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Motor-imagery brain-computer interfaces (MI-BCIs) have the potential to
improve motor function in individuals with neurological disorders. Their
effectiveness relies on patients’ ability to generate reliable MI-related
electroencephalography (EEG) patterns, which can be influenced by the quality
of neurofeedback. Virtual Reality (VR) has emerged as a promising tool for
enhancing proprioceptive feedback due to its ability to induce a sense of
embodiment (SoE), where individuals perceive a virtual body as their own.
Although prior research has highlighted the importance of SoE in enhancing
MI skills and BCI performance, to date, no study has successfully isolated nor
manipulated the SoE in VR before MI training, creating a gap in our understanding
of the precise role of the priming effect of embodiment in MI-BCIs. In this study,
we aimed to examine whether the virtual SoE when induced, as priming of avatar
embodiment, and assessed before MI training, could enhance MI-induced EEG
patterns. To achieve this, we divided 26 healthy participants into two groups: the
embodied group, which experienced SoE with an avatar before undergoing VR-
based MI training, and the non-embodied group, which underwent the same MI
training without a prior embodiment phase, serving as a control. We analyzed
subjective measures of embodiment, the event-related desynchronization (ERD)
power of the sensorimotor rhythms, lateralization of ERD, and offline classification
BCI accuracy. Although the embodiment phase effectively induced SoE in the
embodied group, both groups exhibited similar MI-induced ERD patterns and BCI
classification accuracy. This suggests that the induction of SoE prior to MI training
may not significantly influence the training outcomes. Instead, it appears that the
integration of embodied VR feedback duringMI training itself is sufficient to induce
appropriate ERD, as evidenced by previous research.
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1 Introduction

Brain-Computer Interfaces (BCIs) constitute a cutting-edge area of research facilitating a
direct communication channel between the human brain and external devices. This
technological paradigm operates by capturing the electrical signals of the brain,
primarily leveraging electroencephalography (EEG), and subsequently translating these
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signals into actionable commands capable of controlling a diverse
array of devices, including but not limited to prosthetics, computers,
and virtual avatars (Wolpaw et al., 2002). In recent years, motor-
imagery (MI)-based BCIs have gained increasing attention in
neurorehabilitation due to their potential to assist in the recovery
of motor functions in individuals suffering from neurological
conditions such as stroke, spinal cord injury, or other motor
disorders (Pfurtscheller et al., 2008; Ang et al., 2011; Khan et al.,
2020). Within the MI-BCI paradigm, users are instructed to imagine
performing a particular movement, such as moving their left or right
hand, and the subsequent alterations in brain activity are utilized to
control the associated device. Notably, the MI task elicits significant
power changes in μ (8–12 Hz) and β (18–26 Hz) EEG rhythms over
the sensorimotor cortices. This phenomenon, known as event-
related synchronization and desynchronization (ERS/ERD),
intriguingly mirrors the modulation of EEG rhythms observed
during the planning and execution of actual movements
(Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller and Neuper,
2001). Therefore, by repeatedly practicingMI, patients can stimulate
motor areas of the brain, fostering the reorganization of neural
circuits and aiding in the restoration of motor functions (Pichiorri
et al., 2015).

Despite these promising aspects, the effective utilization of MI-
BCIs in neurorehabilitation still faces several challenges. These
include the high variability in users’ ability to generate robust
and distinguishable ERD patterns, along with the requirement for
extensive and rigorous training sessions, which can lead to high
drop-out rates among users (Lotte et al., 2013). Moreover, the
traditional neurofeedback paradigm, a central component of MI-
BCI training, often employs abstract and arbitrary visual feedback,
limiting the intuitiveness and efficacy of the training (Neuper et al.,
2009). Virtual Reality (VR)-based MI-BCIs offer a solution to these
challenges by providing immersive and engaging training
environments that can enhance user motivation and increase BCI
performance (Vourvopoulos et al., 2016; Vourvopoulos et al., 2019).
Crucially, VR can deliver immediate and more naturalistic visual
feedback to the user, helping them understand whether they are
doing the MI task correctly, and leading to better training outcomes
(Lotte et al., 2013). For instance, MI training with realistic visual
feedback using virtual or robotic hands has been shown to elicit
enhanced ERD patterns and improve BCI performance compared to
standard screen-based feedback (Alimardani et al., 2014; Penaloza
et al., 2018; Skola and Liarokapis, 2018; Choi et al., 2020b;
Vourvopoulos et al., 2022). This implies that by observing a
virtual body carrying out the expected motor actions, users learn
to produce the appropriate signals more consistently and accurately
as a form of priming, which can be used to enhance the overall
performance of the MI-BCI system.

Specifically, priming is a type of implicit learning wherein a
stimulus prompts a change in behavior (Stoykov and Madhavan,
2015). Prior research have shown that physical activity prior to a MI
task (motor priming) facilitates the improvement in MI-BCI
training in VR, helping also to maximize the engagement of
sensory-motor networks (Vourvopoulos and Bermúdez i Badia,
2016; Amini Gougeh and Falk, 2023). Moreover, behavior can be
also influenced by the characteristics of the virtual avatar or the
digital representations, known as the “Proteus effect” (Yee and
Bailenson, 2007). Latest research has shown an impact of the

“Proteus effect” in MI, and specifically the impact of the age of
the virtual avatar on MI execution time (Beaudoin et al., 2020).
Thus, priming in VR can provide an additional path for driving
behavior change and possibly accelerate learning in a rehabilitation
setting. Nonetheless, when utilizing VR for priming-induced
learning, a crucial aspect of feedback lies in the induction of the
sense of embodiment (SoE).

