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Mountain-block groundwater recharge is a crucial freshwater source in arid to semiarid

watersheds worldwide; yet its quantification is difficult due to (1) hydrogeological

heterogeneities especially in bedrock-dominated regimes, (2) drastic altitudinal ranges

in climate, land use and land cover, and (3) mixing with deep groundwater derived from

adjacent basins (i.e., interbasin groundwater flow). In this study, we test the utility of

soil water-balance (SWB) modeling to quantify mountain-block groundwater recharge

in the South Fork Tule River watershed in the California Sierra Nevada Mountains. This

1,018 km2 watershed is instrumented with 3 USGS stream gages that allow for the

development of a refined recharge (i.e., baseflow) calibration dataset via multi-objective

optimization-based hydrograph separation. The SWB model was used to compute

groundwater recharge and other water balance components at a daily time step using a

30-m grid cell size for a 40-year (1980–2019) study period. Mean annual recharge and

runoff were estimated at 3.7 in/yr (3.0 m3/s) and 1.4 in/yr (1.2 m3/s), respectively, with

modified Nash Sutcliffe Efficiency indices of 0.61 between baseflow and SWB-derived

recharge, and 0.90 between hydrograph separation- and SWB-derived runoff. There is

a strong correlation between annual recharge and rainfall (Pearson R = 0.95, p < 0.001)

which attests to short residence times in the unsaturated zone and the immediate impact

of droughts in 1990, 1999, and 2013. However, results of a modified Mann-Kendall

trend analysis indicate no directional trends in recharge or runoff throughout the study

period. Parameter sensitivity analyses reveal a persistent overprediction of recharge over

baseflow that is particularly pronounced in the upper reaches of the watershed. This

is likely related to the SWB model only considering soil characteristics at the surface

and not simulating the fate of potential recharge below the root zone where it may

be impeded from reaching the aquifer by shallow, impermeable bedrock. This limitation

should be considered carefully for future water supply projections in this and comparable

bedrock-dominated settings.
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INTRODUCTION

Background
Mountain-block groundwater recharge (MBGR) represents the
inflow of groundwater to lowland aquifers from adjacent
mountains (Carling et al., 2012; Markovich et al., 2019). MBGR
is a significant component of the hydrologic cycle, but it is
notoriously difficult to quantify due to a lack of observational
data (Kao et al., 2012; Yao et al., 2017; Markovich et al.,
2019). The resulting uncertainty represents a key challenge
in water sustainability assessments, particularly in arid to
semiarid settings, such as the U.S. Southwest, where prolonged
droughts coupled with drastically increasing water demands
for agricultural and municipal supply resulted in widespread
groundwater overdraft (Scanlon, 2004; Carling et al., 2012).

Early attempts to quantify MBGR at the watershed scale were
based on empirically derived recharge to rainfall relationships
(Maxey and Eakin, 1949), but more refined water balance models
have shown to be the more reliable tools for this task (Healy
and Scanlon, 2010). The main appeal of the water balance
method is its universality and adaptability (Healy et al., 2007)
because governing equations for the individual components
(precipitation, evapotranspiration, etc.) do not specifically reflect
mechanisms of subsurface flow and can thus be applied to
diverse hydrologic settings (Healy and Scanlon, 2010). Governing
equations can also be derived to reflect a variety of control
volumes, from a column of soil (i.e., soil-water-balance) to an
entire watershed (Healy et al., 2007). Additionally, as long-term
climatic and hydrologic input data have become more readily
available, recent water budget applications have facilitated new
time series analyses of recharge (Dubois et al., 2021; Li et al.,
2021).

A major limitation of the water balance method is its
inability to capture compartmentalized water that transits in
and out of the system on scales longer than the typical year-
long scale watersheds are evaluated at (McDonnell, 2017). As
an illustration, Martinec (1975) analyzed radioactive isotope
tracers (i.e., tritium) in streams in the Swiss Alps, and found
that snowpack runoff originated from precipitation that occurred
several years prior to the actual measurement. Other issues arise
from uncertain assumptions about hydrologic parameters such
as changes in water storage, which is infrequently monitored so it
is often wrongly approximated to be negligible (Flerchinger and
Cooley, 2000; Scott and Biederman, 2019). Yet, in a study on
groundwater recharge in the California Sierra Nevadas, Safeeq
et al. (2021) found the water balance model to underestimate
recharge when compared to estimates from groundwater well
data, implying the importance of considering storage change in
water balance approaches.

Several point-scale recharge estimation methods that rely on
direct measurements at a specific location (i.e., a groundwater
well) over time have been used to document MBGR. These
include, e.g., assessments of groundwater table fluctuations
(Healy and Cook, 2002); ionic mass balances for approximating
gross inputs and outputs of water (Wilson and Guan, 2004;
Aishlin and McNamara, 2011); and using isotope and noble
gas geochemistry to estimate groundwater ages and recharge

sources (Manning and Solomon, 2003, 2005; Anderson et al.,
2005; Ma et al., 2009; Bowen et al., 2014; Markovich et al.,
2021). While these approaches have shown to be useful in
documenting MBGR, they have been of limited use for the
quantification of MBGR rates due to the difficulty of obtaining
sufficient data for a watershed-wide analysis. This is particularly
a problem in mountainous settings where rainfall and recharge
rates are typically highest in the undeveloped uplands, for which
there are usually only limited groundwater well or aquifer
parameter (e.g., specific yield) data available (Hagedorn et al.,
2011). Groundwater well testing-based methods have, however,
been widely used to derive calibration targets for water balance
models despite uncertainty associated with scale (Singh et al.,
2019; Walker et al., 2019). For instance, water table fluctuations
represent current recharge events at the well screen, while an
ionic mass balance represents mean recharge between where
rainfall occurred and where water first entered the aquifer. Age
dating tracers, in turn, represent mean recharge between where
water first entered the aquifer and the groundwater discharge
point, i.e., the well screen. Given these observations, it is not
clear which of the groundwater well testing-based methods
best resembles the potential recharge outputs of the water
balance approach. Methods that rely on groundwater testing are
further limited by groundwater mixing as in the U.S. Southwest,
groundwater is often derived from long-screen wells intercepting
multiple transmissive units. In those instances, groundwater
often represents a complex mixture of modern, MBGR-
derived proportions and premodern groundwater proportions,
potentially derived externally via interbasin groundwater flow
(IGF) (e.g., Bexfield et al., 2012; Hagedorn, 2015; Gardner et al.,
2020).

