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In augmented reality scenarios, headphones obstruct the direct path of the sound
to the ears, affecting the users’ abilities to localize surrounding sound sources and
compromising the immersive experience. Unfortunately, the assessment of the
perceptual implications of wearing headphones on localization in ecologically
valid scenarios is costly and time-consuming. Here, we propose a model-based
tool for automatic assessment of the dynamic localization degradation (DLD)
introduced by headphones describing the time required to find a target in an
auditory-guided visual search task. First, we introduce the DLD score obtained for
twelve headphones and the search times with actual listeners. Then, we describe
the predictions of the headphone-induced DLD score obtained by an auditory
model designed to simulate the listener’s search time. Our results indicate that
our tool can predict the degradation score of unseen headphones. Thus, our tool
can be applied to automatically assess the impact of headphones on listener
experience in augmented reality applications.
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1 Introduction

Auditory augmented-reality (AR) applications enhance the real world with virtual
sounds, often presented via headphones (Nagele et al., 2021; Neidhardt and Zerlik, 2021;
Schneiderwind et al., 2021), or more generally, via head-worn devices (HWDs) with
acoustic drivers, such as head-mounted displays. These HWDs interfere with the
natural transmission of the sound to the ears (Zimpfer and Sarafian, 2014; Ahrens
et al., 2019; Denk et al., 2020; Lladó et al., 2022b; Poirier-Quinot and Lawless, 2023).
This interference may affect the user’s ability to localize sounds from their surrounding,
therefore potentially compromising the level of immersion (Gupta et al., 2018;
Schneiderwind et al., 2021) or even safety (Brungart et al., 2004; Simpson et al., 2005).
The development of AR-compatible headphones without perceptual degradation of the
natural sound is considered one of the main technical challenges in binaural sound
reproduction (Engel and Picinali, 2017; Nagele et al., 2021).

Multiple behavioral studies have shown that wearing an HWD hinders the listeners’
localization performance (Vause and Grantham, 1999; Bolia et al., 2001; Zimpfer and
Sarafian, 2014; Brown et al., 2015; Lladó et al., 2022b). Listeners localize sounds by
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extracting the spatial information (e.g., source direction) from
acoustic features generated by the interaction between the
listeners’ anatomy and the acoustic field (Middlebrooks, 2015).
Previous studies have shown that listeners wearing an HWD
demonstrate significantly larger localization errors when
compared to the open-ear condition, especially along the front-
back and up-down dimensions (Vause and Grantham, 1999; Van
den Bogaert et al., 2006; Van den Bogaert et al., 2008; Brungart et al.,
2007; Zimpfer and Sarafian, 2014; Denk et al., 2018; Denk et al.,
2019; Lladó et al., 2022b). However, those studies considered static
conditions where both listener and sound source do not move. Such
conditions do not necessarily represent an ecologically valid scenario
for AR where listeners dynamically interact with the environment
(Simpson et al., 2005; Neidhardt and Zerlik, 2021).

In order to introduce ecologically valid elements in evaluating
HWDs, search tasks have been proposed (Bolia et al., 2001; Simpson
et al., 2005). Within such tasks, the subject is asked to identify the
position of the target and the search time required to respond is
measured. While these paradigms have been extensively applied to
assess visual perception (Wolfe, 1994; Eckstein, 2011; Wolfe and
Horowitz, 2017), some studies included auditory cues to aid the task
(Perrott et al., 1996; Bolia et al., 1999; Bolia et al., 1001; Simpson
et al., 2005). The combination of auditory and visual cues result in
faster responses than visual-only cues, especially when introducing
distractors. Following this idea, an auditory-guided visual search test
has shown that the time to find the visual source is a sensitive
behavioural measure to study the effect of altered localization cues
caused by HWDs (Bolia et al., 2001; Simpson et al., 2005; Lladó et al.,
2024). This task appears to be of higher ecological relevance than a
simple localization task under static listening conditions because it
involves the integration of visual and auditory cues over time
(Simpson et al., 2005).