Specifically, SoE refers to the illusory experience that a virtual
body and hands are one’s own body and hands. Several
conceptualizations of SoE exist, and for the purposes of our
study, we adopt the framework proposed by (Kilteni et al., 2012).
Concretely, they define SoE as a collection of sensations associated
with being situated within, possessing, and exercising control over a
body, specifically in the VR context. This sensation comprises three
interrelated subcomponents: the sense of self-location
(i.e., perceiving oneself as situated within a body), the sense of
ownership (i.e., attributing experienced sensations to the body), and
the sense of agency (i.e., identifying oneself as the initiator of bodily
movements). When these subcomponents align, an individual can
attain a SoE towards a body or body part, interpreting its
characteristics as if they belonged to their own physical body.
The rubber hand illusion serves as a classic instance of SoE
where individuals experience illusory ownership over a rubber
hand placed in a plausible anatomical position and
synchronously stroked along with the individual’s real hand
(Botvinick and Cohen, 1998). This pioneering experiment has
been successfully replicated in VR and extended toward an entire
virtual body through the use of not only visuotactile stimuli (Petkova
and Ehrsson, 2008) but also visuomotor stimuli, where the virtual
body’s movements align both spatially and temporally with the real
body movements (Peck et al., 2013), and visuoproprioceptive
stimuli, where the virtual body merely overlaps with the real
body’s position (Maselli and Slater, 2014). Furthermore, Perez-
Marcos et al. (2009) were first to show that sense of ownership
of a virtual hand (a.k.a., virtual hand illusion) can be induced
through the use of MI-BCI, where neurofeedback is presented
through virtual hands performing the imagined motor action in
synchrony. A later study found that both virtual hand illusion and
hand MI share similar electrophysiological correlates, specifically
the μ-band desynchronization, in fronto-parietal areas of the brain
(Evans and Blanke, 2013), giving rise to the idea that SoE could
potentially enhance ERD patterns duringMI training. By developing
a sense of ownership over the virtual hands during MI-BCI training,
participants may more intuitively and comfortably accept the
feedback conveyed through the movements of these virtual
hands, potentially improving the MI-BCI performance. Several
studies have since investigated the relationship between SoE and
MI-BCIs with varying results. Choi et al. (2020b) showed that the
process of action observation–observing a bimodal hand movement
in VR while simultaneously engaging in MI of the same
movement–led to enhanced ERD power and higher classification
accuracy when compared to action observation provided via a
conventional monitor display. Similarly, Du et al. (2021) found
that a 3-min synchronous visuo-tactile stimulation of a virtual hand
preceding a MI task led to greater ERD phenomena compared to the
same stimulation of a rubber hand. Although both studies credited
the enhanced MI abilities to the immersive nature of VR headsets
and the illusion of embodiment they create, neither delved into
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quantifying embodiment levels nor investigated their direct
influence on MI skills.

From studies that directly explored the relationship between SoE
(or its sub-components) and BCI performance, some found positive
correlations (Alimardani et al., 2014; Penaloza et al., 2018; Choi
et al., 2020a; Juliano et al., 2020), whereas others found no
relationships at all (Braun et al., 2016; Skola and Liarokapis,
2018; Skola et al., 2019). In terms of the relationship between
SoE and ERD features, two studies found positive correlations
(Braun et al., 2016; Penaloza et al., 2018), one study found no
relationship (Skola and Liarokapis, 2018), and two studies found
mixed effects. Namely, Skola et al. (2019) found a positive
correlation between sense of ownership and ERD features, but a
negative correlation between sense of agency and ERD features,
whereas Nierula et al. (2021) found the opposite effects. Therefore,
there seems to be no conclusive evidence that (virtual) SoE can
increase MI-BCI performance, nor it improves the modulation of
brain patterns associated with MI. In addition, existing studies have
investigated SoE in conjunction with MI training, making it difficult
to isolate the specific effects of embodiment on MI skills and BCI
performance. As a result, no study up to date has successfully
isolated and manipulated the SoE variable before MI training nor
studied the priming effect of avatar embodiment, creating a gap in
our understanding of the precise role of embodiment in MI-BCIs.

In the present study, we aimed to examine whether the virtual
SoE, when induced and assessed before MI training as a form of
priming, could enhance MI-induced ERD patterns. To achieve this,
we established a between-subjects design in which the experimental
group was subjected to a 5-min embodiment induction phase in VR,
while the control group was intentionally deprived of embodiment
cues. Subsequently, both groups underwent identical MI training
phase with action observation of bimodal hand grasp movement in
VR. From the acquired MI-EEG data we analyzed ERD power of the
sensorimotor rhythms, lateralization of ERD, and offline
classification BCI accuracy. We hypothesized that inducing SoE
prior toMI training, as a form of avatar embodiment priming, might
allow participants to better engage with their virtual bodies, fostering
improved MI skills. Therefore, in the embodied group we expected
to find 1) enhanced ERD patterns during MI, specifically a greater
and lateralized power reduction in the μ rhythm, and 2) increased
discriminability between the two classes of MI, i.e., increased offline
BCI accuracy. In addition, we expected that a stronger SoE would be
associated with a more potent ERD and a higher BCI accuracy.
Finally, this study resulted into the production of freely and publicly
available labeled datasets of electrophysiological signals (EEG, EMG,
Temperature and Head Accelerometer data) during embodiment in
VR (Vagaja and Vourvopoulos, 2023).

2 Methods

2.1 Participants

A total of 32 healthy participants were recruited for this study,
most of whom were university students. Four participants were
excluded due to technical issues during the EEG recording (either
extensive artifacts in the data or faulty electrodes), and two
participants failed to follow correctly the instructions. Thus, a

total of 26 participants were eligible for the analysis, consisting of
10 males (mean age 25.4 ± 7.4) and 16 females (mean age 23 ± 3.2).
All participants were right-handed, reported normal or corrected-
to-normal vision, and had no motor impairments. Three
participants had previous experience with BCIs, and five
participants used VR more than twice. None of the participants
were aware that the study aimed to examine the effect of virtual
embodiment on MI skills. Participants were randomly assigned to
either the embodied group (N = 13; 7 Female/6 Male) or the non-
embodied group (N = 13; 8 Female/5 Male), which served as a
control. All participants signed an informed consent before
participating in the study in accordance with the
1964 Declaration of Helsinki.

