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Electrochemical sensors have an enormous potential in a wide variety of environmental, industrial,
and medicinal applications. Apart from the immense success of glucose sensors, much more work
is still needed in order to make electrochemical sensors have a widespread impact and application.
For example, the current circumstances of the COVID-19 pandemic demonstrated the importance
and urgency of having accurate and rapid diagnostic devices (Jiang et al., 2020). The advancement
of sensors could truly help stop the spread of many infectious diseases (Vermisoglou et al., 2020)
and detect the early onset of various illnesses such as neurodegenerative diseases (Kim et al.,
2020). Compared to other diagnostic tools currently available, electrochemical sensors have many
advantages such as low-cost, rapid and real-time detection with simple operation (Idili et al., 2019;
Ligler and Gooding, 2019). They can also be mass-produced andminiaturized into portable devices
(Li et al., 2017; Idili et al., 2019; Ligler and Gooding, 2019).

The number of research groups reporting the development of novel electrochemical sensors
is growing exponentially. Most of the reported sensors have carbon- and gold-based surfaces.
These surfaces are popular amongst researchers because they are stable, biocompatible, and provide
good electron transfer kinetics. Unfortunately, the unmodified surfaces often lack the sensitivity
and selectivity required for the electrochemical detection of trace analytes. To overcome this
challenge, nanomaterials have been incorporated within the electrode surfaces (Quesada-González
and Merkoçi, 2018; Muniandy et al., 2019). Nanomaterials range from 1-100 nm in size and are
extremely beneficial due to the large surface-to-volume ratio and surface area (Quesada-González
and Merkoçi, 2018; Muniandy et al., 2019). Modification of nanomaterials on sensor surfaces
allows them to have enhanced interfacial adsorption with improved electrocatalytic activity,
biocompatibility, and faster electron transfer kinetics. All these advantages give the sensor a better
selectivity and sensitivity toward the detection of specific analytes as well as a superior overall
performance (Quesada-González and Merkoçi, 2018; Ligler and Gooding, 2019; Muniandy et al.,
2019; Jiang et al., 2020; Kim et al., 2020; Vermisoglou et al., 2020).

Recently, some of the most reported nanomaterials used in the fabrication of electrochemical
sensors have been different forms of graphene, such as graphene nanoribbons (Ismail et al., 2017)
and graphene flowers, which allow for good conductivity and fast electron transfer rates (Ismail
et al., 2017; Quesada-González and Merkoçi, 2018; Muniandy et al., 2019; Jiang et al., 2020;
Vermisoglou et al., 2020). Carbon nanotubes (CNTs) have extraordinary metallic/semiconducting
properties, which significantly enhance the electrocatalytic performance of sensors (Musameh
et al., 2002; Banks et al., 2006; Sljukic et al., 2006). Metallic nanoparticles and quantum
dots possess remarkable conductive and optical properties that give a higher sensitivity to
electrochemical sensors (Ismail et al., 2017; Ponnaiah et al., 2018; Ligler and Gooding, 2019).
Although nanomaterials have been proven to be remarkably valuable in sensors, their synthesis
as well as visual and chemical characterization often require skilled technicians to operate
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the sophisticated instrumentation. As for metallic nanoparticles
and quantum dots, a common challenge is maintaining the
stability of these materials, because they are prone to aggregation
along with sensitivity to environmental factors such as thermal
heating, UV exposure and ionic strength of aqueous media.
Efforts to overcome this problem often involve the synthesis
of core-shell structures and capping with stabilizing agents in
order to preserve the colloid from aggregating or degrading.
Similarly, researchers frequently try to control the configuration
of the ligand shells to protect quantum dots from degradation
(Ismail et al., 2017; Ponnaiah et al., 2018; Quesada-González and
Merkoçi, 2018).

Briefly, the biggest challenges encountered in the development
of electrochemical sensors can be listed as follows: (1) obtaining
a low limit of detection (LOD); (2) suppressing the non-
specific adsorption of interfering species, and (3) maintaining
the reproducibility and stability of the sensor in complex
real matrices.

An essential property to investigate when developing an
electrochemical sensor is the LOD. This value entails the lowest
concentration or quantity of a specific analyte that can be reliably
detected within an acceptable signal-to-noise ratio. Developing
a sensor with a low LOD is crucial because often analytes exist
at trace concentrations in real samples. Due to the innovation
of nanomaterial-modified surfaces, LODs with values as low as
picomole and femtomole levels have been achieved in the case
of some ultra-sensitive sensors (Suherman et al., 2017; Li X.
et al., 2018; Ponnaiah et al., 2018; Alizadeh et al., 2019; Wu
et al., 2019; Gupta et al., 2020). For example, a sensor modified
with open-ended CNTs was reported to have picomolar levels of
sensitivity for the detection of neurotransmitters (Gupta et al.,
2020). An ultrasensitive sensor for the detection of Hg2+ was
developed by modification of a glassy carbon electrode with
silver nanoparticles resulting in picomolar level LOD values
(Suherman et al., 2017). Yet, these modified surfaces remain
challenging as they are not often as reproducible as one would
hope. For example, since it is difficult to control the synthesis
and immobilization of nanoparticles with varying populations
of size and shape, the conformation and topology of these
nanomaterials might differ between each sensor (Wu et al., 2019).
In addition, as mentioned previously, nanoparticles tend to alter
their behavior under varying environmental conditions. The
trade-off associated with increased complexity of the modified
surfaces is the reproducibility issues that unfortunately arise.
Sensor-to-sensor reproducibility is extremely important in the
manufacturing stages since it is not feasible to test every sensor
produced in mass-production facilities. Instead, once the sensors
are fabricated, statistical sampling of a sub-population of the
sensors is performed, and the testing and calibration results
should be applicable to the entire batch.