Behavioural tests are time-consuming and require specific
hardware. As a more efficient alternative, data analysis methods
are employed to model the effects introduced by HWDs. One
approach tries to identify the degradation of monaural cues by
evaluating the spectral average ratio between the magnitudes of the
transfer functions measured on the dummy head with and without
the HWD (Genovese et al., 2018; Gupta et al., 2018; Porschmann
et al., 2019; Denk et al., 2020; Meyer-Kahlen et al., 2020;
Schneiderwind et al., 2021). Similarly, the evaluation of the
interaural time and level differences obtained from the
measurements with HWDs demonstrated how interaural cues are
degraded compared to the measurements without the HWDs
(Genovese et al., 2018; Gupta et al., 2018; Porschmann et al.,
2019; Denk et al., 2020; Lladó et al., 2022a). Both evaluation
approaches are limited to static scenarios and do not consider
the dynamic interaction between the listener and the environment.

This article proposes a method to computationally assess the
spatial effects of wearing HWDs in the auditory-guided visual search
task. Our study is visualized in Figure 1, with our method shown in
the lower path. As an input, our method requires the acoustically
measured head-related transfer functions (HRTFs) of the HWDs
under test. As the output, the method returns the degree of dynamic
localization degradation on a six-level scale, with one representing
the open-ear condition and six representing the most severe
degradation. First, an auditory model simulates the listener’s
behavior in the auditory-guided visual search task from Lladó

et al. (2024) in the open-ear and HWD conditions. For this
step, we took a Bayesian auditory localization model for static
conditions (Barumerli et al., 2023) and extended it to account for
temporal integration and voluntary head movements of a listener
searching for the target (Wolfe, 1994). Then, our method
classifies the model’s estimates to return the degree of
degradation. To test our method, we consider twelve
commercially available headphones to evaluate the predicted
degradations of against those reported in a previous
behavioral experiment (Lladó et al., 2024).

2 Degree of degradation:
Behavioral data

We describe here the relevant elements of the behavioural
experiment presented in Lladó et al. (2024) and introduce the
degradation score based on a classification method.

2.1 Experimental task

The previously conducted behavioral experiment collected the
search time required to find a target loudspeaker showing an even
number of LEDs and playing a sound (Lladó et al., 2024). Twenty
subjects between 19 and 39 years of age with self-reported normal
hearing and normal or corrected vision were tested on
13 conditions. One condition served as the reference as subjects
were listening with their open ears (OE), i.e., without any
headphones on. In the twelve other conditions, subjects wore
one of the headphones described in Table 1, covering a
representative range of commercially available products
applicable in AR systems.

The experiment was conducted in the anechoic room ‘Wilska’ at
the Aalto Acoustics Lab, Espoo, Finland. Thirty-two Genelec 8331A
coaxial loudspeakers were distributed in a spherical array with a
radius of 2.04 m from the center of the room. Each loudspeaker was
equipped with a 4-LED board forming a 2 × 2 matrix (15 mm ×
15 mm for the LED centers) to display visual information. Two
hand-held buttons were used as the interface for the listeners to
control the experiment and give responses.

Each trial began with the participant facing the frontal
loudspeaker. After releasing the hand-held buttons and a break
of 1 s, the stimulus presentation from the target loudspeaker
started. The sound stimulus was intermittent pink noise
(250 ms on, 250 ms off, with onset and offset ramps of 10 ms)
with an A-weighted sound pressure level of 65 dB SPL. During
each trial, LEDs in all loudspeakers were illuminated but only the
target loudspeaker had an even number of LEDs. The goal was to
find the target and report the number of illuminated LEDs. The
participants were instructed to press the left hand-held button if
the number of illuminated LEDs was two, or the right one if the
number of illuminated LEDs was four. The participants were
instructed to respond as quickly as possible. Trials stopped
immediately after a response was given. There was an upper
limit of 14 noise bursts limiting each trial to 7 s, but this limit
was never reached. More details on the methods can be found in
Lladó et al. (2024).
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2.2 Search time

The search time Tj,s,h was the time between the stimulus onset
and the participant response for each trial j and subject s being tested
with headphones h. The search times were then normalized by
applying the z-transform:

T j,s,h � Tj,s,h − μs
σs

, (1)

with μs representing the mean and σs the standard deviation across
all trials j of a subject s under all conditions together. The normalized
search time T j,s,h contains information about the degree of degradation
caused by each headphones while being normalized across subjects.

