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Recent alluvial sediments in riverbeds play a significant role in controlling hydrologic

exchange flows (HEFs) in river systems. The alluvial layer is usually associated with strong

heterogeneity in physical properties (e.g., permeability and hydraulic conductivity), which

affects local HEFs and therefore biogeochemical processes. The spatial distribution

of these physical properties needs to be determined to inform the numerical models

used to reveal the realistic hydro-biogeochemical behaviors. Such information can

be obtained based on the intrinsic link between sediment grain-size distribution and

hydraulic properties where sediment texture information is available. However, grain-size

measurements are usually spatially sparse and do not have adequate coverage and

resolution, particularly for a relatively large domain such as the Hanford Reach of

the Columbia River. In this paper, we adopted machine learning (ML) approaches for

categorizing and mapping the spatial distributions of riverbed substrate grain size and

filling in missing areas of substrate data using the ML models along the reach. Such ML

models for substrate size mapping were trained at 13,372 locations using measured

substrate sizes along with observed and simulated attributes, including bathymetric

attributes (e.g., elevation, slope, and aspect ratio) from LIDAR and bathymetric surveys,

and hydrodynamic properties (e.g., water depth, velocity, shear stress, and their statistical

moments). An ensemble bagging-based ML technique, Random Forest, was adopted

to identify the most influential factors as predictors to develop the predictive models with

over-fitting issues addressed. The models were evaluated with respect to each individual

substrate size class and the lumped group, and then used to generate the final substrate

size maps covering all the grid cells in the numerical modeling domain.

Keywords: machine learning, random forest, spatial heterogeneity, grain-size distribution, riverbed permeability,

hydrologic exchange flows (HEFs)

INTRODUCTION

The hyporheic zone (HZ) has been recognized as providing a connection between surface water and
groundwater, and is critical for the exchange of water, nutrients, contaminants, microorganisms,
and other materials (Cardenas et al., 2004). As one of the key elements of river corridors, the
HZ provides and controls the hyporheic fluxes and solutes and their distributions (Boulton et al.,
1998; Kasahara and Wondzell, 2003). The importance of HZ interactions, such as hydrologic
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exchange flows (HEFs), can be addressed from both hydrological
and ecological perspectives by hydrologists, geomorphologists,
geochemists, and ecologists (Malcolm et al., 2003; Lu et al., 2012;
Harvey and Gooseff, 2015). A variety of factors influence the
HEFs, including hydraulic properties, available storage volume,
topographic features, flow duration, river and depth, and so on.
All of these factors controlling hyporheic exchange and solute
reactions are not constant and may vary significantly over a
range of temporal scales (Brunke and Gonser, 1997; Hayashi
and Rosenberry, 2002; Sophocleous, 2002). Evaluating impacts of
spatially heterogeneous structures is also an important research
topic (Schilling et al., 2017).

Efforts have been made to develop flow and transport models
in the HZ to better understand this complex hydrological system.
Because the relationships and interactions among hydraulic,
sedimentological, and biological processes are non-linear and
dynamic, assigning realistic and accurate hydrogeological
properties to the modeling domain is critical to achieving
reliable HEF modeling; this, however, is challenging due to
lack of direct field measurements. In addition, previous studies
showed that the spatial heterogeneity of riverbed properties has
a significant impact on HEFs (Irvine et al., 2012; Boano et al.,
2014; McCallum et al., 2014; Tang et al., 2015); for example,
heterogeneous hydraulic properties in riverbed sediment tend
to increase hyporheic flow (Salehin et al., 2004; Sawyer and
Cardenas, 2009). Capturing such spatial heterogeneity is another
challenge due to the scarcity of spatial data.