2.2 Experimental design

A between-subject design was used to investigate the effect of the
virtual embodiment priming phase on the subsequent motor-
imagery training phase in VR. The embodiment phase involved
immersing the experimental group of participants in a virtual
laboratory room where they could perceive a virtual body
moving in synchrony with their own movements from a first-
person perspective. This was supplemented with a virtual hand
illusion to enhance the SoE. On the other hand, the control group
participants observed the virtual body from a third-person
perspective, where the movements of the virtual body were
independent of their own. This approach, adapted and modified
from Wolf et al. (2021), was used to negate SoE while maintaining
equivalent levels of presence (i.e., the sense of being physically
present in the VR environment), appearance (i.e., the feeling that
the virtual body resembles one’s real body), and duration of VR
exposure in both groups. Watch the video for an overview of the
whole experiment. The experiment comprised four main blocks
(Figure 1A): 1) equipment setup and instructions (45–60 min), 2)
resting-state EEG recording (4 min), 3) inducing or breaking the
sense of embodiment in VR (5 min), and 4) MI training in VR
(15 min). The entire experiment lasted approximately 90–120 min.
Directly after embodiment manipulation, participants answered a
questionnaire that measured their subjective sense of embodiment
and physical presence (see Section 2.3).

2.2.1 Virtual embodiment priming phase
Participants sat at a desk in a 2 m × 4 m laboratory room. In

their hands, they held VR controllers. After entering the virtual
environment, they found themselves in a very similar reproduction
of the room, but instead of a computer, there was a mirror on the
desk. During the first 3 min they were guided to look around the
environment, look in the mirror, explore and move their virtual
body, and describe their surroundings and body (Peck et al., 2013).
Then a brush appeared in the virtual environment and participants
were asked to observe the brush stroking the hand of the virtual body
for 2 min straight. Three types of embodiment induction triggers
were used and manipulated between the two groups of participants:
embodied and non-embodied group (Figure 1C).

1. Visuoproprioceptive triggers–In the embodied group,
participants viewed a virtual body that matched their gender
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from a first-person perspective. This virtual body was positioned
in the same location as their real body, and they could see it when
looking directly down at themselves and in the virtual mirror. In
contrast, participants in the non-embodied group viewed the
gender-matched virtual body from a third-person perspective
and did not have a virtual body that replaced their own body.
When looking in the mirror, they could not see themselves, but
only the reflection of the virtual body sitting in front of them.

2. Visuomotor triggers–Participants were guided to move their
hands, head, and upper body to explore the virtual environment
for 3 min continuously. In the embodied group, participants
experienced the virtual body moving in synchrony with their
own body movements, inducing a strong sense of body
ownership and agency over the virtual body (Kilteni et al.,
2015), whereas in the non-embodied group, the virtual body
moved independently of participants’ movements.

3. Visuotactile triggers–To induce the virtual hand illusion in the
embodied group, the experimenter used a soft paintbrush to stroke
the participant’s real right hand in synchrony with an animation of
a virtual brush stroking the corresponding virtual hand. The
strokes were applied 24 times in a smooth and continuous
motion, lasting on average 5 s, from the thumb proximal
phalanx to the index metacarpal. To ensure a fair comparison,
the 2-min virtual hand illusion was also implemented in the non-
embodied group.However, participants in this groupwere asked to
observe the brush stroking the right hand of the virtual body in
front of them while the experimenter asynchronously stroked the
participant’s real left hand.

2.2.2 MI training phase with action observation
in VR

All participants performed the hand grasp MI training task in
the same virtual environment as used during the embodiment phase
(Figure 1D). However, in contrast to the embodiment phase, a
mirror was not present on the desk. This allowed participants to
focus solely on their virtual hands viewed from a first-person
perspective. The training consisted of 40 randomly presented
trials, with 20 trials per class (left/right hand grasp). Each trial
comprised a 10-s resting period and a subsequent 10-s MI period.
During the resting period, participants were instructed to focus on
the cross positioned between the two virtual hands. After 10 s, an
arrow appeared, pointing either to the left or right direction, and
participants were instructed to repeatedly imagine grasping the
indicated hand while observing the corresponding virtual hand
executing the movement. Before the experiment, all participants
were taught how to perform kinesthetic MI by imagining the
sensation of making a fist in their hand. The participants
clenched their fists a few times to indicate their understanding of
the task. The MI-BCI training protocol was approved by the Ethics
Committee of CHULN and CAML (Faculty of Medicine, University
of Lisbon) with reference number: 245/19.

2.3 Questionnaires

Pre-experimental questionnaire surveyed the demographics and
participants’ experience with VR, BCIs, and neurofeedback.