The left panel of Figure 2 shows the normalized search times per
headphones condition. The median search time in the ‘OE’
condition was 0.96 s, and resulted in a normalized search time
of −0.88. The headphones generally increased the search times and

the slowest responses were found using headphones ‘K’, which
resulted in a median search time of 1.68 s and a normalized
search time of 0.05. For an exhaustive analysis focused on
matching the acoustic characteristics of each studied headphones
to the search times, see Lladó et al. (2024).

2.3 Dynamic localization degradation
(DLD) score

In order to classify the degree of degradation caused by a HWD,
we introduce the dynamic localization degradation (DLD) score.
The DLD score is based on the search time obtained in the
behavioural experiment for each subject s and headphones h. The
DLD score is an output of a classification and thus more generic and
easier to interpret than the absolute search time that largely depends
on specific choices in task design (Liu and Wickens, 1992).

TABLE 1 Summary of the studied headphones and the settings used throughout the whole study. Devices ‘J’, ‘K’ and ‘L’ are hearing protectors with active
hear-through option.

ID Type Active Model Settings

A extra-aural no Mysphere 3.2 open frames

B intra-concha no Sony linkbuds

C circumaural no Sennheiser HD650

D in-ear yes Apple air pods pro (1st gen.) hear-through ON

E in-ear yes Sony WF-1000-XM3 hear-through ON

F in-ear yes Huawei freebuds (1st gen.) hear-through ON

G circumaural yes Apple air pods pro MAX hear-through ON

H circumaural yes Sony WH-1000-XM4 hear-through ON

I circumaural yes Huawei freebuds studio hear-through ON

J circumaural yes Silenta STP8000 hear-through at max. level

K supra-aural yes Savox Noise-COM 200 hear-through ON (default)

L circumaural yes Peltor ComTac XPI hear-through ON (default)

FIGURE 1
Overview of our study for the prediction of the HWD-induced dynamic localization degradation (DLD). The upper path (perceptual evaluation)
shows the procedure to obtain the DLD computed from the normalized times to find the target (T ) when wearing the studied head-worn devices
(HWDs). The bottom path (model-based evaluation) shows the proposed method to predict the DLD from HRTF measurements of a dummy head
wearing the studied HWDs. First, the estimated normalized times, T are obtained from the output of an auditory model and a linear model. Then the
D̂LD is computed from the estimated T̂ .
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In order to calculate the DLD score, the normalized and
cleaned search times were the input to a classifier. The classifier
is based on the Gaussian mixture model (GMM), which was
selected because of its simplicity and efficiency (Peel and
MacLahlan, 2000; McLachlan et al., 2019). To fit the GMM, we
used the function fitgmdist from MATLAB version 2022a
(Mathworks Inc.). The number of Gaussian components K was
selected to minimize the Akaike information criterion (AIC
Akaike, 1974). Before training the classifier, we excluded
extremely long search times (less than 4%) by removing trials
showing normalized time larger than three scaled median absolute
deviations from the median (rmoutliers using the median
method in MATLAB version 2022a, Mathworks Inc.). The right
panel of Figure 2 shows the histogram of the normalized search
times with the fitted Gaussians. The minimum AIC was reached
with K = 6 Gaussians.