Many studies have tried to determine the hydraulic
properties, such as permeability or hydraulic conductivity,
using information from permeameter tests, grain-size analyses,
slug and bail tests, and pumping tests, each of which have their
own limitations (Cheng et al., 2011), particularly for a large
study domain. The data assimilation approach with ensemble
Kalman filter (EnKF) can be used to approximate different levels
of heterogeneity of hydraulic properties (Tang et al., 2017, 2018).
However, there would be high computational demands for this
large study area. There have been studies linking riverbed grain
size statistics (e.g., D50) to hydraulic conductivity with empirical
formulas (e.g., Shepherd, 1989; Lu et al., 2012). In a recently
published paper (Hou et al., 2019), the effective hydraulic
conductivity field for a 7-km reach of the Columbia River was
estimated based on the integrated relationships amongst shear
stress facies, substrate sizes, and point hydraulic conductivity
measurements. For large-scale study sites, grain-size analysis is
one of the least expensive and most straightforward practical
approaches, and it is not dependent on the geometry (Chen,
2000; Landon et al., 2001; Kasenow, 2002; Odong, 2007).
Automated grain-size analysis approaches have been developed
rapidly by taking the advantage of the growth of image-based
analysis. These information provide the basis to generate realistic
sedimentary structures usually by integrating geostatistical
analysis such as the Multiple Point Statistics (MPS) approach
(Brunner et al., 2017). In addition, previous work has been done
to derive the streambed hydraulic conductivity from various
statistical grain-size parameters. For example, (Shepherd, 1989)
introduced the well-known formula for channel sediments
after analyzing published results on hydraulic conductivity and

grain-size distribution, k = cdn, where d (mm) is the particle
diameter at 50% of the cumulative sample weight of smaller
size or median particle diameters (i.e., dominant substrate size),
and c is a dimensionless constant; the exponent n of the grain
diameter may range from 1.11 to 2.05 depending on textural
maturity and induration (Hou et al., 2017). The grain-size-based
analysis, with adequate spatial coverage and resolution, could
provide accurate estimates about hydraulic properties required
to model and reveal river-groundwater interactions.

Our study area is the Hanford Reach located in the Columbia
River Basin. The Columbia River is the fourth largest river by
total discharge in the United States and is known to have a wide
range of types and magnitudes of HEFs. Extensive experimental
and numerical studies related to heterogeneous subsurface
properties have been conducted to improve the understanding of
the river’s hydrological complexity and its impacts on ecosystems.
The U.S. Fish and Wildlife Service (USFWS) sampled 13,372
locations for riverbed-dominant substrate size measurements for
fish species and critical habitat study. The substrate size samples
were scattered throughout∼70% of the entire reach and serve as
a great bridge to enabling a complete mapping of conductivity
or permeability over the entire Hanford Reach. A number of
field experiments were also conducted to measure hydraulic
conductivity or permeability along the reach (Arntzen et al., 2006;
Fritz and Arntzen, 2007; Fritz et al., 2016). The substrate size and
hydraulic conductivity data sets enable us to derive realistic and
representative coefficients for relationships linking grain size and
conductivity. Despite the spatial coverage of the study domain,
however, the spatial resolution of these data is too coarse to be
used to infer spatial continuity or heterogeneity. Fortunately,
bathymetry and hydrodynamics simulations, also available along
the reach, have a much finer spatial resolution than those
derived from the previous studies. Therefore, the remaining
challenge is to build linkage relationships among the collocated
bathymetric/hydrodynamic attributes; such relationships can
then be used for substrate size and permeability mapping. In this
study, we propose machine learning (ML) approaches to identify
the most influential factors related to the spatial distributions
of dominant riverbed substrate sizes and to develop ML-based
predictive models for substrate size and permeability mapping.
An ensemble tree-based classification method, Random Forest
(RF), is adopted for the high-dimensional data set with mixed
continuous and categorical variables.

