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Convex polygons, shapes bounded by straight lines in which all of the

corners point outward, are the simplest of shapes, but despite their

simplicity, there are many unsolved problems concerning polygons.

Some polygons have the nice property that they fit together espcially

well, so that you canuse lots of copies of them to cover a large surface

to form what is called a tiling. For some polygons, such as triangles,

it is easy to see how to form tilings. For others, such as seven-sided

convex polygons, it is impossible to forma tiling. This article discusses

the history of a long-standing open question in geometry: which

convex pentagons give rise to tilings of the plane? The authors also

discuss their contribution to the solution of this problem, which

involved developing a computerized algorithm to help them search

for a new kind of convex pentagon that can form tilings, and the basic

idea of this algorithm is discussed.

HOWMATHEMATICAL DISCOVERIES AREMADE!

Does it surprise you to hear that big, new discoveries in mathematics
are being made all the time? Sometimes people think that
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mathematics mostly involves learning to use formulas discovered in
ancient times, such as the Pythagorean theorem. While that is not
true, mathematical discoveries can often be di�cult to explain in
nontechnical terms, and many times these discoveries do not have
immediate real-world applications. Indeed, we (the authors) were
unaware of new mathematical discoveries until we were college
students, so we want to give you an insider’s view on how these
discoveries can be made.

Like most new science, new mathematical discoveries are born out
of curiosity about how the world works. We believe that developing
habits of mind that lead to questioning why things are true and
whether those truths can apply to new situations can lead to the
discovery of new mathematics. People who want to discover new
mathematicsmust be curious aboutwhy and howmathematics works,
instead of just accepting facts without question! In that spirit, this
article tells the story of our own mathematical discovery.

THE TILING PROBLEM: WHAT SHAPES CAN COVER THE

PLANEWITHOUT GAPS OR OVERLAPS?

Tilings are patterns formed from shapes that cover various kinds of
TILING

A tiling of the plane to
be an arrangement of
shapes that covers the
entire infinite
2-dimensional plane
without gaps or
overlaps.

surfaces. You have probably seen tiled kitchen floors and patios, or
maybe more elaborate examples such as M.C. Escher’s artwork. Look
around in your daily life, and you will likely see many tilings, as in
Figures 1A–C. Tilings appear in the natural world, such as in a bee’s
honeycomb, the cracked mud of a dried lake bottom, and a gira�e’s
fur. They are even used to understand how the atoms of crystals fit
together. Mathematicians have worked for many years to understand
and classify various kinds of tilings.

Figure 1

Figure 1

Real-world tilings
(A–C) and tilings of the
plane (D, E). (A) Gira�e
with tiling fur pattern.
(B) Dried mud forms a
tiling. (C) A mosaic
pattern at the
Alhambra. (D) A tiling
by squares of 4 sizes.
(E) A monohedral tiling.
(F) A tiling by
nonconvex polygons.
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In geometry, the definition of a tiling is an arrangement of shapes
that covers an entire flat surface that goes on forever in all directions,
called a plane, without gaps or overlaps (Figures 1D–F). To understand
the science of tilings, mathematicians are interested in the central
question: “what shapes can be used to form tilings?” This is called The
Tiling Problem. Because the shapes in tilings can be so varied (jagged,
curvy, pointy, big, or small), it is impossible to answer this question
without simplifying it.

To simplify The Tiling Problem so that we may hope to solve it, we
must restrict the conditions of the problem in three ways. First, we
require that all the individual tiles in the tilings have the same shape

TILES

The individual shapes in
a tiling are called tiles.

and size, meaning they are congruent. These are called monohedral
tilings (Figures 1E, F). Second, we require that the single tile used to

MONOHEDRAL

TILINGS

Tilings in which all of
the tiles are congruent
to one another are
called monohedral
tilings.

create the tiling be a polygon, which is a shape bounded by straight
lines, like a triangle (three sides) or a pentagon (five sides). Last, we
required that the polygon be convex, meaning its corners all point
outward, as in Figure 1E. 3-sided polygons are called triangles; 4-sided

TRIANGLES

3-sided polygons are
called triangles.

polygons are quadrilaterals; 5-sided polygons are pentagons; 6-sided

QUADRILATERALS

4-sided polygons are
quadrilaterals.

PENTAGONS

5-sided polygons are
pentagons.

polygons are called hexagons; in general, polygons with n sides areHEXAGONS

6-sided polygons are
called hexagons.

called n-gons.

n-GONS

In general, polygons
with n sides are called
n-gons.