Hydrograph separation and the quantification of baseflow
has proven to be a valuable alternative to groundwater well
testing for calibrating soil water balances and estimating MBGR
rates. Baseflow includes only the groundwater input to streams,
i.e., groundwater discharge, which by conservation of mass
should equal groundwater recharge to the streams’ drainage
basin (Nielsen and Westenbroek, 2019). Several studies have
demonstrated the utility of this approach (Lee et al., 2006;
Zomlot et al., 2015; Trost et al., 2018; Day, 2019; Nielsen
and Westenbroek, 2019). However, one problem of hydrograph
separation is that available methods rely on subjective input
parameters such as the choice of algorithm to connect lowest
values in the stream hydrograph or the distinction of recession
periods, etc. (Sloto and Crouse, 1996; Tan et al., 2009; Cheng
et al., 2016). As a result, uncertainty in the baseflow output
(and associated recharge calibration) is generally not addressed
based on specific input parameter applicable to a specific
setting, but rather through the use of an average value obtained
from multiple methods run on default parameters (Day, 2019;
Nielsen and Westenbroek, 2019). Recent studies have presented
a new and more objective hydrograph separation approach
that combines flow estimates from recursive digital filtering
(RDF) with chemical mass balance through multi-objective
optimization (Hagedorn, 2020; Hagedorn and Meadows, 2021).
The utility of this method to provide calibration targets for water
balance models in mountainous watersheds with pronounced
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spatiotemporal variability in the stream hydrograph and recharge
has not yet been tested.

The purpose of this study is to apply the USGS Soil-Water-
Balance (SWB) model (Westenbroek et al., 2018) in combination
with optimized hydrograph separation to estimate MBGR in the
South Fork Tule River watershed in the Sierra NevadaMountains
(California, USA). This watershed is largely undisturbed and
has been instrumented with three USGS streamgages for multi-
year stream hydrograph records (Hagedorn, 2020). SWB is based
on a modified Thornthwaite-Mather soil-moisture accounting
method (Thorthwaite and Mather, 1955, 1957) which estimates
net infiltration of water out of the root zone by calculating excess
soil moisture (i.e., potential recharge), where changes in the soil
moisture reservoir is updated on a daily basis. The distinction of
SWB calculating net infiltration rather than actual recharge lies
in its lack of consideration of travel time of water to reach the
groundwater system once infiltrating past the root-zone depth.

SWB has been applied in numerous studies, but few of
which have encompassed mountain-front regions. Trost et al.
(2018) used SWB to model groundwater recharge to the glacial
aquifer system east of the Rocky Mountains, but did not
adjust calibration parameters to specifically represent MBGR
within the domain. As a result, calibration adjustments were
made to best reflect average conditions across the watersheds
which largely encompassed non-mountainous regions. Nielsen
and Westenbroek (2019) developed a model for the state of
Maine using a similar calibration approach and attempt to
quantify parameter uncertainty through inverse (i.e., PEST;
Doherty and Hunt, 2010) modeling. Importantly, this approach
allows assessing the uncertainty resultant of user-defined input
parameters such as runoff curve numbers, maximum net
infiltration rates, and root-zone depths. However, the approach
does not consider uncertainty associated in climate datasets, soil
data mapped by the Natural Resources Conservation Service
(NRCS), or land-use input grids, which tend to exert they highest
influence on recharge magnitude based on previous SWB studies
(Mair et al., 2013; Harlow and Hagedorn, 2018; Trost et al., 2018).

In this study, SWB was run over a 40-year dataset (1980–
2019) placing special emphasis on the use of optimized baseflow
calibration targets developed from 3 evenly distributed stream
gages (Figure 1) to derive refined recharge estimates. The effects
of user-defined input parameters on recharge magnitude were
assessed in a sensitivity analysis. Furthermore, recharge and
runoff outputs were analyzed through a series of Mann–Kendall
(MK) trend tests, corrected for short-term autocorrelation effects
to identify upward or downward trends over the course of
the modeling period. This study provides valuable benchmark
values of recharge and illuminates methodological limitations
that require further study for improved recharge analysis in
mountainous settings.

Local Setting
The Tule River Basin is located in the southern-central section
of Tulare County in south-central California (Figure 1). The
headwaters of the South Fork Tule River lie in the southern Sierra
Nevada Mountains, and it discharges into Lake Success to the
west. The topography is characterized by steep western-facing

slopes connecting the highlands with elevations around 2,000m
above sea level (asl) to the basin with elevations around 200m asl.

This study area includes the 224 km2 Tule River Indian
Reservation on the south-central portion of the domain. One
thousand one hundred and sixty-eight people reside on the
reservation (U.S. Census Bureau, 2019) relying on both surface
and groundwater resources from the South Fork Tule River Basin
to meet water demands. Water deficits have become increasingly
evident in late summer through early fall due to freshwater
scarcity and lack of infrastructure (Natural Resources Consulting
Engineers, GEI Consultants, Native American Rights Fund, and
Kenney & Associates, 2013).

