
ORIGINAL RESEARCH
published: 10 January 2019

doi: 10.3389/fspas.2018.00049

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 1 January 2019 | Volume 5 | Article 49

Edited by:

Sergei M. Kopeikin,

University of Missouri, United States

Reviewed by:

Dimitri Veras,

University of Warwick,

United Kingdom

Richard Schwarz,

Universität Wien, Austria

*Correspondence:

George Voyatzis

voyatzis@auth.gr

Specialty section:

This article was submitted to

Fundamental Astronomy,

a section of the journal

Frontiers in Astronomy and Space

Sciences

Received: 06 November 2018

Accepted: 17 December 2018

Published: 10 January 2019

Citation:

Voyatzis G and Mourtetzikoglou A

(2019) Periodic Motion and Stability of

Gravitational Planar Triple Systems.

Front. Astron. Space Sci. 5:49.

doi: 10.3389/fspas.2018.00049

Periodic Motion and Stability of
Gravitational Planar Triple Systems
George Voyatzis* and Athanasios Mourtetzikoglou

Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki,

Greece

The stability of gravitational triple systems is a well-known problem in celestial mechanics.

The basic model used is the general three body problem (GTBP). Many criteria estimated

from the integrals of motion and zero velocity curves or from purely numerical simulations

have been given in literature. In this paper, we propose a different approach for the

study of stability of triple systems based on the numerical computation of manifolds of

periodic orbits and their linear stability. Such an approach has been used for the study of

two-planet exosolar systems but here, applying the method of continuation with respect

to the masses, we refer to systems where all bodies can have similar mass values. In

the present work we apply the proposed approach by starting from the circular family of

periodic orbits, which is known to exist for the planetary type problem, and we restrict

our computations to the case of two equal masses. By considering that the system has

a hierarchical structure, the constructed manifold of periodic solutions can be projected

on a plane defined by the relative distance and the relative mass of the system. On such

a plane a stability map can be constructed showing the stability limits on the manifold of

periodic orbits.

Keywords: celestial mechanics, three body problem, periodic orbits, continuation, stability

1. INTRODUCTION

The dynamical evolution of triple systems, where the three bodies are considered as point mass
bodies, can be studied by using the classical general three body problem (GTBP). The system is
not integrable and when the three bodies have masses of the same order and evolve initially in
close distance orbits these become strongly irregular and ejections or collisions should appear.
This is not the case for hierarchical systems when the single body moves sufficiently far from the
binary formed by the other two bodies. Then, long-term stability can be obtained with the bodies
evolving on almost periodic orbits. The conditions for stability between the above mentioned
dynamical configurations have been studied quite extensively in literature. However due to the
lack of sufficient number of constants of motion and the many parameters involved in the problem
it is not possible to express an explicit condition for stability. A review on stability criteria of triple
systems is given by Georgakarakos (2008) while a resent extended numerical studies on eccentric
and inclined triple star systems is presented in Mylläri et al. (2018) and He and Petrovich (2018).

The analytical criteria are neither necessary nor sufficient for the stability. For example, the Hill
type stability (Marchal and Bozis, 1982) guarantees that the bodies cannot show close encounters,
which generally destabilize the system, but it cannot strictly prohibit the ejection of the lighter body
(Bozis, 1981) or, in case of a planetary system, a close encounter between the star and the inner
planet (Gladman, 1993). On the other hand stability criteria obtained by numerical integrations
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cannot cover all the possible space of parameters and initial
conditions and, also, refer to a short period of time. Since the
system is Hamiltonian, orbits of long-term stability should be
confined to invariant tori in phase space, which, according to
the KAM theorem, form foliations centered at linearly stable
periodic orbits (see e.g., Siegel and Moser, 1971; Contopoulos,
2002). Therefore, the detection of stable periodic orbits reveals
and locates domains of initial conditions for long-term stability
and this approach is studied in the present paper. The importance
of periodic solutions for understanding the dynamics of the
three body problem has been recognized by Poincare. Generally
they are associated with resonant motion and for the restricted
three body problem (RTBP) the structure of periodic solutions is
well-described by Hénon (1997) and Bruno (1994). Applications
of periodic orbits of the RTBP may include but not limited
to evolution of asteroids and trans-Neptunian objects (see e.g.,
Winter and Murray, 1997; Hadjidemetriou, 1999; Voyatzis et al.,
2018) and orbital spacecraft dynamics (e.g., Xin et al., 2016; Dei
Tos et al., 2018).