When we use these limitations, our simplified version of The Tiling
Problem, called The Tiling Problem forConvex Polygons, asks: “Which

CONVEX

POLYGONS

Shapes whose
boundaries are straight
line segments and
whose corners all point
outward are called
convex polygons.

convex polygons can be used to form monohedral tilings of the
plane?” (You can try this for yourself by following the direction in
Appendix A). The solution to The Tiling Problem for Convex Polygons
has a rich history, spanning over 100 years and involving many people
(Table 1). Some of the people who contributed to this problem’s

Table 1

History of the tiling
problem for convex
polygons until 1985.

1918 · · · · · ·•
Karl Reinhardt proved there are exactly three types
of convex hexagons that can tile the plane [1].

1918 · · · · · ·•
Karl Reinhardt discovered pentagons of Types 1–5
in Figure 2.

1968 · · · · · ·•
Robert Kershner discovered 3 more types of
pentagons (Types 6, 7, and 8) [2].

1972 · · · · · ·•
Iven Niven proves any convex polygon with n ≥ 7
sides will not tile the plane [3] .

1975 · · · · · ·•

Kershner’s work was described in a Scienti�c
American article [4], which was read by two
separate people who were intrigued enough by
this problem to investigate it for themselves.

1975 · · · · · ·• Richard James III discovered Type 10.

1977 · · · · · ·•
Marjorie Rice, a homemaker from California
discovered Type 9 and 11–13.

1985 · · · · · ·• Rolf Stein found Type 14.

Table 1
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solution were not professional mathematicians; they were just curious
people who asked “Why?” We hope this encourages you to do so as
well!

ISOHEDRAL TILINGS - RECIPES FOR TILINGS

Imagine that you have two copies of the same tiling, one lying on top
of the other so that they are perfectly aligned. Now picture sliding the
top copy in some direction so that the top copy again perfectly aligns
with the bottom copy. Such amotion is called a symmetry of the tiling.

SYMMETRY

A symmetry of a tiling is
a way to move a tiling
so that the “before
picture” and the “after
picture” are identical.

Another way to understand the idea of a symmetry of a tiling is to
think of a “before picture” and an “after picture”—if you slide a tiling
and the before picture and the after picture are exactly the same, then
the direction and distance that you slid the tiling is a symmetry of the
tiling. To describe the complexity of the symmetries of a monohedral
tiling, we can ask whether or not, for any two tiles in that tiling, there
is a symmetry of the tiling that moves the first tile to the second tile. If
the answer is yes, we say the tiling is isohedral.

ISOHEDRAL

If a monohedral tiling T

has the property that
for any two tiles T1 and
T2 in T , there is a
symmetry of T that
moves T1 to T2, we say
T is isohedral.

Isohedral tilings look the same around each tile, so we can understand
how the shapes fit together in the whole tiling just by understanding
what is happening around the boundary of any one tile. The way tiles
fit around each other in an isohedral tiling is described by an incidence
symbol, which can be viewed as a sort of recipe for how a shape
can tile the plane (see Appendix B to explore the idea of incidence
symbols.)

HOWWE FOUND A NEW TYPE OF PENTAGON

Led by our curiosity, we began to look for common features of
the types of tilings known at the time (types 1–14 in Figure 2).
We made two important observations, which generated even more
questions!

First, types 1–5 can produce isohedral tilings. In types 6–14, if you
cluster together two or three pentagons to act like a single tile, then
that cluster produces an isohedral tiling; some types form tilings by
clusters of two pentagons, as in Figures 2G, L, and others form tilings
by clusters of three pentagons, as in Figures 2J, N. This observation
guided us to consider how we might discover new convex pentagons
that similarly tile the plane in isohedral clusters.

Our second observation was, along the boundaries of the clusters in
tilings of types 6–14, we saw that the middle part of the edges of
some pentagons met the corners of other pentagons, as illustrated
by the red points in Figure 2N. We call these points flat nodes. We

FLAT NODE

A flat node in a k-block
transitive tiling by
pentagons is a point on
the boundary of a
k-block where the
corner of one
pentagon meets a
point in the middle of
an edge of another
pentagon.

K-BLOCK

TRANSITIVE

k-block transitive tilings
are those in which
identical clusters of k
pentagons, acting as a
single tile, form an
isohedral tiling.

wondered howmany flat nodes there might be in each cluster, and we
proved that in tilings involving clusters of two pentagons, there can be
at most two flat nodes per cluster. Similarly, in tilings involving clusters
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A B C