The region has a Mediterranean to semi-arid climate with
warm, dry summers and cool, wet winters (State of California
Department of Water Resources, 2014). Precipitation ranges
from 67–79 inches in the alpine highlands to 31 inches in
the western lowlands (State of California Department of Water
Resources, 2014). Highest and lowest annual precipitation during
the study period occurred in 1983 (50 in) (Figure 2a) and 2013
(8 in) (Figure 2b), respectively. The warmest year recorded
during the study period was 2014, with an average maximum
temperature of 23◦C and minimum of 8◦C (Figure 2c).
The coolest year recorded was 1982 with average maximum
and minimum temperatures of 19◦C and 5◦C, respectively
(Figure 2d).

Water demands are expected to be challenged by projected
effects of climate change. According to the Joyce et al. (2009),
the San Joaquin Valley, under low to medium-high intensity
IPCC emission scenarios, should experience an increase in
average annual temperature and the occurrence of droughts.
Because of the resulting increase in evapotranspiration rates,
crop water requirements are expected to rise in the San Joaquin
Valley by about 5% (Joyce et al., 2009). Another climate model
by VanRheenen et al. (2004) found that this projection could
result in a reduced late spring snowpack by up to 50%. The
Sierra snowpack alone accounts for nearly half of the surface
water storage in California (Joyce et al., 2009), and mitigation
techniques will need to accommodate for this temporal, spatial,
and volumetric shift of water across the state. Furthermore,
due to the combination of reduced snowpack, earlier melt, and
increased evapotranspiration rates, high-elevation catchments
with shallow soil, such as those throughout the Sierras, may
lose their ability to carryover storage and buffer subsequent year
streamflow (Safeeq and Hunsaker, 2016).

Land use across the model domain is largely distributed across
four categories (96.8%): evergreen forest (40.2%), herbaceous
land (34.3%), shrub/scrub (17.1%), and deciduous forest (5.2%)
(Multi-Resolution Land Characteristics Consortium (MRLC),
2018) (Figure 3a). Based on the United States Department of
Agriculture (USDA) NRCS classification of soils, ∼70% of the
model domain is made up of rock outcrop with slopes up to 75%.
The majority of land in this category is overlain by thin soils. This
has important implications for the analysis of this study, as input
parameters of available water capacity and hydrologic soil group
classifications may not be accurate for rock outcrops.

The geology of the model domain is dominated shallow
crystalline bedrock of the Sierra Nevadan batholith which
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FIGURE 1 | Location and extent of model domain with calibration subwatersheds and corresponding USGS gage stations.

consists of Mesozoic plutonic rocks including granite, quartz
monzonite, granodiorite, gabbro, and quartz diorite. Pockets of
mixed pre-Cenozoic metasedimentary and metavolcanic rocks
and Mesozoic ultramafic rocks are found in the southern
portions of the model domain. Paleogene to Quaternary alluvial
deposits dominate the western lowlands (Jennings et al., 2010)
(Figure 3b).

The South Fork Tule River basin is characterized largely as
an unconfined aquifer made up of Pliocene to Holocene-aged
alluvial fan deposits. The unsaturated zone in this region is
broken into a 5–7 ft thick soil root zone underlain by a vadose
zone ranging from 49 to 164 ft thick (Ruud and Harter, 2002).
The majority of the study area, however, is comprised of steeply-
sloping plutonic rocks where soil layers are thin and the water
table depth exceeds 6.6 ft (NRCS USDA, 2014), suggesting water
storage in fractured-rock aquifers.

Five major fault systems have been mapped within the
model domain (Figure 3b). Depending on fracture geometry,
such features may act as either a conduit of flow (Barton
et al., 1995; Thyne et al., 1999), creating an anomalously
high hydraulic-conductivity region, or as an impediment to
flow which may force water that would otherwise find its
way to an adjacent aquifer to collect and remain within
the bedrock (Mayer et al., 2007). Faults and fractures may
also contribute to routing of water between basins, i.e.,
interbasin flow (Markovich et al., 2019). SWB is not equipped
to simulate the effects of such geological heterogeneities on
groundwater recharge.

MATERIALS AND METHODS

Overview of SWB Model
SWB computes net infiltration out of the root zone (hereafter
referred to as recharge) for each model cell as the difference
between soil moisture for the current simulation day (θt) and the
soil’s field capacity (θFC):

recharge = θt − θFC (1)

With:

θFC = TAW = AWC × rooting depth (2)

Where TAW is the total available water and AWC is available
water capacity, the latter representing the difference between a
soil’s field capacity and its permanent wilting point (θWP) (Barker
et al., 2005). Soil moisture is estimated using a water-balance of
the soil column:

θt = θt − 1 + rainfall + runon + snowmelt (3)

− interception − runoff − ET

Where θ(t − 1)is the soil moisture on the previous simulation day
and ET is actual evapotranspiration.

In addition to soil moisture, SWB takes into consideration
interception and snow as storage reservoirs. SWB calculates
each component of the water balance equation using empirical
methods in the following sequential order. First, precipitation
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FIGURE 2 | (a) Average annual precipitation high in 1983; (b) average annual precipitation low in 2013; (c) average annual maximum temperature high in 2014; (d)

average annual minimal temperature low in 1982. Calibration watershed outlined in black.

is partitioned into rainfall or snowfall; the latter accounted
for via a temperature-based snow index method (Westenbroek
et al., 2010). On any given day, snow may accumulate, melt,
or both. Next, rain or snow interception is simulated via the
bucket method (Westenbroek et al., 2010), where a constant
interception value specific to each land use type must be
exceeded by rain or snowfall for infiltration to occur. Potential
evapotranspiration (PET) is then calculated with the Jensen
and Haise (1963) method, which was chosen because it was
developed using evaporation data from a variety of vegetation
grown in the western United States. This method is generally
accepted as one of the more favorable for PET estimation where
detailed meteorological data are unavailable, and its effective use
particularly in semi-arid regions has been documented (Saeed,
1986; Al-Sha’lan and Salih, 1987; Shirmohammadi-Aliakbarkhani
and Saberali, 2020).