The computation of periodic orbits of the planar GTBP
is addressed by Henon (1974) and Hadjidemetriou (1975),
where periodicity refers to the periodic evolution of the mutual
distances of the bodies. In the last 15 years many computations of
periodic orbits have been performed in the study of the dynamics
of exosolar systems (see e.g., Antoniadou and Voyatzis, 2016
and references therein). Of course, in these studies the planetary
model is used where the two bodies (planets) have very small
mass with respect to the mass of the third body (star). In the
present work we start from such periodic planetary orbits and
apply continuation with respect to the mass in order for the
bodies to become of comparable masses. Our study is restricted
to planar and almost circular orbits. Besides the computation of
periodic orbits their linear stability is also estimated and, thus,
we can conclude about how the limits of stability depends on the
masses and the relative distance of the three bodies.

By considering the continuation of periodic orbits, as it
is described in this paper, we can approach any physical
configuration of three bodies. Apart from triple star systems,
the method can be used to approach the dynamics of single star
planetary systems with two heavy planets or the planetary motion
around a binary star system (Voyatzis, 2017). Here we present
particular computations in order to describe the methodology
and we do not focus on any particular system. In section 2, we
present briefly the model and the basic notions on periodic orbits
and also we describe our methodology. In section 3, we present
some computations, in order to show how our method is applied,
and the results obtained. Finally in section 4, we conclude and
discuss about the usefulness of the method and the possible wider
computations which could be performed.

2. MODEL AND METHODOLOGY

2.1. The Model in a Rotating Frame
We consider three point masses, m0, m1, and m2 moving on the
plane and define the inertial frame OXY , where O is the center of
mass. For any triple system we assume m0 ≥ mi, i = 1, 2, and
in the planetary case m0 indicates the star, m1 the inner planet

and m2 the outer one. According to Hadjidemetriou (1975) we
define the rotating frame Gxy, where G is the center of mass of
m0 and m1, Gx is the axis along the direction m0 to m1 and Gy
is perpendicular to Gx. Thus, the position of the system in the
rotating frame is given by the variables (r, x, y), where r is the
distance between m0 and m1 and x, y are the coordinates of m2
in the rotating system. With θ we indicate the angle between the
inertial and the rotating frame. The Lagrangian of the system is
written as (Voyatzis, 2017)

L =
1

2
M1

(

ṙ2 + r2θ̇2
)

+
1

2
M2

(

ẋ2 + ẏ2 + 2θ̇(xẏ− ẋy)+ θ̇2(x2 + y2)
)

−V ,

(1)
with

M1 =
m1m0

m1 +m0
,M2 =

(m1 +m0)m2

m0 +m1 +m2
,

V =

2
∑

i,j=0,i6=j

Gmimj

rij
,

where rij indicate the mutual distances of the respective bodies
andG is the gravitational constant. Since θ is a cyclic variable, the
angular momentum, which in the rotating frame is written as

L = ∂L/∂θ̇ = M1r
2θ̇ +M2

(

θ̇(x2 + y2)+ xẏ− ẋy
)

, (2)

is constant. Therefore, r = r(t), x = x(t), and y = y(t) are given
by the Lagrangian equations derived from equation (1), while θ̇

is provided by equation (2). In the following we consider always
the normalization of masses

m0 +m1 +m2 = 1 and G = 1.

2.2. Periodic Orbits
Let us symbolize the initial conditions of an orbit by r(0) =

r0, x(0) = x0, y(0) = y0 and accordingly, the velocities. For
the GTBP of planetary type, the existence of periodic orbits,
their classification and initial conditions are described (e.g., by
Hadjidemetriou, 1996). In this work we study symmetric periodic
orbits, i.e., orbits which show two perpendicular crosses with the
axis Gx, at t = 0 and at t = T/2, where T is the period. Their
initial conditions are

r(0) = r00, x(0) = x00, y(0) = 0, ṙ(0) = 0, ẋ(0) = 0,

ẏ(0) = ẏ00 (3)