Then, we sorted the fitted Gaussians by their mean μk with the
idea of the sorting order reflecting the DLD score. For each subject s
and condition h, the median normalized time T s,h was computed as

the median over all trials. Each Gaussian component was evaluated
for T s,h. The DLD score Ss,h was computed as:

Ss,h � argmax
k

f T s,h | μk, σk( ). (2)

where μk and σk are the mean and standard deviation, respectively, of
the kth Gaussian. Table 2 shows the averages μk and standard
deviations σk of the individual Gaussians after the sorting.

The color in Figure 2 (left panel) shows the computed values for the
DLD scale for each headphone, both at the individual level (circles) and
group level (boxplots). The algorithm assigned the ‘OE’ condition to the
first cluster. Headphones ‘A’ were assigned to the second cluster. The
headphones ‘F’, ‘B’, ‘C’, ‘D’, ‘E’, and ‘J’were assigned to the third cluster.
The headphones ‘G’, ‘I’, ‘H’, ‘L’, and ‘K’ were assigned to the fourth
cluster. The fifth cluster accounted for the DLD of some listeners, but
after computing themedian over the group, these DLDwere assigned to
the fourth cluster. The sixth cluster was not assigned at all because it
contained individual trials with especially large search times only.

3 Degree of degradation: Predictions

We predicted the degree of degradation in three steps. First, we
predicted the search time by means of an auditory model. This
model requires acoustic data about the headphones in the form of
HRTFs. Second, we mapped the predicted search time to the
normalized search times. Third, the DLD score was computed by
means of the classification described in Sec. 2.3.

3.1 HRTFs dataset

For the thirteen conditions included in the experimental task,
HRTFs of a head-and-torso simulator (KEMAR 45BC, G.R.A.S.

FIGURE 2
Normalized search times observed in the behavioral experiment in Lladó et al. (2024). Left panel: Normalized search time per condition (‘OE’: open-
ear condition, i.e., without any headphone). Each point represents the median search time of a participant. Data points are colored according to the
listener-dependent DLD classification; boxplots are colored according to the DLD score assigned to each headphone. Right panel: Histogram of all
available normalized search times (bars), with the individual Gaussians that define the DLD scale (color lines) and the joint GMM (black line) fitted to
the normalized search times.

TABLE 2 Analysis of the Gaussian components for computing the DLD score
using all the behavioral data and in leave-one-out (LOO) cross-validation
for prediction (see Section 3.3). The LOO reported values are the average ±
the standard deviation obtained across conditions.

μALL σALL μLOO σLOO

C1 −0.89 0.03 −0.87 ± 0.07 0.07 ± 0.01

C2 −0.80 0.04 −0.63 ± 0.09 0.08 ± 0.02

C3 −0.24 0.06 −0.19 ± 0.03 0.08 ± 0.02

C4 0.13 0.09 0.20 ± 0.03 0.20 ± 0.03

C5 0.85 0.18 0.89 ± 0.04 0.24 ± 0.03

C6 1.83 0.25 1.84 ± 0.02 0.06 ± 0.03
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Inc.) wearing the studied headphones were measured. These HRTFs
were measured in the same room, with the same equipment and in
the same conditions as in the experimental task. The HRTF dataset is
available online (see Data Availability Statement).

3.2 Auditory model

The model simulates the active search task on a trial basis,
assuming that listeners accumulate spatial information over
subsequent sounds. Therefore, the auditory model implements an
online estimation of the source direction as an iterative mechanism
as shown in Figure 3. The model treats each noise burst as a
stationary observation and extracts the directional information
following the Bayesian model proposed in Barumerli et al.
(2023). The model combines the information from subsequent
observations utilizing Bayesian belief updating (Ma et al., 2023).
Importantly, the model only incorporates visual evidence in the
form of a visual check, performed after the acoustic cues are
processed. This is motivated by the experimental results obtained
by Simpson et al. (2005), which show that the task performance in
open ears conditions does not vary significantly when increasing the
number of distractors (locations with an odd number of illuminated
LEDs and without a corresponding sound stimulus) from five to
fifty. These results suggest that the acoustic cues are dominant over
the visual ones for this specific task.