Interim soil moisture is calculated to account for water that is
potentially available for actual evapotranspiration (AET):

θinterim = θt − 1 + rainfall+ snowmelt + runon− runoff (4)

Where θt−1 is the soil moisture on the previous day, runon
includes water input to a cell from upslope cells and is determined
according to downhill routing simulated by the input flow
direction grid, and runoff was calculated using the curve number
method (Cronshey et al., 1986). The curve number method

defines runoff in relation to the difference between precipitation
and an initial abstraction term, the latter representing all
processes that might act to reduce runoff, including interception
by plants and fallen leaves, depression storage, and infiltration
(Woodward et al., 2003). Under wetter conditions a larger
fraction of θinterim is more readily available for AET than on
drier days when soil moisture is more strongly held within the
soil matrix (Dunne and Leopold, 1978). To simulate this, SWB
calculates the fraction of interim soil moisture readily available
for AET (f ) as:

f =
(θinterim − θWP)

(θFC − θWP)
(5)

Where θWP is the wilting point of soil and θFC is the field capacity.
Lastly, AET from the soil storage reservoir is calculated using

the Thornthwaite (1948) method as a function of f and PET:

AET = PET × f

(

θinterim

θFC

)

(6)

The year 1980 was ran as a “spin up” year to set initial conditions
of percent soil moisture and snow cover storage. As such, 1980
SWB outputs were excluded from recharge analysis.
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FIGURE 3 | (a) Multi-Resolution Land Characteristics Consortium (MRLC) (2018) land use/land cover classification input raster of model domain. (b) Surficial geology

units and faults across model domain (USGS). Calibration watershed outlined in black.

Model Inputs
The SWB model requires datasets of land use/land cover, flow
direction, hydrologic soil group (HSG), and available water
capacity. These include climate data and a land use lookup table
with user-defined parameters for each land use and hydrologic
soil group. The files, as well as their sources and roles in themodel
are described as follows:

Daily gridded climate data were obtained at a 1-km resolution
from the National Oceanic and Atmospheric Administration
(NOAA) Daymet database (Thornton et al., 2020). The
data includes precipitation and maximum and minimum
temperatures derived from the Daymet algorithm which
interpolates and extrapolates ground-based observations
across North America. Climate parameters in regions
lacking instrumentation are derived from distance-weighted
observational data from the nearest stations.

The land use grid was obtained through the USGS National
Land Cover database (Multi-Resolution Land Characteristics
Consortium (MRLC), 2018) at a resolution of 30m. Land
use types are categorized based on the Anderson Level II
classification. Due to the minimal development in the area (total

of 0.2% developed land), changes in land use over the course of
the model run are considered negligible thus only one land use
grid was considered over the 1980–2019 study period.

SWB assumes that surface and groundwater systems are
coincident within the model domain, so a flow direction grid is
used to route water to adjacent downslope cells. This grid was
developed from a digital elevation model (DEM) (Gesch et al.,
2002) following methods described by Harlow and Hagedorn
(2018).

Available water capacity (AWC) AWC is used in combination
with input parameter root-zone depth to calculate TAW
(Equation 2), or the maximum amount of water able to be held in
the soil reservoir. Gridded inputs of available water capacity were
obtained from Soil Survey Geographic (SSURGO) (NRCSUSDA,
2014) at a 100-m resolution (Figure 4a).

Hydrologic soil groups (Figure 4b) are defined by USDA
NRCS based on infiltration capacity of soils. A rating is
determined for a specified volume of soil down to the depth
of either the water table or an impermeable layer (whichever
is shallower), based on the lowest hydraulic conductivity
measured in the profile (Mockus et al., 1972). Four characteristic
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FIGURE 4 | Soil characteristics input grids; (a) available water capacity of soil in inches of water per foot of soil; (b) distribution of hydrologic soil groups. Calibration

watershed outlined in black.

groups are recognized from A to D (represented in SWB
as 1–4), where an A soil is described as having low runoff
potential and high infiltration rates, and a D soil has low
infiltration rates and high runoff potential when wetted
(Cronshey et al., 1986). For the <1% of cells where no
HSG was defined, an assignment to group D was given to
produce the most conservative estimates of potential recharge
and to prevent cells from being omitted from the model.
Characteristic soil textures and corresponding infiltration rate
ranges are summarized by Hawkins et al. (2009) based
on categorization by the NRCS after studying qualities and
properties of more than 14,000 soil series (Westenbroek et al.,
2010).

The land use lookup table contains parameters for each land
use and hydrologic soil group combination, including runoff
curve numbers, maximum net infiltration rates, root zone depth,
interception values for growing and non-growing seasons, and
growing season start and end dates (Figure A1). Each parameter
in this table is discussed in greater detail below.

A range of curve numbers typical for each HSG was derived
by Hawkins et al. (2009), which was used along with previously
published values specific to land use-HSG combinations in
the land use lookup table of this study. SWB modifies these
curve numbers according to the precipitation amounts from
the previous 5-day period. Precipitation amounts are used to
characterize soil-moisture conditions, which are differentiated
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into antecedent runoff conditions I, II, and III, or dry, average,
and near saturation, respectively. Initially, curve numbers
assigned in the land use lookup table are specified for antecedent
runoff condition II (“normal” conditions). Higher soil moisture
(i.e., antecedent runoff condition III) will force an increase in
curve number from normal conditions because more runoff is
likely to occur, while lower soil moisture yields a decrease in curve
number (Mishra and Singh, 2003; Westenbroek et al., 2010).