and imply, in general, a normalization scheme of units. Instead of
r0, we can use the initial position ofm1 given by x10 =

m0
m1+m0

r0
By assuming fixed non-zero masses, any periodic solution of

initial conditions given by Equation (3) can be continued
monoparametrically, for example by varying r00 and
determining x00 and ẏ00 in order to satisfy appropriate periodic
conditions (Hadjidemetriou, 2006; Voyatzis, 2017). We call
this continuation scheme in space as x-continuation. Applying
x-continuation, monoparametric families of periodic orbits are
obtained in the 3D space of initial conditions 53 = {(r0, x0, ẏ0)}.
Also, any periodic solution of initial conditions of Equation
(3) and non-zero masses is continued by varying the masses,
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say m1 and m2. If the masses do not vary independently,
e.g., by fixing the ratio ρ = m2/m1, then a monoparametric
continuation is applicable, e.g., by varying m2, and we call this
schemeµ-continuation. By combining both the above mentioned
continuation schemes we obtain a 2D manifold, P , of initial
conditions for periodic motion as a subset of a 4D space, namely

P ⊂ 54, where 54 = {(r0, x0, ẏ0,m2) | ρ = fixed}.

2.3. Stability of Periodic Orbits
The stability of periodic orbits can be examined by considering
the monodromy matrix, 1(T), of the variational equations
of the system computed on a periodic solution of period T
(Hadjidemetriou, 1996). For the system (1), 1(T) is a 6 × 6
constant matrix of unit determinant, and it possesses three pairs
of eigenvalues. We always get two unit eigenvalues, λ1 = λ2 = 1,
while the remaining four form reciprocal pairs providing the
following cases

- λ3,4 = a± ib ∈ C, λ5,6 = a′ ± ib′ ∈ C, |λj| = 1,∀j (stability)
- λ3 = 1/λ4 ∈ R and λ5,6 = a ± ib ∈ C with |λ5| = |λ6| = 1

(single instability)
- λj ∈ R, ∀j with λ3 = 1/λ4 and λ5 = 1/λ6 (double instability)
- λ3,4,5,6 = ±a± ib, |λj| 6= 1 (complex instability)

The above possible distributions of eigenvalues on the complex
plane is presented in Figure 1. Cases of equal eigenvalues (except
the pair λ1, λ2) correspond to critical cases of linear stability.
Along a family of periodic orbits the monodromy matrix varies
and the eigenvalues moves on the complex plane continuously
preserving the feature of reciprocal pairs and the stability of
orbits may change when critical cases are met. In general, any
manifold P should be divided in domains of different stability
and the borders between the domains consist of critically stable
orbits. For computations of stability it is convenient to use the
indices of Broucke (1969).

2.4. Methodology
The GTBP described in section 2.1 can model any physical
configuration of three bodies (e.g., a star with two planets, two
stars and one planet or a triple star system). Starting from the
unperturbed planetary model, where m0 = 1 and m1 = m2 = 0,
we can increase the massesm1 and/orm2 continuously to obtain
any configuration of three bodies (see Figure 2). We remark that
the mass m0 is decreased accordingly in order to preserve the
mass normalization.

We can compute a manifold P by starting from known
families of periodic orbits of a two-planet system (see e.g.,
Hadjidemetriou, 2006). Our approach consists of two steps. First,
we perform µ-continuation to a particular periodic orbit selected
from a family of the planetary case (0 < m1,m2 ≪ 1), which
corresponds to a particular mass ratio ρ. Thus we obtain periodic
orbits for large mass values for the initially small planets. Such a
continuation provides a µ-family of orbits which is represented
by a curve in the manifold P . Then, for a set of orbits of
the µ-family, which are selected with sufficient resolution, x-
continuation is applied in order to cover sufficiently whole P or
the interesting part of it.