FIGURE 1
Experimental design. (A) The flowchart visualizes the controlled experimental procedure and gives an overview of the performedmeasurements; (B)
A participant wearing the 32 active electrodes EEG system, HMD VR, and controllers; (C) Virtual scene during the embodiment priming phase for the
embodied group (orange) and non-embodied group (blue); (D) Virtual scene during the MI training session for both groups.
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Immediately after the embodiment phase, participants received two
questionnaires surveying their sense of embodiment and physical
presence (Table 1). They received the following instructions: “Please
select your level of agreement with the following statements. There
are no right or wrong answers. Statements refer to the experience
you just had in VR. Virtual body refers to the avatar you saw in VR.
The following phrases are used interchangeably and carry the same
meaning: my body, my own body, my real body.” All questionnaire
items were displayed in random order and were answered on a 7-
point Likert scale, ranging from 1 (“strongly disagree”) to 7
(“strongly agree”). SoE was assessed using questions adapted
from a standardized embodiment questionnaire proposed by
Peck and Gonzalez-Franco (2021). This questionnaire consists of
16 items that measure SoE on the following subscales: appearance
(i.e., the extent to which participants feel that the virtual body looks
like their real body), response (i.e., the extent to which participants
feel that the virtual body responds in a way that is consistent with
their own movements and actions), ownership (i.e., the extent to
which participants feel that the virtual body is their own body or a
body that they have control over), multisensory (i.e., the extent to
which participants feel that the virtual body is integrated with their
own sensory experiences), and agency (i.e., the extent to which
participants feel as the initiators of bodily movements). Physical
presence, which refers to the sense of being physically located in a

virtual environment, was assessed using the Multimodal Presence
Scale (MPS) developed by Makransky et al. (2017). The MPS is a 15-
item questionnaire that measures the three-dimensional theoretical
model of presence: physical, social, and self-presence as described in
Lee (2004). The physical presence subscale includes five items that
assess the extent to which participants: 1) experience the virtual
environment as mimicking the physical appearance of the real
world; 2) are completely captivated by the virtual world and,
therefore, become less aware of the real world in which they
actually exist; 3) experience a general and intuitive sense of being
in the virtual environment; 4) are unaware of the process by which
the physical environment is mediated. This subscale was used as a
control measure, since the virtual environment was maintained
between the two groups.

To validate the internal consistency of our composite scores,
derived from several Likert-scale items, we utilized Cronbach’s alpha
(Cronbach, 1951). This measure assesses how closely related a set of
items are as a group and is a commonly used measure of internal
consistency in social and psychological research. Scores approaching
or exceeding 0.7 are typically considered reliable, indicating that
items cohesively measure the same underlying construct. Using the
adapted SoE questionnaire from Peck and Gonzalez-Franco (2021),
we determined Cronbach’s alpha for embodiment sub-scales.
Specifically, appearance, response, ownership, multisensory, and

TABLE 1 Questionnaire assessing the sense of embodiment and physical presence. Adapted from Peck and Gonzalez-Franco (2021); Makransky et al. (2017).

ID Questions

E1 I felt out of my body

E2 I felt as if my real body were drifting toward the virtual body or as if the virtual body were drifting toward my real body

E3 I felt as if the movements of the virtual body were influencing my own movements

E4 It felt as if my real body were turning into the virtual body

E5 At some point it felt as if my real body was starting to take on the posture or shape of the virtual body that I saw

E6 I felt like I was wearing different clothes from when I came to the laboratory

E7 I felt like the form or appearance of my real body had changed

E8 I felt a realistic sensation in my hand when I saw the brush touching the virtual hand

E9 I felt that my own body could have been affected by the virtual world

E10 I felt as if the virtual body was my body

E11 At some point it felt that the virtual body resembled my own (real) body in terms of shape, skin tone or other visual features

E12 I felt as if my body was located where I saw the virtual body

E13 I felt like I could control the virtual body as if it was my own body

E14 It seemed as if I felt the touch of the brush in the location where I saw the virtual hand touched

E15 It seemed as if the touch I felt was caused by the brush touching the virtual hand

E16 It seemed as if my hands were touching the virtual desk

P1 The virtual environment seemed real to me

P2 I had a sense of acting in the virtual environment, rather than operating something from outside

P3 My experience in the virtual environment seemed consistent with my experiences in the real world

P4 While I was in the virtual environment, I had a sense of “being there”

P5 I was completely captivated by the virtual world

Frontiers in Virtual Reality frontiersin.org05

Vagaja et al. 10.3389/frvir.2023.1265010

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1265010


agency yielded values of α = 0.75, α = 0.77, α = 0.76, α = 0.79, and α =
0.64 respectively. The physical presence subscale from the
multimodal presence scale, by Makransky et al. (2017), achieved
an alpha of α = 0.84. These results underscore the reliability of the
questionnaires used, with the agency subscale suggesting potential
areas for further exploration.

2.4 Experimental setup

2.4.1 EEG acquisition
For EEG data acquisition, a wearable wireless EEG amplifier was

used (LiveAmp; Brain Products GmbH, Gilching, Germany) with
32 active electrodes (+3 ACC) at a sampling rate of 500 Hz. The
spatial distribution of the electrodes followed the 10–20 EEG system.
Ground and reference electrodes were located at the central and
forehead lobes, respectively. The EEG amplifier was interfaced
wirelessly through 2.4 GHz ISM band to the desktop computer,
responsible for the EEG signal processing. The electrodes were
carefully placed under the Oculus Rift CV1 such that slight head
movements could not cause significant noise in the data (Figure 1B).

2.4.2 VR scene and equipment
The virtual scene was developed and implemented using the

Unity 3D game engine (Unity Technologies, San Francisco,
United States). The project files and the source code are available
on GitHub1. Virtual bodies were created in Ready Player Me2 (a free
modelling software used to create customizable 3D human avatars).
The equipment used for viewing the virtual environment was Oculus
Rift CV1 head-mounted-display developed and manufactured by
Oculus VR, a subsidiary of Facebook, Inc., United States (Figure 1B).
The head-mounted-display consists of a 2 x AMOLED binocular
display, with a 1080 × 1200 resolution per-eye, 87° horizontal Field
of View, and 6 degrees-of-freedom tracking. In the embodiment
scenario, hand movements were tracked with Oculus Touch
controllers and two Constellation sensors standing on each side
of the desk. Tracking data was then applied to the virtual body using
QuickVR, an open-source Unity library for achieving virtual
embodiment (Oliva et al., 2022). Participants could therefore
experience visuomotor synchronization between their upper body
real movements and the movements of their virtual body.