Maximum net infiltration rates are used by the model as
thresholds to prevent net infiltration estimates that are not
typical given the soils and underlying geology in a given cell.
Influxes of water occurring at a greater rate than the soil can
accommodate is routed to runoff as rejected net infiltration.
In this study, maximum rates were assigned as area-weighted
averages for each land use-hydrologic soil group combination
using saturated hydraulic conductivity data for each soil group
(Web Soil Survey, 2014). Some calculated maximum infiltration
rates were inconsistent with the expected trend of decreasing
hydraulic conductivities from soil groups A-D, which has been
ascribed in previous SWB model sensitivity studies to shallower
root-zone depths and associated water competition between
plant transpiration and infiltration in higher-rated soil types
(Metropolitan Council, 2013; Smith and Westenbroek, 2015).
The sensitivity of the model to these inconsistencies was explored
in the calibration of the model.

Root-zone depths (the effective rooting depth of vegetation)
is considered as the depth beyond which water becomes potential
recharge.Measured data on root-zone depths are not available for
this region, so this parameter was assumed equal to a “Restrictive
Layer Depth” provided by SSURGO. A restrictive layer is defined
as having properties that cause impedance of fluid movement
or inhibit root growth. Determination of this parameter was
accomplished in a similar procedure as the assignment of
maximum infiltration rates: restrictive layer depths were entered
into the soil polygon raster containing HSG assignments, and
the resulting table was unionized with the land use raster. An
area-weighted average root-zone depth was then calculated and
entered into the land use lookup table.

Interception values for deciduous, evergreen, and mixed
forest land use categories were derived from the literature for
deciduous and evergreen species (Xiao et al., 2000), herbaceous
grasses (Corbett and Crouse, 1968) and shrub/scrub vegetation
(Hamilton and Rowe, 1949). Interception for open water;
developed, open space; developed, high intensity; and barren land
was set to 0 based on both observation via Google Earth imagery
and subsequent determination of the lack of vegetation across
these land use categories. Values for developed land of low and
medium intensity were taken from Westenbroek et al. (2010).
Due to lack of more relevant literature-published values and
observation of similarities between land category characteristics,
values for woody wetlands and emergent herbaceous wetlands
were taken from Harlow and Hagedorn (2018). Interception by
cultivated crop land typical of the San Joaquin Valley has to
the authors’ knowledge not been reliably studied, thus values
were taken from suggested default values in the SWB v1.0
manual (Westenbroek et al., 2010). Hay/pastureland within
the domain are similar in density and leaf size to vegetation

categorized as herbaceous land, so the interception values were
considered equal.

The growing season start and end dates were obtained through
the NRCS Agricultural Applied Climate Information System
(AgACIS) for Tulare County by taking the average of several
station data (Fountain Springs, Lindsay, Milo, and Oak Opening)
within themodel domain which record the annual last spring and
first fall freeze (Hedt, 2016). These dates are used in the land use
lookup table to differentiate interception values for each land use
type between their growing and non-growing seasons.

Model Calibration and Evaluation
A manual calibration was performed by adjusting parameters of
the model with the objective of reaching an optimal correlation
between SWB estimates of potential recharge and runoff to
optimized baseflow and runoff derived from streamgage data.
Direct runoff is calculated through hydrograph-separation as
streamflow minus baseflow, which can be equated to the sum
of SWB outputs “runoff outside” and “rejected net infiltration”
(Nielsen and Westenbroek, 2019). “Runoff outside” includes
direct runoff during a precipitation event or Hortonian overland
flow (Chow et al., 1988), and “rejected net infiltration” includes
any water in excess of the maximum infiltration capacity of the
soil, or saturation overland flow (Chow et al., 1988).

The three streamgages—Cholollo Campground (CC)
(station ID 11203580), Reservation Boundary (RB) (station ID
11204100), and Success (station ID 11204500)—are located
along the South Fork Tule River and collectively capture the
varying topographic and climatic regimes of the study area, with
Cholollo Campground lying near the headwaters of the river,
Reservation Boundary in the mid-slope region, and Success
encompassing more of the lowland regions. Data from the
CC and RB subwatersheds allowed for a calibration period
between 2002–2019 and 2001–2019, respectively, and the Success
subwatershed provided data for the calibration period 1981–
1989. To perform calibration, gridded daily outputs of potential
recharge and runoff were first processed to produce annual
sums. The resultant grids were then clipped to the extent of the
drainage area correspondent to each gage station, and spatially
averaged for comparison to hydrograph-separation outputs.

Optimized baseflow and surface runoff constraints from
multi-objective optimization from Hagedorn (2020) were used
as calibration targets for Cholollo Campground and Reservation
Boundary. The lack of time series specific conductivity data
prevented optimized baseflow and runoff constraints for Success.
Given this, the HYSEP sliding-interval method, implemented
in the USGS Groundwater Toolbox program (v1.7; Zhai et al.,
2015), was used to derive calibration targets for that gage.

To evaluate model performance the modified NSE (mNSE)
index (Ritter and Muñoz-Carpena, 2013) was calculated for
recharge and runoff estimates produced by SWB against
streamflow-derived baseflow and runoff:

mNSE = 1 −
1

(ni + 1)2
with ni =

SD

RMSE
− 1 (7)

This statistic was chosen in favor over the NSE (Nash and
Sutcliffe, 1970) to reduce the influence of outliers on model
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evaluation (McCuen et al., 2006). mNSE values range from –∞
to 1, where 1 indicates a perfect fit.

A modified Mann-Kendall (MK) trend test was used to
identify trends in recharge and runoff time series produced by
SWB. Trends were assessed using the R modifiedmk package
(Patakamuri and O’Brien, 2021) following the methodology
outlined by Hagedorn andMeadows (2021). We applied variance
correction, pre-whitening and block bootstrapping techniques
to account for autocorrelation effects typically present in daily
hydrologic time series. Details on these procedures can be found
in the reviews by Hamed and Ramachandra Rao (1998), Yue et al.
(2002), Yue andWang (2004), Hamed (2008), Khaliq et al. (2009),
Önöz and Bayazit (2012), and Dinpashoh et al. (2014).