D E F

G H I

J K L
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Figure 2

Figure 2

The 15 types of convex
pentagons that can
tessellate the plane.
(A) Type 1:
D+ E = 180◦. (B) Type
2: C+ E = 180◦; a = d.
(C) Type 3:
A = C = D = 120◦;
a = b,d = c+ e. (D)
Type 4: A = C = 90◦;
a = b, c = d. (E) Type 5:
C = 2A = 90◦; a = b,
c = d. (F) Type 6:
C+ E = 180◦, A = 2C;
a = b = e, c = d. (G)
Type 7: 2B+ C = 360◦,
2D+ A = 360◦;
a = b = c = d. (H) Type
8: 2A+ B = 360◦,
2D+ C = 360◦;
a = b = c = d. (I) Type
9: 2E+ B = 360◦,
2D+ C = 360◦;
a = b = c = d. (J) Type
10: E = 90◦,
A+ D = 180◦,
2B− D = 180◦,
2C+ D = 360◦;
a = e = b+ d. (K) Type
11: A = 90◦,
C+ E = 180◦,
2B+ C = 360◦;
d = e = 2a+ c. (L) Type
12: A = 90◦,
C+ E = 180◦,
2B+ C = 360◦;
2a = c+ e = d. (M)

Type 13: A = C = 90◦,
2B = 2E = 360◦ − D;
c = d, 2c = e. (N) Type
14: D = 90◦,
2E+ A = 360◦,
A+ C = 180◦;
b = c = 2a = 2d. (O)

Type 15: A = 60◦,
B = 135◦, C = 105◦,
D = 90◦, E = 150◦;
a = 2b = 2d = 2e.

of three pentagons, there are at most three flat nodes. This was crucial
to understanding all the possibilities.

Using these observations, we developed a computer algorithm to
search for all possible pentagons that can produce these clustered
tilings in which the sizes of the clusters are up to four. Type 15 (Figure
2O) was discovered through this computerized search. The algorithm
works as follows. First, flat nodes are placed on the boundary of a
template cluster of three pentagons. Second, an isohedral type was
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chosen for the cluster (out of 81 possible types) and the cluster was
labeled according to the “recipe” for that isohedral type. Third, copies
of the clusters were placed around a central copy of the cluster,
according to the isohedral recipe. Fourth, the corners and sides of
the individual pentagons of the clusters were labeled (there are many
ways to do this, and the computer checks them all). Finally, from
the resulting figure, equations describing the sides and angles of the
pentagons were generated. The steps of this process are illustrated in
Figure 3.

Figure 3

Figure 3

A 3-block cluster that
generates an isohedral
tiling. The red and blue
labels and arrows
indicate the incidence
symbol [a+b+c+d+

e+f+; a+e+d−c−b+

f+]. To understand the
incidence symbol, see
Appendix B.

For the choice of labeling of pentagons at right in Figure 3, we see in
the center of the figure that there are two corners labeled B and one
corner labeled D; that arrangement gives us Equation 2B+ D = 360◦.
We also see relationships among the sides; toward the middle of the
figure, that b = d and b = e, and on the right side, taking into account
the side labeled a extends over a flat node,we see that a = e+d. Writing
down all such equations, we get the following equations:

2A+ B+ C = 360◦

2E+ A = 360◦

2D+ 180◦ = 360◦

2C+ E = 360◦

2B+ D = 360◦
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e = b = d

a = e+ d

These equations simplify those in Figure 2O. To justify this was a new
type, we verified that we could make a pentagon with the specific
angles and side lengths, and that such a pentagon did not satisfy any
of the equations that define Types 1–14 (check for yourself!).

After our discovery of Type 15, French mathematician Micheal Rao
heard the news and decided to investigate the problem. In doing so, he
proved that the pentagon we discovered completed the classification,
so types 1–15 form the complete classification of pentagons that tile
the plane ([5]1 ), settling the longstanding Tiling Problem for Convex

1 M. Rao posted an
article on the online
repository ArXiv, but
the article has not
yet been verified
through a process of
peer review.

Polygons!

SUMMARY

Often, in discovering new mathematical facts and theories, it truly
“takes a village" in which individuals contribute in ways big and small
to help solve a big problem, and this has certainly been the case with
the tiling problem for convex polygons. Another important part of
discovery is curiosity. We encourage you to always ask why whenever
you encounter a newmathematical fact, formula, or procedure. Try to
answer that question for yourself, because that is how we arrive at the
new truths of mathematics and science.
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APPENDIX A: CUT-OUTS: WHICH OF THESE TILES CAN

TESSELLATE THE PLANE?

Directions: Cut out the individual shapes outlined in black and see if
you can form tilings using copies of each kind of shape. Youmight find
it easier if you use card stock instead of plain paper. Is a tiling possible
or impossible, and why?
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APPENDIX B. CUT-OUTS: ISOHEDRAL TYPES

Directions: Cut out the shapes below and assemble them according to
the incidence symbol. Lines or arcs of the same color fit together.
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