MATERIALS AND METHODS

Study Site
The study site is the Hanford Reach, which is a section of
the Columbia River located in southeastern Washington State,
USA, as shown in the upper right panel of Figure 1. The reach
extends ∼85 km from the tailrace of Priest Rapids Dam to the
north end of the city of Richland. The lower end of the reach
approximately corresponds to the maximum upstream extent of
influence of the downstream reservoir impounded by McNary
Dam. The Hanford Reach has been extensively studied because
of (1) its proximity to the U.S. Department of Energy Hanford
Site, a site of former nuclear materials production that contains
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FIGURE 1 | The location of substrate size samples along the Hanford Reach of the Columbia River. The blue dots are the sampling locations and the yellow box is the

region without samples. The enlarged subplot shows the substrate size distribution.

extensive legacy contaminants in groundwater and soil; (2) its
importance as a salmon spawning area; and (3) the high value
of hydropower production in the region. The Hanford Reach has
had a protected status since the year 2000 as the Hanford Reach
National Monument, which is administered by the USFWS.

Dominant Substrate Size
USFWS conducted survey operations along the reach to
characterize grain size distributions in terms of dominant
substrate sizes (Anglin et al., 2006; Hou et al., 2019) to study
fish habitats. To determine the dominant substrate size, each one
square meter area was evaluated by assigning a representative
grainsize range equal to the median grain size D50. For water

depths >0.5m, the riverbed was photographed to capture the
substrate grain size, and for water depths >0.5m, the grain
size was determined by wading the stream. Over 59 river
kilometers, 13,372 locations were sampled and one-third of
the sampling locations were in water deep enough to require
underwater video sampling (Anglin et al., 2006). Twelve grain
size classes were identified—from 0.033 to 609.6 mm—as listed
in Table 1, and were further lumped to four groups by adopting
the particle size classification according to the U.S. Geological
Survey’s recommendation (Berenbrock and Tranmer, 2008); i.e.,
silt (0.033mm), sand (0.062–2.0mm), gravel (2.0–64mm), and
cobble (>64mm). The silt group contains only class 1 (i.e., coarse
silt); the sand category contains classes 2 and 3; gravel contains
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TABLE 1 | Substrate size classification.

Reach-dominant

substrate size class

Reach-dominant

substrate Size

(mm)

Particle

classification

Particle diameter

(mm)

Lumped particle

classification

Particle diameter

of the lumped

class (mm)

1 0.033 Coarse silt 0.031–0.0625 Silt 0.0078–0.0625

2 0.1 Very fine sand 0.0625–0.125 Sand 0.0625–2

3 1.031 Very coarse sand 1–2 Sand 0.0625–2

4 15.85 Medium gravel 8–16 Gravel 2–64

5 33 Very coarse gravel 32–64 Gravel 2–64

6 38.1 Very coarse gravel 32–64 Gravel 2–64

7 63.55 Very coarse gravel 32–64 Gravel 2–64

8 114.15 Fine cobble 64–128 Cobble >64

9 157 Coarse cobble 128–256 Cobble >64

10 201 Coarse cobble 128–256 Cobble >64

11 380.5 Very coarse cobble >256 Cobble >64

12 609.6 Very coarse cobble >256 Cobble >64

classes 4–7; and cobble contains the rest of the classes 8–12. The
spatial resolution of the samples varies from 50 to 70m and the
sampling locations cover ∼70% of the entire Hanford Reach,
as shown in the blue regions in Figure 1. The regions without
samples are marked in the yellow boxed section.

Bathymetric Attributes
Riverbed digital elevation data have been obtained from prior
combined LiDAR and bathymetric surveys on a grid resolution
of 1m (Coleman et al., 2010). The bathymetric derivatives were
extracted from the digital elevation survey data. For each grid
cell, the slope and aspect were calculated using the “Slope” and
“Aspect” tool of the Environmental Systems Research Institute
ArcGIS platform. Slope describes the steepness of a grid cell in a
raster surface. It is calculated as the inverse tangent of the rise
divided by the run, with the higher value representing steeper
terrain. Aspect represents the compass direction of a slope and
is measured clockwise from 0 to 360 degrees. It is the downslope
direction of the maximum rate of change in value from each cell
to its neighbors. Aspect variables of non-sloping flat surfaces are
flagged with a value of −1. River bathymetry and bathymetric
variability are likely to be related to riverbed dominant substrate
size distributions, and therefore these bathymetric attributes were
included as potential predictors in the ML model development.