MODELED RECHARGE

Model Calibration
The baseline model run showed that SWB overpredicted
recharge relative to hydrograph-separation derived recharge
(i.e., baseflow), especially for the upper reach RB and CC
drainages where steep topographic gradients and extensive
bedrock outcrops prevail. This is consistent with findings
from Nielsen and Westenbroek (2019), where SWB produced
estimates of potential recharge significantly higher than baseflow
values in mountainous regions of the U.S. State of Maine where
abundant shallow bedrock outcrop exists. Additionally, because
the root zone depth parameter was assumed as equal to the
“Restrictive Layer Depth” value assigned by the USDA NRCS,
it is possible that this depth is equal to the depth to bedrock in
many regions of the domain, rather than a lower-permeability
soil layer which would still allow water to infiltrate. However,
SWB is able to accommodate lower potential recharge rates where
impermeable surfaces are identified in the input (as defined in
the land use lookup table). Taking this into consideration, the
calibration process was performed in two phases:

Phase I followed standard adjustments to high uncertainty
land use lookup table parameters with the overall goal of
matching SWB estimates to hydrograph-separated baseflow and
runoff. Adjustments made relative to the baseline model include:
(1) increasing interception values by 10% (intercept10plus), (2)
increasing root zone depths by 10% (rz10plus), (3) increasing
curve numbers by 10% (cn10plus), and (4) adjusting maximum
net infiltration rates to fit within typical ranges for HSG
groups (from Hawkins et al., 2009) (maxinfilavg). Phase II
involved adjusting model input parameters with the objective
of simulating more impervious material where shallow bedrock
exists within the model domain. The first adjustment was made
by assigning HSG groups based on the distribution of bedrock in
the domain (bedrock). By overlaying a surficial bedrock shapefile
on the map of hydrologic soil groups, cells were reassigned to
a value of D if bedrock exists in the majority of the cell. The
description of an HSG of D is consistent with this assignment,
as it includes “shallow soils over nearly impervious material”
(Hawkins et al., 2009). The second adjustment made in Phase II
was adding a value for “assumed imperviousness” in the land use
lookup table (imperv). This parameter adds a percentage to the
land-use type to which it is assigned that is treated as impervious.

Land use types which were majorly underlain by shallow bedrock
were given an assumed imperviousness value consistent with low
density developed land (18%) (Westenbroek et al., 2018).

Despite efforts to simulate the effect of impervious bedrock
present throughout the domain, mNSE values reveal no
improvement relative to the baseline model by Phase II
calibration. The RB subwatershed is entirely underlain by
bedrock and encompasses the steepest-sloping regions of the
domain (and associated thin soils). Estimates across RB produced
the lowest mNSE values across all model runs. As an illustration,
mNSE of predicted recharge for the RB subwatershed by the best-
fit run is 0.34, while CC and Success subwatersheds produced
mNSE values of 0.71 and 0.79, respectively. We attribute this
low mNSE to the model’s inability to address the fate of
water below the root zone depth in bedrock-dominated units
and units characterized by thin soils. If a bedrock layer exists
above the water table depth, but below the root zone depth,
all excess soil moisture is treated to reach the aquifer, even
though the bedrock layer will impede vertical water movement
if no fractures or dissolution features for water transport exist.
In result, SWB consistently overpredicted recharge relative to
baseflow (Figure 5). Additionally, SWB calculates the amount
of water that is available for recharge (i.e., infiltrates past the
rooting depth), however timing of recharge is not refined through
this method. For instance, Smith and Westenbroek (2015)
through calibration analysis of an SWB model developed for
the state of Minnesota found that modeled, spatially-averaged
potential recharge across the 35 watersheds in their domain was
significantly more comparable to baseflow values derived from
corresponding streamgages when compared as 15-year averages
rather than annual-based averages.

The optimizedmodel was determined as rz10plus, where root-
zone depths were increased by 10%. Implications of increasing
the root-zone depth include a larger soil-moisture reservoir
and subsequently an increase in available moisture for ET,
suggesting that ET amounts calculated in the baseline run
may be underestimated. However, it is important to note that
adjustments made in the calibration process often produced
an improved model fit in one or more subwatersheds and
a worsened fit in the others. For example, increasing root-
zone depths by 10% improved modeled recharge estimates
in the Success subwatershed relative to baseline, but resulted
in a worsened fit in the CC subwatershed. This suggests
model parameters may not reflect conditions specific to each
subwatershed. There are also several parameter adjustments
which produced an improved fit to one calibration target and a
worsened fit to the other. Notably,maxinfilavg produced a better
fit to baseflow relative to baseline, but a significantly worse fit
to runoff indicating that those adjustments were not reflective
of the true system. These analyses suggest that there is a lack of
complexity in the SWB modeling structure to accommodate the
various regimes present in a mountain-front region.

Spatial and Temporal Trends
Mean modeled annual recharge and runoff across the calibrated
watershed are 3.7 in/yr (3.0 m3/s) at an mNSE of 0.61 and
1.4 in/yr (1.2 m3/s) at an mNSE 0.90, respectively. Estimates
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FIGURE 5 | Bar charts of SWB-predicted recharge vs. baseflow (a,b Hagedorn, 2020; c HYSEP sliding-interval); bar charts of SWB-predicted runoff vs. stream runoff

(d,e Hagedorn, 2020; f HYSEP sliding-interval).

within the calibrated portion of the model (i.e., within the
watershed boundary) were comparable to those produced in
past studies conducted in similar regions. McCoy and Ladd
(2019) developed an SWB model for fractured-rock aquifers
in Virginia between 1996 and 2015 and estimated an average
recharge of 5.3–8.1 in/yr (135–206 mm/yr). The average annual
precipitation across themodel domain wasmore than double that
of the region studied herein, likely contributing to discrepancies
between recharge estimates. Safeeq et al. (2021) applied a water
balance method to watersheds in the Southern Sierra Critical
Zone Observatory (SSCZO) and the Kings River Experimental
Watersheds (KREW), which includes the Tule River watershed.
They reported annual average estimates of recharge for a
headwater catchment within KREW, just north of the Tule
River watershed, at 8.22 in/yr (209 mm/yr) for the period 2009–
2016. This headwater catchment is most similar in elevation
and climatic conditions to the CC subwatershed, where SWB
estimated average annual recharge at 16.7 in (478mm) for the
same time period.