The model starts by extracting a set of noisy spatial features xt
from the binaural stimulus generated by a virtual sound source. The
binaural stimulus was generated by filtering a 250 ms noise burst
with the HRTF of the location of the virtual source φ relative to the
head direction φh. From the binaural stimulus, the model computes
four spatial features: interaural time difference xitd, interaural level
difference xild, and monaural spectral gradients for the left xLmon and
right xRmon ears (Baumgartner et al., 2014; Barumerli et al., 2023).
Further, the model accounts for the uncertainties of the hearing
system by adding Gaussian noise δ with zero mean and covariance
matrix Σ (Barumerli et al., 2023). As a result, for the iteration t, we
define the spatial features xt as:

xt � xitd, xild, x
L
mon, x

R
mon[ ] + δ. (3)

Additionally, the noise covariance matrix Σ is diagonal and
characterized as:

Σ �
σ2itd 0 0
0 σ2ild 0
0 0 σ2monI

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (4)

where σ2itd and σ2ild are the variances associated with the interaural
time and level differences, and σ2monI is a diagonal matrix for the
monaural features with I being the identity matrix scaled by the
value σ2mon.

From the set of spatial features xt, the model uses Bayesian
inference to estimate the probability of the sound direction φ in each
iteration t. To this end, the model weights the likelihood function
with the prior distribution to obtain the posterior distribution:

p φ|x1: t( )∝p xt|φ( )p φ|x1: t−1( ). (5)
We simplified p (xt|φ, x1:t−1) to p (xt|φ) since xt is conditionally
independent from x1:t−1 given φ.

The computation of the likelihood function follows the model
for static sound localisation (Barumerli et al., 2023) which compares
xt to the feature templates Xφ containing noiseless features of Eq. 3
for every sound direction φ. The template features were computed
from the acoustically measured HRTFs and interpolated over a
quasi-uniform spherical grid containing N = 1980 points generated
with a quadrature of spherical t-designs (Hardin and Sloane, 1996;
Gräf and Potts, 2011). Spatial interpolation was based on 15th-order
spherical harmonics followed by Tikhonov regularization (Zotkin
et al., 2009).

For the first noise burst in the sequence, the prior distribution is
uniform p(φ) = N−1, i.e., we assume that the subject has no
information about the actual sound location at the beginning of
the trial. Then, the posterior distribution is calculated and its
maximum used to determine the model’s current estimate of
sound direction. Then, the model simulates the head rotation
towards φ̂h

t with the head direction being:

φ̂h
t � argmax

φ
p φ|x1: t( ) +m, (6)

where m ~vMF(0, κm) accounts for the uncertainty in the
sensorimotor process and is defined as the von Mises-Fisher
distribution with zero mean and concentration parameter κm
(Ley and Verdebout, 2017). Importantly, the concentration
parameter κm can be transformed to a dispersion parameter with
the formula σm � κ−2m · 180π−1s.

FIGURE 3
Schematic representation of the dynamic auditory model
employed to simulate user behavior in the active search task. The
model takes as an input a binaural sound that simulates the sound
spatialization as in the real experiment. Then, the model extracts
from the auditory signal a set of spatial features, and it updates the
internal belief with such new sensory evidence by relying on the
Bayesian inference. From the internal beliefs, the model infers the
sound direction and simulates a head rotation by aligning the head
direction to the new estimate. After this action, the simulation moves
forward by generating a new binaural sound if the head is not pointing
to the actual sound source direction.
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To update the spatial belief for the next time point t + 1, the
posterior distribution p (φ|x1:t) is propagated as the new prior
distribution, which is additionally rotated in an egocentric
manner (Rodrigues, 1840) to account for the new head
orientation. The model iterates over further time points until
the angular distance between the new head orientation and the
target source |φ̂h

t − φ|< 15°, with 15° corresponding to half of the
angular distance between two adjacent loudspeakers in the
experiment. The computation of this angular distance
emulates the visual check in the experimental task, and
represents the case in which the checked loudspeaker has an
even number of illuminated LEDs. If this condition is not met,
then the seen loudspeaker has an odd number of illuminated
LEDs, and the observer continues the search task. An example of
a simulated trial with the belief update process is shown in
Figure 4. Finally, the model outputs the number of noise
bursts needed to find the source, which is proportional to the
predicted search time T̂h.