Hydrodynamic Attributes
Hanford Reach hydrodynamics were simulated using the
Modular Aquatic Simulation System 2D (MASS2) model
(Perkins and Richmond, 2007a,b; Niehus et al., 2014). MASS2
is a two-dimensional, depth-averaged hydrodynamic model that
uses an orthogonal curvilinear mesh. As part of the previous
work, MASS2 was applied from Priest Rapids Dam to near the
mouth of the Yakima River, ∼97 km, using a computational
mesh with ∼710,000 cells and a nominal resolution of ∼10m.
The bathymetry in the Hanford Reach was assumed to be very
stable over the more than 100-year MASS2 simulation period

based on the underlying geology (Fecht et al., 2004; Fecht and
Marceau, 2006; Hou et al., 2019). MASS2 was calibrated using
water surface elevations measured at selected locations along the
Hanford Reach, with mean absolute errors ranging from 1 to
12 cm. The calibrated models were then used to simulate the
Hanford Reach conditions for a long historical period for which
discharge records are available. Model calibration and long-
term simulation details are documented by Niehus et al. (2014).
Hourly hydrodynamic results from 1917 to 2012 under various
flow conditions in the Hanford Reach were available for each
grid. The simulation outputs, including the wet percentage, water
depth, velocitymagnitude, bottom shear stress and shear velocity,
and their statistical moments (i.e., mean, variance, skewness,
and kurtosis), were used as the predictors of dominant substrate
size distribution. Together with the bathymetric predictors and
substrate size responses, all the hydrodynamic variables were
mapped onto the MASS2 grids.

Random Forest Classification
Given the high dimensionality of the predictors and non-linear
relationships between the substrate size and these predictors,
we adopted a reliable ensemble tree-based approach called
Random Forest (RF) in our problem. RF is an ensemble ML
algorithm that uses a collection of decision trees as base classifiers
(Breiman, 2001) {h(x, 2k), k = 1, 2, 3 . . . . . .}, where the 2k

are independent identically distributed random vectors and x

is the input vector that each tree casts a unit vote for the
most popular class. To grow a RF, user-defined parameters
are required, including the number of the trees (k) and the
number of predictive variables used to split the nodes (m).
Each tree is grown using the training data set, which is created
using a bootstrap aggregating (bagging) technique to create
the resampling randomly and uniformly from the original data
with replacement, and is comprised of a series of decision
nodes or branching points (Pal, 2005; Rodriguez-Galiano et al.,
2012). Past studies have revealed that bagging methods, such
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as RF, are not sensitive to noises or outliers (Briem et al.,
2002; Chan and Paelinckx, 2008). Because the random feature
selection of RF offers correlation reduction between the features
which makes RF not vulnerable to the inherent noise existing
in the training data. Because there is no deletion of the data
sampled from the inputs for creating the next subset, the
bagging helps to achieve the stability of classifiers with high
accuracy (Breiman, 2001; Gislason et al., 2006). The distribution
of the input samples does not change because the bagging uses
random resampling instead of reweighting. Each new training
set is drawn, with replacement, from the original training set.
Then a tree is grown on the new training set using random
feature selection. The trees grown are not pruned. Thus, all
training classifiers have equal weights during split (Breiman,
2001). The response y is predicted by taking the majority
vote in the case of classification trees. When each subset is
selected by bagging to grow each individual tree, the inputs
that are not included in the training and calibration data set in
the current growing tree are counted in an out-of-bag (OOB)
data set. OOB is the mean prediction error on each training
sample xi, using only the trees that did not have xi in their
bootstrap sample. The proportion of misclassifications over all
OOB data sets is called the OOB error, which is an unbiased
estimation of the generalization error without separating the
testing data (Breiman, 2001; Peters et al., 2007). To make the
generalization error converge, the number of trees (k) needs
to be large enough. For a large number of trees, convergence
follows from the Strong Law of Large Numbers and the tree
structure. The RF can address the overfitting issue by checking
and assuring such error convergency. The strength of each
individual tree and the correlation between any two trees are
used to evaluate the generalization error by the best split of
input features or predictive variables. The Gini index, a measure
of the impurity of a given input feature with respect to the
rest of the classes, is a popular quantity for the best split
selection. One of the advantages of RF is that it allows individual
decision trees to grow to the maximum depth using a given
combination of features, because (Mingers, 1989; Pal, 2005).
Meanwhile, the relative importance of features is provided during
the classification process.