The spatial distribution of recharge across the model grid
(Figure 6) is similar to that of gross precipitation, suggesting a
strong correlation between rainfall and recharge. This correlation
is further supported with a linear regression analysis displayed in

Figure 7. Recharge rates are highest near the headwaters of the
river and lowest in mid-slope and lowlands in the study area,
a pattern that is parallel to that of precipitation. Conversely,
spatial distribution of recharge within the mid-slope region of
the domain slightly differs from patterns of precipitation, likely
a result of the downhill routing function implemented by SWB.

On average, recharge in the calibrated portion of the domain
accounted for 15% of gross precipitation during the study period.
By comparison, Manna et al. (2016) found an average recharge-
to-rainfall ratio in an upland sandstone aquifer in southern
California of 4.2%, nearly four times lower than the ratio
estimated herein. Conversely, Mair et al. (2013) computed SWB
recharge to rainfall ratios across the island of Jeju in Korea of
42%. Schreiner-McGraw and Ajami (2021) applied an integrated
surface water-groundwater model to simulate MBGR in the
Kaweah River watershed in the Sierras of central California and
found MBGR to account for 25-45% of annual precipitation.
However, numerous dams and hydroelectric plants along the
Kaweah strongly affect streamflow and it is not clear how this
development was taken into account in the model calibration.
Regardless, we attribute the discrepancy between our and
previously published recharge to rainfall ratios for similar settings
to the location of our calibration subwatersheds in relatively
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FIGURE 6 | (a) Potential recharge distribution across model domain in highest recharge year 1983. (b) potential recharge distribution across model domain in lowest

recharge year 2013. Calibration watershed outlined in black.

high-elevations and steeper terrains. More distributed calibration
data for mid-stream and lowland streamgages are needed for a
more reliable watershed-wide assessment of potential recharge
and recharge to rainfall ratios.

Potential recharge estimates vary amongst land use types.
Across the four most common land use types in the calibrated
area (evergreen forest, herbaceous land, shrub/scrub, and
deciduous forest) annual average recharge rates were 19.2 in
(489mm), 23.8 in (604mm), 22.9 in (582mm), and 23.1 in
(586mm), respectively. Rates within herbaceous land were
highest among land use types, where average daily recharge range
from 0 to 0.08 in (2mm), attributed to low interception rates and
high infiltration capacities. High intensity developed land makes
up 0.01% of the calibrated area and yielded the lowest recharge
rates amongst land use types with an average annual recharge of

1.1 in (26mm). Low rates are likely a result of the high runoff
potential of impervious surfaces common in this category.

Results of the optimized model showed that recharge
estimates do not significantly vary between hydrologic soil group
classifications. Across soil group A, recharge estimates averaged
21.2 in/yr (538 mm/yr). Soil group B yielded averaged recharge
of 22.8 in/yr (580 mm/yr). Soil groups C and D produced
average recharge of 22.2 in/yr (564 mm/yr) and 20.3 in/yr (516
mm/yr), respectively. Considering soil group alone, recharge
estimates are expected to decrease from soil group A–D; however,
since HSG classifications are only used by SWB as spatial
reference for the distribution of parameters defined in the land
use lookup table, these results suggest that those parameters
may not be consistent with qualities characteristic of each HSG
group. These inconsistencies likely arise from the uncertainty
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FIGURE 7 | Linear regression plot of spatially-averaged gross precipitation vs. SWB recharge across calibrated watershed during study period.

associated with the assignment of HSG assignments of the 70%
rock outcrop makeup of the domain, as HSG classifications
are designed for specific soil textures that do not consider
hard rock.

Surficial geology in the calibrated area is made up of
plutonic and metamorphic type rocks. Plutonic rocks underlie
72% of the calibrated model region, where recharge estimates
averaged 22.3 in/yr (566 mm/yr). Metamorphic rocks underlie
the remaining 28% of this area, where recharge estimates
averaged 21.1 in/yr (537 mm/yr). Conversely, sedimentary rocks
which are present outside the calibrated portion of the domain,
yielded average recharge rates of 6.7 in/yr (170 mm/yr). The
discrepancy between average annual recharge between hard-rock
and soft-rock types is likely more an attribute of precipitation
distribution across the domain, as SWB does not consider the
effects of surficial geology on recharge potential; sedimentary
rocks occupy the most western portions of the domain, where
precipitation rates are the lowest. Recharge rates estimated by
SWB for plutonic vs. sedimentary rock-dominated regions are
uncharacteristic based upon typical porosity and permeability
characteristics of these materials. Therefore, refined recharge
estimation methods should be considered in this area through
groundwater testing.

There is a strong temporal correlation between recharge and
rainfall with a highest annual mean (7.2 in/yr or 5.9 m3/s)
in the highest annual rainfall year of 1983 (Figure 6a) and
the lowest recharge mean (1.7 in/yr or 1.4 m3/s) coinciding
with the lowest rainfall year of 2013 (Figure 6b). However,
modified MK tests corrected for autocorrelation reveal no
significant upward or downward recharge trends over the

40-year modeling period (Figure 8a; Figure A2) suggesting
that observed large-scale phenomena, i.e., a reduced Sierra
snowpack due to recent warming and precipitation decreases,
had no significant effects on recharge in the South Fork Tule
watershed. Trend tests also show a slight decreasing trend
in runoff over the model period, which would suggest that
components of surface runoff are more influenced by climatic
effects than recharge, however, assessed at p > 0.05 this trend
is insignificant (Figure 8b; Figure A2). A key aspect of concern,
however, is the declining recharge trend for the drought years
1990, 1999, and 2013 that suggests that effects of drought
on low recharge outliers may become more exacerbated in
the future. Extending the modeling time frame to longer; i.e.,
>50 yr periods would certainly increase the confidence in
the trend analysis and should be considered in future follow
up investigations.