3.2.1 Model calibration and evaluation
In order to calibrate the model, we predicted the search time T̂j,h

for each target direction j and headphones h. Given the model
stochasticity, we relied on a Monte Carlo approximation to get an
average estimate of T̂j,h by sampling 20 times the model’s output for

each target direction. The model parameters controlling the sensory
and motor uncertainties were set to the medians from Barumerli
et al. (2023) (i.e., σitd = 0.569 jnd, σild = 1 dB, σmon = 1.25 dB and σm =
14°) because they demonstrated to return reasonable predictions at a
group level and for stationary broadband noise bursts (Daugintis
et al., 2023).

For each headphones h, we computed T̂h as the mean over all
target directions j tested in the actual behavioural experiment. Then,
T̂h was mapped to represent the normalized search times from the
behavioral experiment by means of a linear model consisting of a
main factor T̂h and an intercept:

T̂ h � β1T̂h + β0, (7)
where β1 and β0 were fitted with the function fitlm (MATLAB
version R2022a, Mathworks, Inc.).

Figure 5 shows the predicted normalized search times T̂ h against
the median actual normalized search times from the behavioral data
T̂ h. The linear model coefficients resulted in β1 = 0.3489,
β0 = −1.8871. The model was able to find the targets in a similar
ranking as the actual listeners, with the predicted search ranging from
3 to 5.76 s (compared to the actual search times ranging from 0.96 to
1.68 s). Despite these differences, the predictions showed a reasonably
good linear dependency with the actual data (Pearson’s correlation
coefficient of R2 = 0.59).

FIGURE 4
Posterior distributions and head orientations determined by the auditory model in an example trial. Left panels: posterior distributions p(Φx(1:t)) after
the first (above) and second (below) noise bursts, shown on a logarithmic scale to increase the readability. Right panel: trajectory of head orientations
performed iteratively to spot the target.
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3.3 Score predictions

We evaluated the ability and the robustness of our methodology
to predict DLD score by combining the auditory model presented in
the previous section and the classification method presented in Sec
2.3. Because of the limited amount of HWDs available to this study
that might hinder the generalization over unseen devices, we
performed a leave-one-out cross validation (Hastie et al., 2009,
Chapter 7) where we compared the actual and predicted DLD scores.

We calculated the predictions for a specific pair of headphones h
by excluding the corresponding behavioral data from the training
procedure of the classifier. For each headphones h, the model
estimates T̂h were mapped as in Eq. 7 after excluding the
behavioural data for the headphones h. This resulted in
computing a new linear model for each LOO evaluation, and
mapping the auditory-model estimates into the normalized
search times T̂ LOO,h. The mean (± standard deviation)
coefficients of the linear model over LOO iterations were
β1,LOO = 0.3484 ± 0.01, and β0,LOO = −1.8838 ± 0.05. Thus, the
coefficients for the LOO cross-validation were consistently similar to
the coefficients obtained for the whole dataset (β1 =
0.3489, β0 = −1.8871).

Similarly, the cluster centers of the classifier were then
recomputed from the behavioral data without data from
headphones h. To avoid the number of clusters fluctuating
depending on the excluded headphones, K was six as computed
in Sec. 2.3. The most-right column of Table 2 shows the averages
calculated from the parameters of the cluster centers. The stable
values for the Gaussian parameters, μLOO,k and σLOO,k, showed that
the GMM classifier did not vary significantly over LOO iterations.