RF is well-suited for high-dimensional data sets and/or highly
correlated input features and has been successfully applied to
the soil microbial community, remote sensing classification,
water resources, and so on (Heung et al., 2014; Naghibi
et al., 2017; Tesoriero et al., 2017). Open-source statistical
software R (R Core Team, 2013) was used in this study,
where the R implementation of the RF package (Liaw and
Wiener, 2002) was used for RF model development, validation,
and prediction.

In our study, the variable vector y to be classified represents
the riverbed substrate classes at various spatial locations along
the Hanford Reach. The categorical variables of interest to be
predicted y can be grouped into 12 classes or 4 lumped groups.
The input vector x contains bathymetric and hydrodynamic
attributes at the collocated positions with categorical variable
vector y, ensemble decision trees are then constructed using the

training dataset; The input variables are selected randomly to get
the best split-point to split the node into child notes to grow each
decision tree.

RESULTS

ML Data Preparation and RF Model
Development
There are 13,372 data samples of dominant substrate sizes
collected in the study domain, grouped into 12 classes and 4
categories. These are the “labels” information for ML training.
At these sampling locations, information about the predictors
is extracted from the high-resolution data sets of bathymetry
and hydrodynamics. The bathymetric attributes include local
bathymetry, slope, and aspect. The hydrodynamic attributes
from multi-year MASS2 simulation include the wet percentage,
water depth, velocity magnitude, river bottom shear stress, and
shear velocity, together with their first four statistical central
moments (e.g., mean, variance, skewness, and kurtosis). All the
bathymetric and hydrodynamic attributes are treated as input
features for the ML RF model development and the output
response variable is the categorical substrate grain size. The ML
model builds the relationship between substrate size and the
features using the available grain-size measurements. Although
there are 13,372 data points, we consider it as a spatially “sparse”
dataset as they are dispersed along a 70-km long reach and
the adjacent points are usually dozens of meters away from
each other. In order to fill the spatial gaps while mapping the
substrate size, the developed ML model of grain size can be
applied to the numerical grid, with 5–10m spatial resolution,
to enable grain size mapping with adequate spatial coverage
and resolution. Note that the spatial coordinates information,
e.g., the Easting and Northing cartesian coordinates, contains
spatial adjacency information, and can potentially help improve
the ML prediction accuracy; but this information should be
excluded when considering the generality and transferability of
the developed models.

The ML (RF) models were developed through comprehensive
model optimization and cross-validation. Different model
configurations have been evaluated and compared to achieve
the highest performance metrics (e.g., accuracy) and minimum
overfitting. For example, the effect of the number of trees (k) and
the number of predictive variables of the split nodes (m) were
evaluated by six RF models, each of them constructed from up to
10,000 trees for each different value of m. The original database
was randomly separated with 85% of the data points used for
training and the remaining 15% held back for the testing data
set. Figure 2 shows the OOB error with respect to the number of
trees using the training data set with different predictive variables
and the minimum size of terminal nodes set to 10. Here the
minimum size of the terminal node implicitly sets the depth of
trees in the model. The OOB error decreases significantly as the
number of trees grows to 200 for all cases. When the number
of predictive variables m is three, the OOB error is higher than
the rest of the cases regardless of the number of trees. The error
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variability becomes very small when there are more than 1,000
trees. In the finalized optimal RF model configurations, m is set
to be 15 with the lowest OOB errors and the tree number is set
to be 1,000.

FIGURE 2 | The OOB error with respect to number of trees for different

predivtive variables for split node (m).