2.5 Data analysis

2.5.1 EEG pre-processing
EEG signals were pre-processed and analyzed using MATLAB

R2023a (TheMathWorks, MA, United States) and EEGLAB toolbox
v2022.1 (Delorme and Makeig, 2004). After down-sampling to
125 Hz, the signals were band-pass filtered between 1 and 40 Hz,
re-referenced to common average, and epoched between −10 and
10 s for left and right MI trials. Next, Independent Component

Analysis (ICA) was performed to identify artifactual components of
non-brain origin. For the rejection of these components, the IClabel
tool was used. IClabel uses a trained classifier for EEG independent
components (Makeig et al., 1995; Pion-Tonachini et al., 2019), and
provides a set of probability values for each component. For our
datasets, we selected to automatically reject artifacts of “eye” and
“muscle” origin with a probability value above 90%. Moreover, each
dataset was manually inspected and bad epochs, as well as additional
IC components that had not been detected by the automated
method, were removed.

2.5.2 Time-frequency analysis
Following pre-processing, the event-related spectral

perturbation (ERSP) was extracted from the epoched EEG
signals. ERSP values were calculated for each channel, time point,
and frequency band within the μ (8–12 Hz) range, and were then
converted to ERD according to (Pfurtscheller and Aranibar, 1979)
(Eq. 1). The resulting ERD values represent the percentage decrease
in μ-power during the MI task compared to baseline. The
sensorimotor area composed of the electrodes C3 and C4 was
used to display the time-frequency ERSP maps. Additionally, the
spatial distribution of the ERD over the scalp was computed by
averaging ERD values in each channel within the μ band and the 10 s
MI period. The μ band was chosen as it is the most reactive feature
during MI (Pfurtscheller and Lopes da Silva, 1999).

ERD � 10ERSP/10( ) − 1)*100 (1)

2.5.3 Lateralization index
Lateralization between hemispheres is generally assessed by a

lateralization index (LI), a measure commonly used to calculate the
imbalance of neural activation intensity in brain imaging studies
(Doyle et al., 2005). In this research, LI was determined using the
ERD over the C3 and C4 electrodes, as these electrodes are believed
to capture the most significant desynchronization near the
sensorimotor area (Pfurtscheller and Lopes da Silva, 1999).
Lateralization was assessed by subtracting the ERDs of electrodes
contralateral to the movement side (C3 for right-handMI and C4 for
left-hand MI) from ERDs of electrodes ipsilateral to the movement
side (Eq. 2). If the ERD value on the opposite side (contralateral) is
lower than on the same side (ipsilateral), the LI value is positive,
which suggests a higher level of contralateral desynchronization in
the elicited ERD. Finally, LI was calculated as the average of the ERD
differences on the right and left sides, using the following formula.

LI � ERDC3 L( ) − ERDC4 L( ) + ERDC4 R( ) − ERDC3 R( )
2

(2)

2.5.4 Offline BCI performance
To assess the discriminability of MI features (left vs. right hand)

within each group, we trained a linear classifier using a standard BCI
feature extraction and classification method. Specifically, for feature
extraction, we computed 6 Common Spatial Patterns filters between
the α and β bands (8–28 Hz). Common Spatial Patterns is a
recognized and efficient algorithm in BCI design that can create
spatial filters to optimize the discriminability between two distinct
classes (Ramoser et al., 2000; Lotte, 2014). Next, we trained a
Shrinkage Linear Discriminant Analysis classifier and performed

1 https://github.com/kvagaja/Virtual-Embodiment-and-Motor-Imagery-
BCIs

2 https://readyplayer.me/en
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a Monte Carlo cross-validation with a test set size of 20% of the data.
The score for each fold of the cross-validation was computed, and
the mean score was compared against the chance level, i.e., the
accuracy expected from a random prediction. The final classification
accuracy (%) reported is the average of these accuracies across all ten
folds.

2.5.5 Statistical analysis
All statistical analyses were performed using R version 4.3.0 (R

Core Team, 2018). Our dependent variables were mean ERD (%) of
the C3 and C4 electrodes, lateralization index, and offline BCI
performance (%). Our independent variables were composite
questionnaire scores, each one being an average across multiple
Likert scale items (see Table 1).

• Appearance = (E1 + E2 + E3 + E4 + E5 + E6 + E9 + E16)/8
• Response = (E4 + E6 + E7 + E8 + E9 + E15)/6
• Ownership = (E5 + E10 + E11 + E12 + E13 + E14)/6
• Multi-sensory = (E3 + E12 + E13 + E14 + E15 + E16)/6
• Agency = (E3 + E13)/2
• Embodiment = (Appearance + Response + Ownership +
Multi-sensory)/4

• Physical Presence = (P1 +P2 +P3 +P4 +P5)/5

The normality of the distribution of all variables was assessed
using the Shapiro-Wilk normality test. For the ERD, LI, accuracy,
and questionnaire measures (appearance, response, agency,
embodiment), a series of Welch Two Sample t-tests were
performed. For the variables multisensory, ownership, and
presence, Wilcoxon Rank Sum tests with a false discovery rate
(FDR) correction (Benjamini and Hochberg, 1995) were
performed because the assumptions of the t-test were not met for
these variables. Pearson’s correlations were performed between all
dependent and independent variables and were corrected for
multiple comparisons using a 5% FDR. The significance level was
set at 5% (p < 0.05). Due to missing questionnaire data, subject
9 was excluded from the correlation analysis, resulting in number of
cases N = 25.