Finally, we predicted the DLD score Ŝh by classifying the
auditory model’s simulated normalized search times T̂ h with the
method reported in section 2.3. The actual DLD score was computed
by adopting the model parameters obtained using all the

headphones (see left panel of Table 2 for GMM parameters;
Section 3.2.1 for the linear model coefficients). The predicted
data was computed by the model parameters obtained excluding
each pair of headphones from the data following the LOO
validation. Figure 6 shows the predicted DLD score for each
headphones and compares them to the actual DLD score. The
DLD scores were predicted correctly for eleven out of thirteen
conditions. The other two conditions were missed by only one
score (ŜB � 2 vs. SB = 3 and ŜE � 4 vs. SE = 3). Due to the stability of
the parameters for the LOO approach and the correct classification
rate for the DLD scores, the mean values of β1,LOO = 0.3484 and
β0,LOO = −1.8838 are recommended as the linear model coefficients
to classify unseen HWDs. Similarly, the mean parameters for the
GMM classifier μLOO,k and σLOO,k (see right panel of Table 2) are
recommended for unseen HWDs.

4 Discussion

We proposed a method to automatically assess the increased
search time to find a target observed when listeners wear an HWD.
The assessment relies on predicting the dynamic localization
degradation (DLD) score, a six-level scale based on subjects’ time
to find a target in the auditory-guided visual search task.
Furthermore, we proposed an auditory model to predict the DLD
score of an HWD. We demonstrated the robustness of the DLD
predictions by means of a cross-validation approach to account for
unseen HWDs. Our method has the advantage of being more
ecologically valid as compared to contrasting the effects of an
HWD by means of localization performance obtained in static
tasks (Simpson et al., 2005).

4.1 Actual and predicted degree of
degradation

Our classification results indicate that our clustering procedure is
sensitive to classifying headphones by means of normalized search
times. We found that even a slight deviation from the ‘OE’ condition
can increase search time. For example, ‘OE’ and the headphones ‘A’
having the least impact on the search times were clustered into C1 and
C2, respectively. This was expected since wearing headphones ‘A’
resulted in significantly larger localization errors, even though its
design (i.e., open headphones) should provide a high level of
transparency (Lladó et al., 2022b). Moreover, we obtained a larger
separation between the cluster centers for the transition in the search
times from cluster C2 to C3 and then from C3 to C4. This clear
separation can be related to the differences in the mechanical designs of
the corresponding headphones, which introduce different degradations
of the acoustic features. The set of devices in cluster C3 were earbuds,
open-back headphones and in-ear headphones with active hear-
through. These slightly modify the pinnae cues, showing a large
impact compared to an open headphones design (i.e., as in cluster
C2) but a smaller difference in search times compared to cluster
C4 – hear-through headphones and hearing protection devices that
completely cover the pinnae. Headphones ‘J’ seems to be an exception
because it was a hear-through circumaural headphones clustered into
C3. Interestingly, the GMM yielded two additional clusters, C5 and C6,

FIGURE 5
Predicted normalized search times (after mapping the auditory-
model estimates with the linear model) versus the actual normalized
times from behavioral data (R2 = 0.59). Each dot represents a test
condition, where its color represents its actual DLD score. The
gray dashed line represents perfect prediction of the
normalized times.
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which did not find a correspondence to a specific headphones design.
These clusters account for the very long search times observed in some
trials, where the source was particularly difficult to find, i.e., localization
of elevated or rear sources. This extreme degree of degradation was only
perceived by a subset of subjects (see Figure 6), and the results from the
cross-validation suggest considering C5 and C6 an idiosyncrasy in the
collected behavioral data.

Our leave-one-out cross-validation showed that the prediction of
the DLD score by means of the simulations done with the auditory
model were correctly classified in eleven out of thirteen conditions.
This high rate of correct classification results from the stability of the
cluster parameters across validation conditions (see Table 2) and
indicates that the estimated clusters were stable even when
headphones were removed from our dataset. However, we did find
a misclassification of the headphones ‘B’ and ‘E’, both members of the
C3 cluster. Headphones ‘B’ showed a large variance across listeners in
the behavioral task (see Figure 2) and adopting the manikin’s HRTF
may not represent our pool of listeners for this headphone. Similarly,
the misclassification for headphones ‘E’may result in the incapability
of the classifier to discriminate between the third and fourth clusters
which both already indicate a high degree of degradation. Although
our classification method is limited in such borderline cases, its high
classification rate suggests high stability when classifying novel unseen
headphones.