RF Parameter Ranking and Model
Performance
Figure 3 shows the ranked variable importance based on the RF
classification. The left panel is the Mean Decrease in Accuracy
(MDA), which measures the loss of accuracy by taking variables
out one by one. A high value of MDA means that the variable
improves themodel accuracy. Themean bathymetry is clearly the
most important variable, followed by the bathymetric attributes,
slope and aspect, water depth’s third moment. The right panel in
Figure 3 is the mean decrease in Gini impurity (MDG), which
provides both variable contributions to the accuracy and the
degree of misclassification. Important predictors correspond to
high MDGs. Gini impurity achieves zero if all the responses in
the training data in a group fall into a single category (i.e., no
classification). The top variable according to MDG is the mean
bathymetry, followed by four comparative factors: the slope of
bathymetry, the third moment of water depth, aspect and water
depth. Based on both the MDA and MDG variable importance,
we can conclude that the flow conditions (water depth and
its third moment) and the bathymetric attributes are the most
influential factors. In addition, the velocity and the kurtosis of
bottom shear stress are relatively important. The wet percentage
is secondary but not negligible in terms of MDG.

The testing data set was used to evaluate the RF model
accuracy in predicting the 12 classes and 4 categories of substrate
sizes. The histogram of model predictions is illustrated for each

FIGURE 3 | Dot chart of the top 10 features importance as measured by the RF model trained in optimized configuration.
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individual class in Figure 4. The red bar represents the correct
classifications/predictions for each class (classes 1–12) and the
blue bars are the additional correct classifications/predictions
of each category (silt, sand, gravel, and cobble). In general, the
majority of RF predictions of the individual classes are correct;
i.e., the red bar has the most counts and the correct classification
cases dominate. The second highest bars generally also fall in the
same lumped categories, e.g., the blue bars have the second largest
values in each category except for classes 2 and 3. This means
even if the RF model does not predict correctly the exact class

(1–12), it most likely can still predict the correct silt/sand/gravel/
cobble category.

Quantitatively, the classification accuracy for individual class
ranges from 36 to 81% with a mean accuracy of 53%. Class 8
(substrate size class of 114.15mm, fine cobble), containing the
largest number of testing sample size, had the lowest accuracy.
Although 170 testing samples were predicted correctly to fall
under class 8, the RF model predicted about 70 samples fall
under class 10 (coarse cobble). The model exhibits the best
performance for class 12 with the largest substrate size class

FIGURE 4 | RF prediction for each substrate class. The red bar represents each targeted class. The blue bins represent the classes lumped by silt (class 1), sand

(classes 2 and 3), gravel (classes 4 ∼ 7), and cobble (classes 8 ∼ 12). The accuracy of each individual class prediction is listed for each subplot.
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of 609.6mm and is labeled as very coarse cobble. Meanwhile,
for class 6 (very coarse gravel with a 63.44mm substrate size
class), ∼40 samples were predicted to fall under class 4 (medium
gravel). Similar observations were seen for class 7 as well. The
medium gravel class 4 had 30 samples that were classified
correctly while ∼15 samples were misclassified into class 6.
The model performance is summarized for the four lumped
categories in Figure 5. The overall prediction accuracies for the
silt, sand, gravel, and cobble categories are 62, 59, 79, and 71%,
respectively. The model performance is satisfactory, although the
uncertainty of substrate size distribution is large in the raw data
and can be attributed non-linearly to many factors that have
strong cross-dependence.

FIGURE 5 | RF prediction accuracy for the four lumped groups: silt, sand,

gravel, and cobble.