Arguably, the most important test to confirm the validity of
a sensor is the “real sample” application. If the sensor is not
stable or functional in real samples then it cannot be validated
as a diagnostic tool. A wide variety of real samples are often
used with electrochemical sensors, the most common ones being
urine, blood serum, sweat, saliva, tear, and interstitial fluid (Li
et al., 2017; Lipani et al., 2018; Tseng et al., 2018; de Castro

et al., 2019; Idili et al., 2019; Karpova et al., 2019; Sempionatto
et al., 2019; Azeredo et al., 2020; Baghelani et al., 2020). The
matrix effect tends to negatively interfere with the detection
of a specific analyte which lowers the recovery values and the
sensitivity of the sensor. To help overcome the matrix effect,
researchers frequently dilute the samples in order to shift the
effect of interferences below a tolerable threshold. However, the
more the sample is diluted, the further it is from reality. Ideally,
sensors should be able to function effectively in pure real samples
such as whole blood without any sample dilution or processing
(Li et al., 2017). Saliva samples are also quite rich and complex
and often need filtration or dilution to be successfully be used
as a real sample (de Castro et al., 2019). For urine samples,
the main challenge is the different pH ranges found which can
impact the position of peak potential and the height of current
intensity as well as cause stability issues (Azeredo et al., 2020).
Tear fluid has also recently gained significant interest because it
has lower complexity with easy access for non-invasive sampling
techniques. Tear fluid is often used to investigate the progression
of ocular diseases and diabetes (Tseng et al., 2018; Sempionatto
et al., 2019). Some disadvantages with tear fluid include that
the pH can vary, the sample volume is low and the tears from
emotion and irritation may differ in composition (Tseng et al.,
2018; Sempionatto et al., 2019). Real samples often contain
many species that can easily adsorb onto the surface. Non-
specific adsorption has been one of the main roadblocks against
utilizing electrochemical sensors in real-life applications because
it tends to significantly decrease sensitivity, specificity, and
reproducibility of the sensors. In the point-of-care, researchers
are tackling this challenge with innovative materials andmethods
to improve sensor performance (Li Y. et al., 2018; Lichtenberg
et al., 2019). Both passive and active methods have been used.
Passive methods aim to create a hydrophilic and non-charged
layer to obstruct protein adsorption on the surface by using
different organic materials such as polymers. Conversely, the
aim of active methods is to produce surface shear forces that
are stronger than the adhesion forces of the bound non-specific
biomolecules on the surface (Li Y. et al., 2018; Lichtenberg et al.,
2019).

Notably, the stability of sensors has also been a challenge
limiting their applications in remote locations under varying
temperature conditions. Sensors are often characterized by their
shelf-life; hence, it is important to develop sensors that can work
for a relatively long period of time. When using nanomaterials,
long-term stability might become a major concern due to
issues related to aggregation and flaking of nanomaterial-
modified layers. Recently, incorporation of sol-gel materials
and ceramics along with nanomaterials has been proven to
increase the stability of sensors (Kim et al., 2018; Li et al.,
2019; Meng et al., 2020). Moreover, designing sensors that
are stretchable, self-healing, water-processable and wearable has
recently been a major advancement in the sensing field (Kim
et al., 2018; Li et al., 2019; Meng et al., 2020). These types
of miniaturized sensors, which have great stability, are often
made with rubber-like composites, hydrogels, organogels and
novel polymers. Combining these highly stretchable materials
with the excellent electrical conductivity of nanomaterials makes
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for remarkable sensors with superior analytical performance
characteristics (Kim et al., 2018; Li et al., 2019; Meng et al.,
2020).

Electrochemical sensors have demonstrated a great potential
for the future of diagnostic tools. However, the challenges
outlined above, not only apply for clinical applications, but also
across other fields such as environmental monitoring, food safety,
forensic analysis, agriculture, defense, and military applications
as well as electronics industry. Fortunately, the breakthrough
created through the applications of nanomaterials represents
a significant advancement that impacts across all the fields
mentioned above. To continue advancing in the right direction,
it is important for researchers to keep on developing innovative
solutions in order to introduce more smart sensors in our
everyday life.
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