In order to associate the periodic orbits with some physical
description, we assume a hierarchical structure of the system,
where m0 and m1 form the inner binary and m2 revolves around
the center of mass G of the inner binary. We denote with a1 and
e1 the semimajor axis and the eccentricity of the inner binary and
with a2 and e2 the same elements of the orbit of m2 around G.
Since we refer to triple systemswith strong interactions, the orbits
of the inner binary and the outer bodymay differ from being close
to elliptic and the orbital elements are considered as osculating
elements computed to the initial conditions of Equation (3) for
each periodic orbit. We will use the dimensionless parameters for
mass, distance and time defined as

α =
a2

a1
, µ =

m1 +m2

2m0
, τ =

T

T1
,

where T is the period of the periodic orbit in the rotating
frame and T1 is the Keplerian period of the inner binary that
corresponds to the osculating semimajor axis a1. For almost
circular orbits a is equivalent to the pericenter distance, Q, used
in various stability criteria (Mylläri et al., 2018). For µ = 0 we
have the unperturbed problem and for µ = 1 it is m0 = 1/3
and m1 + m2 = 2/3. Each point of P can be mapped to a pair
of values (a,µ) and, provided that the mapping is one-to-one, a
stability map can be given on this plane. The smallest values of a
or the largest values ofµwhere stable periodic orbits exist consist
the stability limits according to our approach.

3. COMPUTATIONS AND RESULTS

It is well-known that for the unperturbed planetary model (m1 =

m2 = 0), when the two planets revolve on circular orbits of radii
a1 and a2 and with the same direction, a circular periodic orbit
of the system is defined with period T = 2π/(n2 − n1), where

ni = a
−3/2
i is the mean motion of the planet i. Thus a family of

circular orbits, denoted as S0, is formed with orbits of any value
of a > 1. When mi 6= 0 (i = 1, 2), the family C0 generates by
µ-continuation and for some µ ≪ 1 the family C, which breaks
at the first order resonances n2/n1 = (p + 1)/p, p = 1, 2, ..,
and joins smoothly with the resonant families of elliptic periodic
orbits (Voyatzis et al., 2009).

Here, our computations are restricted to a particular manifold,
called Pc, constructed from the family segment, denoted as CI ,
consisting of planetary circular periodic orbits with n2/n1 > 2
and m1 = m2 (ρ = 1). The family CI for small non-zero
mass values is computed by applying differential corrections to
the unperturbed orbits of family C0. For 0 < m1 = m2 ≪ 1
all circular orbits are stable except for a small segment near the
3 : 1 resonance. Family CI could generate the manifold Pc by
continuing all of its orbits by increasing the mass parameter
µ. However, we found it more convenient for computations to
construct the manifold Pc by first performing µ-continuation
starting from a particular periodic orbit of CI . Then we apply
x-continuation to the previously computed periodic orbits and,
thus, we cover whole the manifold Pc.

We have chosen as starting orbit for our computations the
orbit of CI at a = a0 ≈ 2.136 (n2/n1 ≈ 3.145), which is stable,
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FIGURE 1 | Possible distribution of eigenvalues λi , i = 3, 4, 5, 6 on the complex plane and with respect the unit circle (A) stability (B) single (or simple) instability (C)

double instability (D) complex instability. For all cases λ1=λ2 = 1.

FIGURE 2 | Schematic plot of the initial configuration of the system (planetary case, m1,m2 ≪ 1) and its final form (three stars with masses of the same order)

obtained after µ-continuation.

and compute the family of symmetric periodic orbits S(µ; a0) in
the parameter interval µ ∈ (0, 1]. Since ρ = 1, we pass along the
family from a two-planet system to a triple star system and the
family ends withm0 = m1 = m2 = 1/31. Along continuation we
fix the initial position of m1, x10 ≈ 1, and increase the value of
the angular momentum, given by Equation (2), proportionally to
the increasing massesm1 andm2 (Voyatzis, 2017). The variation
of the distance parameter a along the family is presented in
Figure 3A. As µ increases the distance of the outer body from
the inner binary also increases while the normalized period τ

decreases accordingly. The eccentricities e1 and e2, which start
from zero, vary along the family as it is shown in Figure 3B.
The eccentricity of the inner binary, e1, increases rapidly in the
region up to µ < 0.1 (the maximum appears for µ = 0.17), but
it does not take large values along the whole family. The orbit
of the outer body seems to preserve its circular shape since its
eccentricity remains <0.01. All orbits of S(µ; a0) are stable.