Sensitivity Analysis
Results of the sensitivity analysis showed the difficult-to-
measure maximum net infiltration rate (saturated hydraulic
conductivity) and root zone depth parameters had the highest
influence on recharge (Figure 9). Interception values displayed
the lowest influence on predicted recharge, followed closely
by hydrologic soil groups (bedrock). This is consistent with
findings from Trost et al. (2018) who found that their model
was most sensitive to the size of the soil-water reservoir, a
function of root-zone depth and the maximum net infiltration
rate. Our sensitivity analysis also revealed that maximum
net infiltration rates had the largest influence on modeled
runoff and were significantly more influential than any other
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FIGURE 8 | Linear regression plots of (a) SWB recharge and (b) runoff time series during study period.

parameter adjusted in calibration. Given these findings, it
becomes clear that higher resolution soil conductivity and
vegetation root zone depth is needed for improved and more
reliable SWB applications.

Limiting Assumptions
Limitations arise from assumptions made in the SWB model
structure. SWB assumes that surface and groundwater flow
paths are coincident, i.e., flow is routed strictly downhill
according to the DEM-derived flow direction grid. However,
it has been well-documented that interbasin flow occurs in
mountain-block regimes and can constitute a significant portion
of total recharge, especially in semi-arid to arid climates

(Thyne et al., 1999; Belcher et al., 2009; Anderson et al.,
2015). Specifically in plutonic rock mountain ranges,
conduit flow via faults and fractures have shown to
contribute a substantial amount of groundwater between
basins with evidence from geochemical and isotopic
signatures that differ from local recharge (Thyne et al.,
1999).

While the SWBmanual differentiates net infiltration estimates
computed by the model from recharge in specifying that the
code only simulates water that may move past the root zone
depth, the potential recharge estimates for this particular region
likely display larger discrepancies than in a non-mountain-
front regime due to the influence of underlying impermeable
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FIGURE 9 | Sensitivity of model parameters to modeled (a) recharge (b) runoff. See text for description of model runs.

bedrock. Fractures in bedrock are not simulated by the model,
but likely contribute to channelized or “focused” infiltration
across the model domain. Since the model only considers the
subsurface above the root zone depth, it fails to accurately
simulate recharge in regions where mapped soils overlie bedrock
that is below the root zone (Nielsen and Westenbroek, 2019).
Furthermore, this model code is not equipped to account
for travel time of water to reach the groundwater aquifer,
thus refined estimates of recharge timing are limited by
this method.

For some soil groups, assigned AWC values do not
reflect the ability of soils to drain, potentially leading to
overestimates of recharge. For example, soils coded by
SSURGO as A/D represent soils that are poorly drained
which can significantly increase the capacity of soil to hold
water, thus reducing the amount infiltrating out of the
root zone (Nielsen and Westenbroek, 2019). Cells coded
as A/D soils were considered as D soils to ensure the
most conservative estimates. Sampling such soils was not
possible within the scope of this project, which contributes
to uncertainty.

DISCUSSION AND CONCLUSION

Watersheds in the U.S. Southwest are currently facing severe
water supply challenges so reliable estimates of sustainable
groundwater yields are critical for reservoir operation. This
study aims at a quantification of locally derived MBGR for
the period 1980–2019 through using of the SWB program
in combination with optimized hydrograph separation. The
calibrated model yielded mean estimates of annual potential
recharge of 3.7 in/yr (3.0 m3/s; mNSE = 0.61) and runoff of 1.4
in/yr (1.2 m3/s; mNSE = 0.90). A complete set of groundwater
and surface water extraction rates for municipal or agricultural
supply is lacking for the study area, but a comparison of
these rates to our estimates in follow up investigations could
inform on overdraft risks in the area. Likewise, longer-term

trend analyses are warranted in future investigations to better
account for climate change induced impacts on recharge and
surface runoff.

While SWB generated reasonable estimates of spatially-
averaged recharge across the domain, inspection of results
across individual calibration subwatersheds reveal that the
model’s ability to accurately calculate recharge is subject
to significant spatial constraints. Recharge in the upper-
reach regions, which are majorly underlain by impervious
bedrock, are significantly overestimated by SWB which we
attribute to the design of SWB to count any excess water
simulated to move past the root-zone depth as potential
recharge. In settings where an impermeable layer exists
above the water table, but below the root-zone depth,
this model structure fails to accurately consider the likely
impedance the water encounters before, if ever, reaching
the aquifer.

The recharge estimates presented in this study are within
the range of previous values, which suggests that the model
can produce reliable estimates of spatially-varying MBGR in
complex mountainous settings. This can potentially facilitate
a quantification of IGF to the watershed via comparison
with estimates from other, groundwater testing-based methods
that typically represent mixed systems affected by both
MBGR and IGF components. Further modeling and field
investigative study is needed to validate the model estimates
and water balance parameters to completely assess the model’s
applicability to the California Sierra Nevadas and other
mountainous settings.
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Figure A1 | Land use lookup table with parameters defined for each land

use-HSG combination (HSG A–D as 1–4) for the baseline run. Highlighted cells

display values inconsistent with expected pattern of consecutively decreasing

infiltration rates from soil groups A–D.

Figure A2 | MK Trend test results for annual recharge (R) and surface runoff (SR)

in the South Fork Tule River watershed over time period 1981–2019. Trends are

assessed at the 5% significance level.
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