit to gamma-ray spectra of Fermi-LAT and HESS data with
a thermal DM particle mass of 48.8 TeV that annihilates in
the W+W− boson channel (Cembranos et al., 2012b, 2013b).
Similar fits can be found in Belikov et al. (2012). This multi-
TeV DM candidate is still a subject matter of discussion. In fact,
the TeV DM hypothesis in this region needs an enhancement
factor that, in the case of thermal DM particle, could be explained
as increasing DM density throughout the GC with respect to
the benchmark NFW profile (Cembranos et al., 2012b, 2013b).
Hydrodynamic simulations together with a Black Hole (BH)
induced DM-spike may explain the required enhancement of 103

in the J-factor (Gammaldi et al., 2016), and the radial dimension
of the DM-spike depends on the initial DM profile, that is a
cuspy or core (Gammaldi et al., 2016, 2017; Lacroix, 2018). The
DM spike that corresponds to several DM halo density profiles is
shown in the upper right panel in Figure 1.

In the framework of the multimessenger approach to DM
searches, further investigation has been addressed in order to
study the possibility to detect a neutrino signal originated by the
same multi-TeV DM candidate, that may explain the observed
cut-off in gamma rays. For neutrino searches, in Equation 1
ην = Pfp where Pfp are the elements of the symmetric 3 × 3
matrix which takes into account the neutrino oscillation effects
from the neutrino flavor (νp) produced at the source and the
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FIGURE 1 | Upper Left: Figure from Gammaldi (2016b). The combination of the gamma-ray flux expected by DM annihilation events with a power-law background

component well fits the gamma-ray spectra of Fermi-LAT and HESS data with a thermal DM particle of mass of 48.8 TeV that annihilates in the W+W− boson

channel (Cembranos et al., 2012b, 2013b). Upper Right: Figure from Gammaldi et al. (2016). The enhancement of 103 required in order to fit the gamma-ray spectra

can be explained by the J-factor of a BH-induced DM-spike in hydrodynamical N-body simulations with a cusp profile. Lower Left: Figure from Cembranos et al.

(2014). The expected neutrino flux from 48.8 TeV DM candidate is compared with the atmospheric neutrino background detected by IceCube. Lower Right: Figure

from Cembranos et al. (2015). the expected antiproton flux from 48.8 TeV DM candidate is compared with the PAMELA data. The total antiproton flux considers the

diffusion of antiprotons produced by multi-TeV DM in the halo and the extra component given by the DM-spike at the GC.

neutrino flavor (νf ) observed at the telescope. The astrophysical
J-factor is the same as for gamma rays (for more details see
Cembranos et al., 2014). In order to get a 2σ − 5σ neutrino
signature from the DM candidate of ≈ 50 TeV annihilating in
W+W− SM channel (with a minimum of 2-years of exposition
time and 50m2 of detector effective area) the IceCube telescope
should have resolution angle θ ∼ 0.72◦ and low energy threshold
≈ 1 − 2 TeV. Currently, the IceCube resolution angle is worse
than 5◦, making unrealistic this kind of required observation
(Aartsen et al., 2017). This is shown in the lower left panel of
Figure 1.

Moreover, the same primary DM annihilation event, if
constituting the origin of the observed cut-off in TeV gamma
rays, may also produce leptonic or hadronic counterparts. The
production of a concrete particle will induce secondary
production that would affect mainly the diffuse signal

through hadronic emission by inelastic proton collision
with the interstellar gas, inverse Compton scattering of
interstellar radiation by cosmic-ray electrons and positrons, or
Bremsstrahlung. The e± and pp̄ data from ATIC/PPB-BETS,
PAMELA, Fermi LAT and AMS have been largely studied
(Cirelli, 2012). On the one hand, low energy data are consistent
with astrophysical primary sources (Serpico, 2012; Berezhko
and Ksenofontov, 2014; Di Mauro et al., 2014, 2017; Giesen
et al., 2015) (yet see e.g., Belotsky et al., 2014, 2017; Giesen
et al., 2015 for different interpretation as DM). In this sense,
antiproton data can be used to characterize diffusion models of
charged particles along the Galaxy or to constrain new physics,
whose antiproton flux may be identified upon the diffusion
background. As discussed in the introduction, the κ-factor is
given by Equation (3) for charged cosmic rays; instead ηp ∝ vp,
where vp is the antiproton velocity (see Cembranos et al., 2015 for
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more details). The antiproton flux generated by ≈ 50 TeV DM
candidate distributed in the halo with a possible enhancement at
the GC appears to remain below the antiproton flux measured
by PAMELA (lower right panel in Figure 1). Increasing the
maximum energy threshold in antiproton data would allow to
detect some signature on the extrapolated background.

On the other hand, the very recent AMS-02 positron data
(Aguilar, 2019) are consistent with primary emission from
astrophysical sources at low energy scale (Serpico, 2012), yet
a finite energy cut-off at 810+310

−180 GeV is established with
a significance of more than 4σ . Such a cut-off may have
predominantly originated either from DM or from other
astrophysics. We would like to invoke the possibility - that has
not yet been explored - to study these data within the multi-TeV
DM framework.

