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1. INTRODUCTION

Variability studies of active galactic nuclei (AGNs) typically use either power spectral density (PSD)
and structure function (SF) analyses or direct modeling of light curves with the damped random
walk (DRW) and the continuous autoregressive moving average (CARMA) models. A fair fraction
of research publications on the subject are flawed, and simply report incorrect results, because they
lack a deep understanding of where these methods originate from and what their limitations are.
For example, SF analyses typically lack or use a wrong noise subtraction procedure, leading to flat
SFs. DRW, on the other hand, can only be used if the experiment length is sufficient, at least ten
times the signal decorrelation time scale τ , and if the data show the power-law SF slope of γ ≡ 0.5.

2. STRUCTURE FUNCTIONS

The structure function (SF) analysis is a model-independent technique of converting an active
galactic nucleus (AGN) light curve into a different space, the variability amplitude–timescale space.
The basic approach behind the SF analysis is as follows. Data points yi in an AGN light curve are,
in the simplest case, a sum of the variable signal si (with the variance σ 2

s ) and the observational
noise ni (with the variance σ 2

n ), so yi = si + ni. SF originates from simple mathematical properties
of the covariance of the light curve (index i) with a shifted copy of itself (index j) by the timelag
1t = ti − tj, via (MacLeod et al., 2010; Kozłowski, 2016b)

SF(1t)2 = 2
(

σ 2
s − cov(si, sj)

)

+ 2σ 2
n , (1)

where SF(1t) is typically measured from data as

SF(1t)2 =
1

N1t pairs

N1t pairs
∑

i=1

(yi − yj)
2. (2)

In order to measure the true AGN variability, so in fact cov(si, sj) in Equation (1), one needs to
subtract the full noise term (2σ 2

n ) from the SF in Equation (2). This is either rarely done in recent
works or done incorrectly, as commonly only a fraction of the noise term (σ 2

n ) is subtracted. This
leads to flat power-law SF slopes of γ = 0.1–0.4 at short timescales 1t (SF(1t) ∝ 1tγ ) (e.g.,
Vanden Berk et al., 2004; de Vries et al., 2005), but when correctly measured, the SF slope in optical
is significantly steeper γ = 0.55 ± 0.08, based on ∼9,200 SDSS AGN from Stripe 82 (Kozłowski,
2016b) and γ ≈ 0.45 in mid-IR (Kozłowski et al., 2010a, 2016). An equally important variability
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observable to the SF slope is the decorrelation timescale τ , a
timescale at which the SF changes slope from the red noise (γ =

0.5) to the white noise (γ = 0.0). It seems to be about one
year rest-frame, again based on ∼9,200 SDSS AGN from Stripe
82 (Kozłowski, 2016b). I recently proposed a new method of the
measurement of the unbiased decorrelation timescale τ from SFs
(Kozłowski, 2017a). Another SF observable is the AGN variability
amplitude measured at 1 year (rest-frame) with the value of
0.20± 0.06 mag in optical bands, while the asymptotic variability
amplitude at long timescales (1t≫ τ , so1t≫ 1 year rest-frame)
is 0.25±0.06 mag (Kozłowski, 2016b). The SF amplitude at 1 year
may be affected, while the asymptotic variability amplitude is not,
by the bias due to the unknown underlying stochastic process for
short datasets (Kozłowski, 2017a).

3. THE DAMPED RANDOM WALK

AGN light curves can be modeled and interpolated using the
damped randomwalk (DRW) stochastic process. DRWmodeling
(Kelly et al., 2009; Kozłowski et al., 2010b; MacLeod et al., 2010)
by definition assumes an exponential covariance matrix of the
signal of the form

cov(si, sj) = σ 2
s e

−
|ti−tj |

τ , (3)

that again by definition produces a fixed SF power-law slope
of γ ≡ 0.5 at timelags 1t = ti − tj shorter than the signal
decorrelation timescale τ (Kozłowski, 2016b). If the variability
signal is due to a different stochastic process, where the SF slope is
shallower/steeper than γ = 0.5, DRWwill obtain a reasonable fit,
however, it will report biased measurements (Kozłowski, 2016a).
As of now, there is no statistical correction available to this
problem, however, using the information on the SF/PSD slope
one can modify the DRW model covariance matrix (Equation 3)
and model the light curves with the modified DRW model to
obtain correct parameters. DRW should be used to model an
AGN light curve if one is convinced that the SF slope for a light

curve is γ = 0.5 (or equivalently the PSD slope is −2). There
is another issue with DRW: if the light curve is shorter than
10τ (∼10 years rest-frame), it will simply report meaningless
variability parameters (Kozłowski, 2017b). DRW is the simplest
of the CARMA models [i.e., DRW ≡ CARMA(1, 0)], therefore
the whole CARMAmodel family is plausibly affected by biases or
problems reported above.

4. CONCLUSIONS

Constraining the SF, PSD, and DRW (or more generally
the Gaussian processes) parameters typically require long and
well-sampled AGN light curves. Such tight constraints may
soon be available from the OGLE Sky Survey (Udalski et al.,
2015), that has been monitoring the sky for 25 years, and
in particular from its 20-year-long monitoring of nearly 1,000
AGNs (each with ∼1,000 epochs), discovered mostly by the
Magellanic Quasars Survey (Kozłowski et al., 2013). Similarly
to the results from the SDSS Stripe 82, preliminary results
from OGLE point to the mean SF slope γ & 0.5. For
sparsely sampled or short light curves some corrections to
improve biases in PSD/SF/excess variance measurements are
available (Vaughan et al., 2003; Allevato et al., 2013), although
in a statistical (ensemble) sense, rather than for individual
objects.
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