The next step in constructing the manifold Pc is to perform
x-continuation for the orbits of the family S(µ; a0) by varying

1The system of a planet around a binary star is not included in this approach. Such

a system can be obtained by increasing only the mass m1 (or m2) and keeping the

m2 (orm1) small.

the distance parameter a (in computations we vary directly the
distance x10, so a changes accordingly). For each value of µ we
compute the family S′(a;µ) in an interval a ∈ [amin, amax]. The
family is not bounded from the right, i.e., amax → ∞ and τ → 1.
However, for each value ofµ, a takes aminimum value along each
family S′(a;µ) as it is shown in Figure 4A where the families for
some values of µ are represented in the plane τ − a. The type of
stability is also indicated by different colors. For any value of µ

the orbits are certainly stable for a > as, where as = as(µ). For
τ > τ∗, where τ∗ indicates the position of the minimum of a,
the periodic orbits are unstable and the continuation procedure
becomes very slow as τ increases more. This is caused by the fact
that the inner binary becomes very eccentric as it is shown in the
top-right panel of Figure 4. In cases of µ = 0.021 and 0.125,
the orbit of the outer body also becomes very eccentric when a is
close to its minimum value. However as µ increases (e.g., in case
µ = 0.75) and the bodies are relatively close to each other, their
orbits are strongly perturbed ellipses and they are not described
efficiently by the osculating elements e1 and e2.

ThemanifoldPc can bemapped one-to-one on the plane a−µ

for the domain where τ < τ∗. Namely we consider the segments
of the families S′(a;µ) where a descends as τ increases. As we
have mentioned, for τ > τ∗ the families consist of unstable
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FIGURE 3 | (A) The variation of the distance parameter a and the normalized period τ along the family S(µ; a0) (B) The variation of the eccentricity of the inner binary

(e1) and the outer body (e2) along the same family.

FIGURE 4 | (A) Characteristic curves of families S′(a;µ) for particular mass values presented in the plane τ − a. Segments of blue color indicate stable orbits while

red, magenta and green color present single, double, and complex instability, respectively (B) The initial eccentricities of the inner binary and the outer planet, e1 and

e2 respectively, along the families presented in the left panel.

orbits and are not considered in the definition of the stability
limits. Therefore, by taking into account only the segments for
τ < τ∗, each orbit of the restricted manifold Pc is mapped on
a point (a,µ). By considering a color coded mapping according
to the stability type (see section 3) we form the stability map
shown in Figure 5. On the stability map we indicate the border
a = amin on the left of the colored region. For a < amin there
are no periodic orbits belonging to the manifold Pc. For µ ≈ 0,
amin ≈ 1.6 and corresponds to the 2 : 1 planetary resonance. Also
amin(µ = 1) = 1.1656 and this is the smallest value of the relative
distance a obtained among the periodic orbits of Pc.

In the colored domain we distinguish ten regions, indicated
in the figure by the numbers 1 to 10. We symbolize the borders
between the different regions as Bij where i and j are the indices
of the separated regions. The border B12 is a limit of stability, in

the sense that for a > a(B12) all orbits on Pc are stable (region 1).
Nevertheless, the stable regions 5, 7, and 9 exist for a < a(B12).
The region 7 is narrow and includes orbits with relatively small
distance parameter a but µ does not exceed the value 0.097 (i.e.,
m1 = m2 < 0.081). For µ ≈ 0, the region 5 is extended
between the 2:1 and 3:1 resonances (1.59 < a < 2.08). As we
mentioned above 2:1 resonance is associated with the value amin.
On the other side, at the 3:1 resonance, three unstable regions (2,
3, and 4) converge. This is in agreement with the instability of
the circular family which occurs at the 3:1 resonance in the RTBP
and in the GTBP of planetary type (Voyatzis andHadjidemetriou,
2006). The stable region 9 is found for 0.375 ≤ µ ≤ 1 and close to
the border B89 we obtain the stable periodic orbits of the smallest
relative distance, a, for large masses, particularly for µ > 0.35.
For µ = 1 the value a = 2.33 is the smallest one for obtaining a
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FIGURE 5 | The stability map of the manifold Pc of periodic orbits, which is projected on the plane a− µ. The manifold is restricted on the right of the white region

and extends to a → ∞ (as a blue region).