3 Results

3.1 Sense of embodiment and presence

Our first goal was to verify if the embodiment phase was effective in
inducing the sense of embodiment over the virtual body. As expected,
participants in the embodied group reported higher levels of overall SoE
than the participants in the non-embodied group (t (18.39) = 3.42, p =
0.01, d = −1.34) (Figure 2). In addition, embodied group showed
significant differences in the questionnaire scores: response (t (20.22) =
2.51, p = 0.03, d = −0.98), agency (t (19.99) = 2.54, p = 0.03, d = −1.00),
multisensory (W = 27.50, p = 0.01) and ownership (W = 23.00, p =
0.01). The effect sizes (Cohen’s d) weremoderate to large. No significant
differences were found for the variables’ appearance (t (22.91) = 1.20,
p = 0.28, d = −0.48) and presence (W = 74.50, p = 0.87). This was
expected since both the virtual environment and the virtual body were
kept the same in both groups. Therefore, our manipulation was specific
to inducing (or breaking) the sense of embodiment.

3.2 Participants’ ability to induce ERD during
MI in VR

Before analyzing between-group differences in MI-induced
brain patterns, we first assessed participants’ ability to induce
sufficient ERD during MI training. The Single Sample Wilcoxon
Signed-Rank test was used to compare the ERD power over C3 and
C4 electrodes during the MI period with no ERD (0% ERD) for both
left and right trials. In the non-embodied group, 12 out of
13 participants showed a statistically significant decrease in ERD
power for both left and right trials over both electrodes. However,
Subject 20 showed statistically non-significant decrease in ERD
power for right trials over the ipsilateral C4 electrode (Z = −0.88,
p = 0.38|Mdn = −2.00, IQR = 22.68). In the embodied group, 9 out of
13 participants demonstrated statistically significant decrease in
ERD power for both left and right trials over both electrodes.
Nonetheless, Subject 3 exhibited statistically non-significant
decrease in ERD power for left trials over the contralateral
C4 electrode (Z = −1.84, p = 0.07|Mdn = −8.22, IQR = 29.85).
Subjects 3 and 7 displayed statistically significant decrease in ERD
power over the ipsilateral C4 electrode for right trials (Z = 6.81, p <
0.001|Mdn = 8.15, IQR = 13.43 and Z = 7.06, p < 0.001|Mdn = 23.17,
IQR = 29.08, respectively). Furthermore, Subject 14 showed
statistically non-significant decrease in ERD power over the
contralateral C3 electrode for right trials (Z = 2.15, p = 0.03|
Mdn = 2.98, IQR = 10.10). These results suggest that 92% of
participants in the non-embodied group were able to produce
distinct ERD patterns during the MI session, compared to 69%
of participants in the embodied group. Notably, 3 subjects in the
embodied group did not show statistically significant decreased ERD
power drop during right MI trials.

3.3 Between-group differences in ERD,
lateralization index, and BCI performance

Our statistical analysis using Welch Two Sample t-tests did not
reveal any significant differences (p > 0.05) between the groups in
terms of μ-band ERDs around the sensorimotor area, LI, and BCI
performance (Table 2). However, the non-embodied group
exhibited small differences in terms of mean ERD power over
both electrodes in both trials compared to the embodied group
(Figure 3B). Furthermore, the temporal evolution of ERD was
similar across two groups: the μ-rhythm power gradually
changed relative to resting state and remained at the reduced
level until the end of the trial (Figure 3A). In terms of
lateralization, the non-embodied group showed small differences
with a slightly higher lateralization of ERD during MI (M = 11.50,
SD = 6.00) than the embodied group (M = 9.07, SD = 9.56), but the
difference was not statistically significant (t = 0.78, p = 0.45)
(Figure 4). The positive LI values observed in both groups
indicate a predominantly contralateral decrease in ERD power
during left- and right-hand MI (Figure 3C). In terms of BCI
performance, although we observed a difference in the Linear
Discriminant Analysis classification score in favor of the
embodied group (embodied: M = 77.40%, SD = 20.53%; non-
embodied: M = 75.19%, SD = 12.52%) (Figure 5), no statistically
significant differences were found between the two groups (t = 0.33,
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p = 0.74). Altogether, these results suggest that there were no
significant group-based variations in ERD features and BCI
accuracy, indicating comparable outcomes between the non-
embodied and embodied conditions.

3.4 Relationship between ERD, BCI
performance and subjective embodiment
measures

Investigation into the relationship between embodiment and the
ability to modulate μ-rhythms across all subjects showed no
correlation between SoE score and ERD power over C3 and
C4 electrodes in left trials (r = −0.06, p = 0.79 and r = 0.08, p =
0.72 respectively) as well as ERD power over C3 and C4 electrodes in
right trials (r = 0.21, p = 0.31 and r = 0.21, p = 0.32 respectively)
(Figure 6A). Similarly, no correlations were found between SoE and
LI (r = −0.13, p = 0.54) (Figure 6B), and BCI accuracy (r = −0.13, p =
0.55) (Figure 6C). Regarding the remaining questionnaire scores

(appearance, response, ownership, multisensory, agency, physical
presence), no significant correlations were found with the ERD
features (ERD power of contralateral and ipsilateral electrodes, LI)
nor BCI performance. These results suggest that the induction of
SoE and physical presence prior to MI training does not have a
substantial or statistically significant influence on ERD modulation
at the sensorimotor area during the MI task.

4 Discussion

To the best of our knowledge, the present study is the first to
explore the priming effect of avatar embodiment, on MI-induced
brain patterns. This study draws on previous research that suggests
shared electrophysiological correlates between virtual hand illusion
and hand MI (Evans and Blanke, 2013), VR priming (Vourvopoulos
and Bermúdez i Badia (2016); Amini Gougeh and Falk (2023), the
impact of “Proteus effect” in MI (Beaudoin et al., 2020), as well as the
potential to enhance ERD patterns using VR during MI training
(Braun et al., 2016; Penaloza et al., 2018). Our hypothesis was that
inducing virtual SoE prior to MI training in VR could act as a form
of priming that could further enhance MI-induced ERD patterns
and increase offline BCI accuracy.While our results confirmed that a
5-min embodiment phase successfully induced a stronger SoE over
the virtual body in the embodied group than in the non-embodied
group, the subsequent MI-induced decrease in μ-power and the
lateralization of ERD were similar across both groups. In addition,
no differences were found in offline BCI accuracy between the two
groups. Together, these results suggest that induction of
embodiment prior to a MI training session in VR, does not
impact MI skills nor seems to matter for an online MI-BCI session.