4.2 Limitations and future directions

The proposed model considers several aspects in modelling the
behavioral mechanism, such as a slow temporal integration of spatial
cues (Hofman and Van Opstal, 1998; Kayser et al., 2015). However,
the model does not consider listeners’ anatomical constraints in

head rotations yet (Gilman et al., 1979). For the present task, the
high correlation between behavioral and predicted degradation
scores suggests this simplification to be appropriate. Different
experimental tasks may require further consideration of
anatomical constraints.

Our methods can be adapted or expanded to other scenarios and
experimental tasks to provide deeper insights into the degradation
level for AR applications. It can be used tomodel more detailed search
strategies or to consider alternative behavioral paradigms, such as
navigation. Depending on the scope, it might be required to extend the
auditory model. In the first step, the model could be extended to
account for natural head rotations. Interestingly, most of the available
models of head rotation do not consider auditory targets (Thurlow
et al., 1967; Glenn and Vilis, 1992; Ceylan et al., 2000; Kunin et al.,
2007). However, recent literature showed how head rotations might
influence the dynamic computation of the acoustic cues (Macpherson,
2013; McLachlan et al., 2023). This integration would help the virtual
agent to exploit the localization cues similarly as humans do
(McLachlan et al., 2021). Furthermore, such an extended model
may also help in providing more insights into the interplay
between the sensory accumulation and decision-making process on
a finer time scale (Kayser et al., 2015). These extensions could allow
quantifying the degree of degradation on a trial-by-trial basis instead
of relying on averaged search times.With the availability of suchmore
complex auditory models, it would be possible to gain deeper insights
into the interaction between the environment and listeners, and it
would provide a quantitative approach for better headphones designs.

From an application point of view, our methodology is ready to be
integrated into the development pipeline of headphones for AR, or
HWDs in general. Our methodology can be applied to pre-select
prototypes likely to be successful when tested in behavioral
experiments. This could be beneficial to evaluate the quality of
experience in an early stage of development (Nagele et al., 2021;
Schneiderwind et al., 2021). Alternatively, our method could be
adapted to consider the effects of acoustic individualization (Daugintis
et al., 2023) of wearable devices when individually measured HRTFs are
available. Thus, listener-specific HRTFs and localization data could be
included to fine-tune the model to predict listener’s individual
degradation caused by a specific headphone. This would further
personalize the rendering scheme of a specific pair of headphones or
even identify specific requirements for individual listeners.

5 Conclusion

We proposed a method to automatically predict the headphone-
induced increase in search time in an auditory-guided visual search
task, which presents a higher ecological validity than static sound-
source localization tests. The proposed dynamic localization
degradation (DLD) score was designed to cluster the search times
for a pair of headphones automatically. The method is based on an
auditory model simulating the behavioral task and predicting the
DLD score. Our predictions were tested in a cross-validation with
the actual DLD scores from the behavioral experiments.

The cross-validation method showed a high rate of correct
classifications for unseen headphones indicating a high
robustness of our method even with unseen headphones. The
obtained clusters depended on the openness of the headphones

FIGURE 6
Model-based predicted DLD scores compared to the actual DLD
scores for each condition. The circles represent actual DLD scores and
their size show the subject-level count. The filled circles show theDLD
score computed for the group-level median time for each
condition. The diamonds represent the predicted DLD scores. These
predictions were obtained from the cross validation, i.e., excluding the
behavioral data from each condition for its evaluation.
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design, suggesting that designs that maintain the listener’s pinnae
cues are more suitable for AR scenarios in which space perception is
an important aspect of the application. Our method is ready to be
extended for listener-specific assessments, e.g., when accounting for
individually measured HRTFs.
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