FIGURE 6 | The stable (dotted) regions of the manifold Pc and limit curves of

stability criteria defined by Harrington (H), Donnison&Mikulskis (DM), and

Gladman (G).

stable periodic orbit in a triple system of equal masses. Finally we
mention that it has been proved by Hadjidemetriou (1982) that
complex instability cannot occur for sufficiently small µ. In our
stability map there is only the region 8 of complex instability. It
is the wider region and extends down to µ ≈ 0.05.

4. CONCLUSIONS AND DISCUSSION

In this paper we addressed the problem of stability of triple
systems by computing periodic orbits and their linear stability of

the planar GTBP. We examined a particular manifold of periodic
solutions, Pc, which is generated from the circular family of the
planetary problem by applying continuation with respect to the
mass. Here we restricted our computations to the case of m1 =

m2 starting from m1 = m2 = 0 (µ = 0) and ending to the case
of equal masses, m1 = m2 = m3 = 1/3 (µ = 1). By considering
the system as a hierarchical model, the orbit of the inner binary
and the orbit of the outer body are almost circular as the mass
parameter µ is small and the relative distance of the orbits, a,
is quite large. The manifold Pc is defined for a > amin(µ).
As µ → 0, amin ≈ 1.59, which corresponds to the planetary
resonance 2 : 1 and to the first gap of the circular family known
from previous studies.

The most interesting subset of the manifoldPc can be mapped
on the plane a − µ and a stability map is formed according to
the type of linear stability of the periodic orbit at each point
of the plane. This is shown in Figure 5 where ten different
distinguished regions appear. The stable region 1 seems to extend
up to very distant orbits, a → ∞, while its left border, B12, can
be considered as the limit of stability of our study. The known
triple star systems2 are very hierarchical with very large values
of a and therefore belong to the stability domain 1. However we
showed that stability can exist for triple star systems with quite
nearby orbits (e.g., for stars of equal masses we can have stability
for a down to ∼ 2.33). Stable regions 5, 7, and 9 are located on
the left of B12 and surrounded by unstable regions. Particularly,
region 5 could host planetary systems with very heavy planets

2See e.g., https://www.univie.ac.at/adg/schwarz/multiple.html
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(like Kepler-53). We remark that the map indicates the known
instability of the 3:1 resonance (a ≈ 2.08) for µ → 0.

In Figure 6 we show on the stability map the stability
limits, µcrit = µ(a), suggested by some previous studies. The
criterion of Gladman (curve G) refers to Hill type stability that
prevents close encounters (Gladman, 1993). The criterion holds
for planetary masses so it is not reliable for large µ. It includes a
large portion of the stability region 5, represents fairly the region
1 but includes also many unstable orbits of the regions 2, 3, and 4.
The criterion of Donnison and Mikulskis (1992), which is based
on numerical computations, seems more conservative than that
of Gladman while the numerical criterion of Harrington (1975),
which was one of the first numerical criteria for the stability of
hierarchical systems, is located between the above mentioned
criteria for large µ but deviates strongly from the other criteria
for small µ and includes large regions of unstable periodic
orbits.

By assuming reasonably that stable periodic orbits are
surrounded by invariant curves, which also support long-term
stability, the stable regions obtained in this study are not
restricted only on the manifold Pc. We tested this assumption
by performing numerical integrations for initial conditions that
deviate from the periodic orbit. For the narrow stable region 7,

small deviations may cause instability. In regions 5 and 9 we
obtain quasi-periodic orbits even by performing relatively large
deviations. Certainly region 1 is themost stable region and almost
all orbits with small eccentricities seem to remain stable for very
long integrations.

Themethodology suggested and applied in the presented work
can be extended by either considering family segments of circular
orbits for n1/n2 < 2 or by considering the families of resonant
elliptic orbits which bifurcate at any resonance. It is well-known
from planetary dynamics that resonances can provide protection
of bodies from coming close to each other and, subsequently, can
provide stable orbits even of very high eccentricities (Antoniadou
and Voyatzis, 2016). Such a stability mechanism could be met
also for triple systems of large µ and small a. Although in
our computations we considered the mass ratio ρ = 1, µ-
continuation can applied for any value of ρ and, thus, different
configurations of three body systems can be studied.
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