Spatial Mapping of Substrate Grain Size
Based on the field observations and simulations, we have
developed an RFmodel representing the non-linear relationships
between the substrate size and bathymetric and hydrodynamic
attributes. The validated and tested RF model can be adopted
and applied to all the numerical grids of 5–10m resolution
across the entire Hanford Reach. As a verification, Figure 6
shows a subsection of four river kilometers that have multiple
hydromorphic features (e.g., island, attached bar, and meander),
illustrating the comparison between the ground-truthing at a
coarse spatial resolution and the model prediction on the finer
grids. In Figure 6, the distributions of dominant substrate size
are shown in 12 color-coded classes, where a larger substrate size
corresponds to a larger class number. From the field observations
shown in the left panel of Figure 6, class 1 (silt) grids are mainly
located near the left banks of the shorelines between the meander
and the island and near the right banks after the attached
bar, corresponding to more of a depositional environment. For
comparison, the model predictions on the grids in the right-
hand panel of Figure 6 exhibit very similar patterns. Near a
river segment below the island, where no USFWS measurements
were available, the RF model predicts the substrate size to have
a high probability of being silt. This is realistic by checking
the patterns of the actual sampled locations relative to the
bars and islands and our boat-based field survey. The sampling
locations of class 2 grain sizes (fine sand) are along both sides
of the river shoreline, especially on the right bank near the
meander and on the left bank of the river below the gravel bar.
Class 3 (coarse sand) tends to follow the same distribution of
class 2, although it is farther away from the right riverbank
near the meander. A few samples of class 4 were located near
the tail of the island and no samples of class 5 were taken
in this section of the river. Classes 6 and 7 have very few
samples, and they are mainly located next to the island. The
places with smaller substrate sizes concentrate more on the
left shoreline than on the right shoreline. The most frequent

FIGURE 6 | The dominant substrate size distribution of 12 classes with smaller class number representing the smaller dominant substrate size. The left panel is the

ground-truthing and the right panel is the model prediction for each simulation grid.
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samples in this subsection are class 8 (fine cobble), scattered
in the river channel, around the island, near the front of the
attached bar, and along both sides of the river channel. The
sampling locations for coarse cobble including classes 9 and 10
are mainly located near the head of the island and the middle
of the river channel. Most of the very coarse cobble locations
are along the left shoreline near the meander and along the
right-side bars behind the island. Compared to the ground-
truthing data, the RF model predictions produce realistic spatial
patterns and reflect reasonable spatial heterogeneity. Additional
validation of RF predictions of substrate size categories (silt,
sand, gravel, cobble) is shown in Figure 7. Generally, the gravel
group has a smaller proportion in the predictions than in the
field observations in this region. The gravel sampled at the front
of the island and left side of the meander area are all classified
correctly. In the river channel, mostly cobble is predicted, which
is consistent with the field observations. Meanwhile, the spatial
variability and heterogeneity can be seen. Such information about
heterogeneity in the permeability field enables the development
of more realistic and accurate numerical models, rather than
assuming uniform or block-wise uniform permeability values.

DISCUSSION

In order to avoid over-fitting in the developed ML models, the
ensemble bagging-based RF model was adopted to build the
relationships between dominant substrate size and influential
factors including bathymetric and hydrodynamic elements.
Although RF models have been proven to be effective in terms
of prediction accuracy and handling of overfitting issues, it is
helpful to compare its performance with other ML approaches,
particularly other widely accepted ensemble ML models, such
as the boosting-based Extreme Gradient Boosting Model (GBM)
(Chen et al., 2015). GBM is also tree-based, but the difference
between RF and GBM is that the latter builds one tree at a
time, and each tree learns and improves upon the previous one
and combines results throughout the tree-building process. The
disadvantage of GBM is that it is computationally expensive

and sensitive to noises in the data set. Parameter tuning is
performed for GBM with respect to the number of trees, the
maximum tree depth, and the subsample ratio of columns when
constructing each tree. The model accuracy obtained from the
cross validation is shown in Figure 8. Each subplot in Figure 8

represents the different subsample ratio of columns when each
tree was constructed. The x axis of each subplot is maximum
tree depth which controls the depth of each individual tree.
The different number of trees are color coded under each
subplot showing different boosting iterations. The highest GBM
model accuracy is about 55.6% with the optimized parameters,
where the maximum tree depth is 10, the total number of
trees is about 200, and the subsample ratio of columns is
0.9. The model accuracy for the four lumped substrate size
categories using GBM and RF is compared in Table 2, which
shows that the GBM and RF model prediction accuracies are
generally comparable. RF is better at predicting finer materials
such as silt, while GBM has stronger skill for predicting coarse
cobble. For both methods, the lowest accuracy occurs when
the dominant substrate size is <0.0625mm (i.e., silt), while the
highest accuracy (>80%) occurs when the substrate size is in the
cobble group, which means the larger dominant substrate size
group is relatively easier to predict using the available predictors,
likely because the corresponding grains are well-sorted and
subject to small variability.