In our methodology, we employed subjective embodiment
measures to quantify the strength of embodiment illusion
manipulation between the two groups. As anticipated,
participants in the embodied group reported significantly higher
SoE than those in the non-embodied group. Importantly, feelings of

FIGURE 2
Differences in questionnaire scores between the embodied (orange) and non-embodied (gray) groups. Y-axis: Responses on the 7-point Likert
scale, ranging from 1 (strongly disagree) to 7 (strongly agree). Scores above 4 indicate a sense of embodiment and presence. * indicates significant
differences (i.e., p <0.05).

TABLE 2 t-test results from the group differences of ERD power (%) over
contralateral (R C3, L C4) and ipsilateral (R C4, L C3) electrodes, lateralization
index (LI), and offline BCI accuracy (LDA, Linear Discriminant Analysis).

Non-
embodied

Embodied Non-embodied vs.
Embodied

mean t-statistic p-value df

L C3 −31.16 −26.52 0.79 0.43 22.85

L C4 −40.35 −33.69 0.99 0.33 22.12

R C3 −37.71 −30.81 1.10 0.28 20.21

R C4 −23.91 −19.84 0.58 0.57 23.27

LI 11.50 9.07 0.78 0.45 20.20

LDA 75.19 77.40 0.33 0.74 19.84
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VR presence and avatar appearance were reported similarly across
groups, indicating that our manipulation specifically altered the SoE,
without unintended effects on other aspects of the virtual
experience. Additionally, we observed that the average
embodiment scores for the non-embodied group were close to
the neutral point of 4 on the 7-point Likert scale, suggesting that
participants in this group neither strongly agreed nor disagreed with
feeling embodied in the virtual avatar. Together, these findings
suggest that our embodiment illusion manipulation was effective:
a stronger sense of embodiment was created in the embodied group,
while the non-embodied group experienced more neutral feelings
towards embodiment. Notably, we observed great variability in the
experiences of embodiment among participants in the non-
embodied group, particularly in the subcomponents of agency,
response, and multisensory perception. The participants’ verbal
feedback at the end of the experiment could shed light on this
finding. Despite being in the no-embodiment illusion condition,
some participants experienced moments of identification with the
avatar by actively attempting to synchronize their own movements
with those of the avatar. This spontaneous SoE was further
underscored by reports of ‘connecting’ with the avatar during
asynchronous stroking of the incorrect hand. These subjective
experiences potentially led to the formation of certain
expectations about the experiment, thereby blurring the
distinction between the embodied and non-embodied conditions.
Therefore, the use of asynchronous visuomotor and visuotactile

correlations in the non-embodied group could be a contributing
factor to the observed variability in the reporting of embodiment. To
minimize this variability and ensure a more consistent participant
experience in future studies, it may be necessary to refine or
reconsider the use of these parameters when designing no-
embodiment conditions. Moreover, apart from instances of
spontaneous embodiment reports, it is highly probable that as
the MI-BCI session commenced and participants began to
observe the virtual reality hands, the sense of embodiment
emerged after a few trials, even for those who initially felt
“disembodiment” in the non-embodied groups. In essence, it is
quite likely that both groups experienced a sense of embodiment
during the MI-BCI training session.

Furthermore, our study highlighted the variability in MI skills
among participants, with some individuals exhibiting successful
engagement in the MI task and while others experiencing
challenges in evoking consistent ERD patterns. While 12 out of
13 participants in the non-embodied group successfully produced
significant ERD, only 9 out of 13 participants in the embodied
group achieved the same level of ERD. Additionally, three
individuals in the embodied group exhibited no ERD, which
may explain why we observed a slightly stronger mean ERD
power as well as higher lateralization of ERD in the non-
embodied group. Nevertheless, these findings align with
previous research on MI proficiency (McKelvie and Demers,
1979; Isaac and Marks, 1994) and the prevalence of BCI

FIGURE 3
ERD grand averages across embodied (orange) and non-embodied (gray) groups during left and right motor imagery trials. (A) ERD time course.
Lines represent mean ERD values (mean values were calculated within each subject across the μ frequency range, and then a grand mean value was
obtained). Color shapes show the corresponding 25th and 75th percentiles. The vertical dashed lines represent the time limit of 10-s trial, while the
horizontal line indicates the resting state; (B) ERD distributions for C3 and C4 electrodes between 0 and 10000 ms. Red dot and black line represent
the group mean and median ERD value, respectively; (C) Topographic distribution patterns of mean ERD. The colors on the topographic maps indicate
ERDmagnitudes (blue color indicates strong ERD). In all graphs, ERD is expressed as a percentage and represents the decrease in μ-power during the MI
task compared to the baseline (0% ERD). † indicates contralateral electrode.
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inefficiency, where individuals may struggle to achieve satisfactory
control or fail to elicit the required EEG patterns during BCI tasks
(Allison and Neuper, 2010). The potential imbalance in MI
proficiency levels between the groups is an important
consideration when interpreting the results. It is plausible that
the non-embodied group contained a higher ratio of participants
with robust MI skills, which may have influenced the marginally
superior mean ERD values observed in that group compared to the
embodied group. Specifically, numerous recent research studies
have explored how individual variances, such as personality traits,
cognitive capabilities (Jeunet et al., 2015; Leeuwis et al., 2021), and
gender (Wriessnegger et al., 2020) influence the performance of
MI-BCI in the context of user training and learning. Nonetheless,
in terms of gender differences, a recent meta-analysis of large EEG
datasets consisting of 248 subjects, showed no significant
differences in μ-ERD during MI (Alimardani et al., 2023).