Complementary to the GC region, dwarf galaxies represent
excellent targets for the indirect searches of DM. The GC
represents a very appealing target, due to its closeness and the
large amount of DM in the region, yet the complex nature of this
area makes the identification of the source quite difficult, as we
discussed so far. On the other hand, dwarf galaxies are close DM
dominated structures with a low astrophysical background.Well-
known dwarf spheroidal (dSph) galaxies are pressure-supported
systems where the contamination from intrinsic astrophysical
sources is negligible (Winter et al., 2016). In fact, they host
an old stellar population of low-luminosity and do not possess
gas. These objects have been studied at TeV energy scale by
several gamma-ray telescopes, such as VERITAS (Archambault
et al., 2017), HESS (Abramowski et al., 2014; Abdalla et al.,
2018), MAGIC (Ahnen et al., 2016), and HAWC (Albert et al.,
2018). The ≈ 50 TeV DM → W+W− candidate results
to be compatible with all these exclusion limits. In fact, the
enhancement factor required to fit the HESS spectral cut-off at
the GC, has to be understood as due to the local environment.

Indeed, it would not be applied to dwarf satellites unless any BH
is detected (Gonzalez-Morales et al., 2014).

Recently, it has been shown that the astrophysical
contamination in gamma rays is negligible also in rotationally-
supported dwarf irregular (dIrr) galaxies (Gammaldi et al., 2018).
Because Active Galactic Nuclei are not observed in dIrr galaxies,
the background is expected to be negligible at TeV scale. In
the left panel of Figure 2 we show the preliminary study of the
HAWC collaboration on this new class of targets for the analysis
of 1-year of data taking (Cadena et al., 2018). Although the
results do not reach the thermal annihilation cross-section value
and bounds are not competitive with respect to those obtained at
lower WIMP mass scales, they represent new results for the TeV
DM candidate by means of a previously unexplored kind of DM
targets, i.e., dIrr galaxies.

4. THE MULTI-TEV DM PARTICLE NATURE

The particle nature of the prospective multi-TeV DM candidate
has been investigated since the first analysis of the HESS data.
Among other DM candidates (Gardner and Fuller, 2013) and
beyond the SM, the largest neutralino masses appears unlikely
to explain the HESS data (Profumo, 2005). Few models could
naturally produce DM particle mass from a few to tens of TeV—
see e.g., dark atoms (Belotsky et al., 2014, 2017) or minimal
DM models (Cirelli and Strumia, 2009; Garcia-Cely et al., 2015).
The Brane World Theory may naturally produce a thermal
DM candidate up to masses of 100 TeV (Cembranos et al.,
2003). In brief, in the framework of extra-dimensions, and in
the particular case of four-dimensional effective phenomenology,
massive branons are new pseudoscalar fields which can be
understood as the pseudo-Goldstone bosons corresponding to
the spontaneous breaking of translational invariance in the bulk
space produced by the presence of the brane. They are prevented

FIGURE 2 | Left: Figure from Cadena et al. (2018). Constraints on the DM mass and annihilation cross-section by the study of several dwarf irregular galaxies at TeV

energy scale, with 1-year of data of the HAWC observatory. Right: Figure from Cembranos et al. (2012a). Study of detectability of branon DM with

Cherenkov telescopes.
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from decaying into SM particles by parity invariance on the
brane. Limits on the model parameter from three-level processes
in colliders are given by HERA, Tevatron, LEP-II and LHC
(Cembranos et al., 2011), and prospects for ILC and CLIC can
be found in Achard et al. (2004) and Creminelli and Strumia
(2001). As introduced before, strong experimental limitations
in direct searches and colliders affect the study of branons as
multi-TeV WIMP candidates. In the right panel of Figure 2 we
show the prospect of detectability of branons DM with the future
Cherenkov telescope array (CTA), among the others (Cembranos
et al., 2012a).

5. CONCLUSIONS

We have briefly discussed general aspects of the multimessenger
approach to the indirect searches of DM focusing on the TeV
energy scale. The Multi-TeV DM candidate is being considered
after the advent of the last generation of gamma-ray telescopes
and recent observations of the GC region. The ≈ 50 TeV DM
→ W+W− candidate combined with a power-law background
component, fits the VHE gamma-ray spectral cut-off observed
by HESS in the inner 10 parsecs at the GC combined with the
HE Fermi-LAT data well. Additionally, multimessenger searches
via both neutrino and antimatter fluxes have been addressed
to better investigate such a heavy DM hypothesis for the GC.
DSph galaxies have also been scanned at the TeV energy
scale by MAGIC, HESS, VERITAS, and HAWC telescopes,
resulting in compatible constraints. The next generation of both
experimental (such as future CTA) and previously unexplored
types of DM targets (i.e., dIrr galaxies) will increasingly improve
the constraints via indirect searches. Indirect searches of DM
may also be performed through the study of the synchrotron
radiation, which is a radio signal emitted by the interaction
of the secondary fluxes of charged particles produced in DM
annihilation or decay events with the magnetic field of the target.
This signal may be detected by the SKA telescope, also for
the particular case of branon DM candidate in the GC (Bacon
et al., 2018; Bull et al., 2018) or in dwarf galaxies (Cembranos
et al. in preparation). Finally, on the theoretical side, multi-
TeV branon DM candidates represent an appealing possibility,
among others. Unfortunately, strong experimental limitations

make it very difficult to set further constraints on the nature of
the multi-TeV DM particle through direct searches and colliders.
Therefore, the study of particle physics nature of multi-TeV
DM candidates at underground laboratories is a challenge and
represents a new frontier in physics.
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