Table 2 shows satisfactory testing accuracy for the testing
grids/domain and proven transferability of the developedmodels.
Although in the prediction model we did not include the spatial
coordinate information, we did investigate the impact of adding
spatial coordinates such as the Northing and Easting coordinate
information in the predictor list and repeated the model training
and testing. With the RF model, about a 3% improvement in the
prediction accuracy was achieved by adding the spatial adjacency
information for the finer silt, gravel, and cobble categories. The
adjacency information provides more help for the sand category
with a 7% increase in the prediction accuracy.

Therefore, spatial substrate grain-size distributions can be
reasonably predicted using ML models on high-resolution

FIGURE 7 | The dominant substrate size distribution of the four lumped classes. The left panel is the ground-truthing and the right panel is the model prediction for

each simulation grid.
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FIGURE 8 | The cross-validation accuracy of the Extreme Gradient Boosting Model (GBM) achieved by tuning the maximum tree depth (x axis), number of trees

(different colored lines), and subsample ratio of columns (noted as subtitle “colsample_by tree” for each subplot) when constructing each tree.

TABLE 2 | Predictive accuracy of lumped four groups with different model setups.

Lumped group Reach-dominant

substrate Size (mm)

Predictive accuracy

RF GBM RF (w/adjacent info)

Silt 0.0078–0.0625 62.2% 37.8% 66.2%

Sand 0.0625–2 58.6% 63.7% 65.6%

Gravel 2–64 78.6% 61.5% 81.1%

Cobble >64 71.3% 87.0% 74.0%

numerical simulation grids. The spatial map of grain size can then
be used to estimate hydraulic properties at the same resolution.
The limitations of the approach, on the other hand, include
the fact that the field observations of substrate size used in the
model development mainly deliver valuable information of 2D
spatial patterns near the top of the riverbed (Brunner et al.,
2017). Without integration of vertical structural information, the

approach seems to have overestimated hydraulic conductivity
using grain-size distribution; meanwhile, the approach did not
fully consider the degree of anisotropy and preferential flow
pathways (Gianni et al., 2019). Given the transient nature of the
system, the reliability of the estimation for hydraulic properties
may also be affected by the system flow scenarios (Gianni
et al., 2016). Nevertheless, our estimates of hydraulic properties
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can provide reliable inputs with reduced uncertainty toward
improved numerical models in both accuracy and precision.
This top of the permeability field is one of the most influential
factors that control the magnitude (Lackey et al., 2015; Bao
et al., 2018), spatial extent (Schilling et al., 2017), and associated
biogeochemical hot spots (Song et al., 2018; Dai et al., 2019)
of HEFs.

CONCLUSION

In this work, we developed an ML approach to predict dominant
substrate size distribution, which enables to map the permeability
field in theHanford Reach of the Columbia River, providingmore
accurate and reliable inputs of the heterogeneous property field
to the numerical models to obtain more realistic HEFs in river
corridor systems. The developed ML models can link dominant
substrate size to the available bathymetric and hydrodynamic
attributes with high resolution. The traditional geostatistical
approach is not applicable to the study site because of the
large spatial gaps in the un-sampled locations. Therefore, our
ML-based algorithms fill the gaps in mapping spatial grain-size
distribution using the abundant indirect information available
to us.

Given the satisfactory prediction accuracy of the testing
data set, the generated substrate size can reliably provide the
needed heterogeneous property input information based on
well-reported and calibrated relationships between hydraulic
properties and substrate grain-size distributions, which allows
the numerical models to evaluate the effects of spatial
heterogeneity on model outputs (e.g., HEFs, residence times),
and enables a better understanding of the complex hydrological
river corridor system.
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