Finally, despite our study not finding statistically significant
differences in ERD modulation and offline BCI accuracy between
groups, or significant correlations with reported embodiment
scores, the high classification accuracy of around 70% achieved
by both groups underscores that MI training with embodied VR
feedback can lead to satisfactory BCI performance without
necessarily requiring a prior embodiment phase. This beneficial
impact of VR feedback and the embodiment it induces on MI
training and BCI performance has been well documented.
Research has shown that MI training paired with embodied VR
feedback increases ERD power and BCI accuracy, outperforming
training that uses standard screen-based feedback (Penaloza et al.,

2018; Juliano et al., 2020; Vourvopoulos et al., 2022). Furthermore,
a positive correlation has been observed between the SoE induced
during VR-based MI training and ERD power (Braun et al., 2016;
Penaloza et al., 2018), as well as BCI accuracy (Alimardani et al.,
2014; Penaloza et al., 2018; Choi et al., 2020a; Juliano et al., 2020).
Our findings contribute to this body of research, suggesting the
timing and context of embodiment could be crucial. It appears that
when SoE is induced during MI training, it sufficiently enhances
both MI skills and BCI performance. However, inducing SoE prior
to MI training, as done in our study, does not yield significant
positive outcomes in terms of ERD modulation. These
observations underscore the importance of exploring various
facets of VR experiences, including timing, duration, and
specific characteristics of embodiment, to further enhance MI
training outcomes and BCI performance. Doing so will allow us
to fully leverage the therapeutic potential of VR in
neurorehabilitation.

5 Limitations and future work

Our study had several limitations related to our sample and
experimental design. Primarily, our relatively small sample size of
only 13 participants per group limits both the statistical power of our
findings and their generalizability. Our future aim is to improve the
statistical power by increasing the sample size and in doing so, we
aim to delve into Linear Mixed Effects (LME) modeling, recognizing
its versatility as a powerful statistical tool as opposed to correlations.

FIGURE 4
Differences in lateralization index between the embodied (orange) and non-embodied (gray) groups. The red dot and black line represent the group
mean and median LI, respectively.
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We anticipate that employing LME modeling will offer a more
sophisticated and flexible approach by handling both mixed and
random effects, make efficient use of available data by accounting for
missing or unbalanced data, while allowing for the inclusion of
covariates, controlling of potential confounding factors.

Moreover, our between-study design requires careful matching
of groups based on multiple variables such as gender, age, BCI, and

VR experience to avoid potential confounding influences. Future
research could implement measures like the Kinesthetic and Visual
Imagery Questionnaire (KVIQ) (Malouin et al., 2007) or conduct an
initial BCI session to evenly distribute BCI proficiency levels (or pre-
existingMI abilities) across groups. Alternatively, adopting a within-
subjects design, where participants undergo MI training twice, once
with and once without an embodiment induction phase, could

FIGURE 5
Differences in offline BCI accuracy between the embodied (orange) and non-embodied (gray) groups. The red dot and black line represent the
group mean and median accuracy, respectively.

FIGURE 6
Correlations between reported sense of embodiment and (A) ERD (%) of contralateral and ipsilateral C3 and C4 electrodes; (B) lateralization indices
across all subjects, and (C) offline BCI performance.
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eliminate these issues. In this case, a sufficient time gap, such as
1–2 weeks, between sessions should be considered to counteract
potential learning effects. Furthermore, future studies should focus
on establishing a robust embodiment priming phase on an online
MI-BCI session.

Furthermore, in the future we are planning to use additional
questionnaires for measuring the perceived sense of embodiment
(Roth and Latoschik, 2020; Eubanks et al., 2021) given that current
questionnaire from Peck and Gonzalez-Franco (2021) is relatively
new and the proposed measures of embodiment have not been
tested through time for their reliability. In terms of future work, in
order to establish a robust no-embodiment condition, future studies
could consider removing the avatar entirely from the VR scene or
replacing it with non-humanoid entities. Notably, the former
approach could ensure total no-embodiment, while the latter
would allow the administration of an embodiment questionnaire
to explore possible correlations with MI skills. Finally, certain areas
could be further explored. The 5-min embodiment phase in our
study may have been too short to induce a robust sense of
embodiment and influence subsequent MI skills. Drawing from
the work of Kocur et al. (2020), future studies could investigate
whether a longer embodiment phase, might influence MI-BCI
performance. Most importantly, to unambiguously clarify the
influence of the embodiment priming phase on MI skills, our
experiment would benefit from replication with a more
comprehensive no-embodiment condition.

6 Conclusion

In conclusion, our study provides insights into the role of
embodiment in VR-based MI-BCIs. Though our 5-min
embodiment phase effectively heightened the SoE in the
embodied group, as evidenced by subjective measures, both
groups demonstrated similar MI-induced ERD patterns and
offline BCI accuracy. This suggests that the induction of
embodiment prior to MI training may not significantly influence
the training outcomes. Instead, it appears that the integration of
embodied VR feedback during the MI training itself may be enough
to induce appropriate ERD. These findings underscore the necessity
of understanding the role of timing and context of embodiment in
shaping MI skills. Future research might consider howmanipulating
different aspects of VR experiences, such as the duration and
intensity of embodiment or the design of the VR feedback, could
optimize MI training outcomes. This would further leverage the
therapeutic potential of VR in neurorehabilitation therapies. Finally,
this study resulted into the production of more than 78 publicly
available labeled MI EEG datasets during embodiment in VR,
including EMG and hand temperature (Vagaja and
Vourvopoulos, 2023).
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