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Dynamic systems theory transformed our understanding of motor control by recognizing
the continual interaction between the organism and the environment. Movement could no
longer be visualized simply as a response to a pattern of stimuli or as a demonstration of
prior intent; movement is context dependent and is continuously reshaped by the ongoing
dynamics of the world around us. Virtual reality is one methodological variable that allows
us to control and manipulate that environmental context. A large body of literature exists to
support the impact of visual flow, visual conditions, and visual perception on the planning
and execution of movement. In rehabilitative practice, however, this technology has been
employed mostly as a tool for motivation and enjoyment of physical exercise. The
opportunity to modulate motor behavior through the parameters of the virtual world is
often ignored in practice. In this article we present the results of experiments from our
laboratories and from others demonstrating that presenting particular characteristics of the
virtual world through different sensory modalities will modify balance and locomotor
behavior. We will discuss how movement in the virtual world opens a window into the
motor planning processes and informs us about the relative weighting of visual and
somatosensory signals. Finally, we discuss how these findings should influence future
treatment design.
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INTRODUCTION

Virtual reality (VR) is a compelling andmotivating tool that can be used to modulate neural behavior
for rehabilitation purposes. Virtual environments can be developed as simple two-dimensional visual
experiences and as more complex three-dimensional gaming and functional environments that can
be integrated with haptics, electromyography, electroencephalography, and fMRI. These
environments can then be used to address a vital need for rehabilitative training strategies that
improve functional abilities and real-world interaction. There has been a concerted effort to
determine whether motor learning in VR transfers to the physical world (Levac et al., 2019).
Although this is important for determining measurable goals for intervention with VR, the sole focus
on diminishing a motor deficit without controlling the perceptual factors within the virtual
environment could actually interfere with task transfer and the rehabilitation process. Mounting
evidence suggests that VR contributes to the complex integration of information from multiple
sensory pathways and incorporates the executive processing needed to perceive this multimodal
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information (Keshner and Fung, 2019). Thus, VR is a
rehabilitation tool that can be designed to address the
perception-action system required for motor planning, a vital
part of motor learning and performance, as well as motor
execution.

In humans, common neural activation during action
observation and execution has been well documented. A
variety of functional neuroimaging studies, using fMRI,
positron emission tomography, and
magnetoencephalography, have demonstrated that a motor
resonance mechanism in the premotor and posterior parietal
cortices occurs when participants observe or produce goal
directed actions (Grèzes et al., 2003; Hamzei et al., 2003;
Ernst and Bülthoff, 2004). Mirror neurons in the ventral
premotor and parietal cortices of the macaque monkey that
fire both when it carries out a goal-directed action and when it
observes the same action performed by another individual also
provides neurophysiological evidence for a direct matching
between action perception and action production (Rizzolatti
and Craighero, 2004).

The concept of perception-action coupling has been
accepted since Gibson (Gibson, 1979) who argued that
when a performer moves relative to the environment, a
pattern of optical flow is generated that can then be used to
regulate the forces applied to control successive movements
(Warren, 1990). In other words, we organize the parameters of
our movement in relation to our perception of the signals we
are receiving from the environment, and the change resulting
from our action will then change the environment we must
perceive for any subsequent action. Thus, how we perceive the
environmental information will always affect how we organize
and execute an action. Not taking into account the
environmental factors that influence perception during
training may well confound any assessments of performance
and transfer of training (Gorman et al., 2013).

The essence of VR is the creation of the environment.
Environments are created for many purposes ranging from
industrial to entertainment and gaming to medical (Rizzo
and Kim, 2005; Levin et al., 2015; Garrett et al., 2018;
Keshner et al., 2019). Environments have been developed to
overlay virtual objects on the physical world (i.e., augmented
reality) or to present a fully artificial digital environment
(i.e., VR). Rarely, however, is the motor ability of the
performer considered in the design of these environments.
In this study we will present work from our laboratories in
which we specifically focused on coupling of the
environmental and motion parameters.

MANIPULATING VISUAL MOTION
INFORMATION (OPTIC FLOW)

In a seminal paper initially published in 1958, Gibson formulated
the foundations of what would become an influential theory on
the visual control of locomotion (Gibson, 2009). Among key
aspects of this theory was the role visual kinaesthesis, or optic
flow, in the perception of egomotion and control of locomotion

(Warren, 2009). Since early 2000, VR technology has
undoubtedly contributed to our understanding of the role of
optic flow and other sources of visual information in the control
of human posture and locomotion (Warren et al., 2001; Wilkie
and Wann, 2003).

Several psychophysical phenomena are attributed to the
impact of optic flow on perception. Presence and immersion
describe the user’s belief in the reality of the environment
(Slater, 2003). These terms have been used interchangeably,
but they should be distinguished from the perspective of the
measurement tool. According to Slater (Slater, 2003),
immersion is a measure of the objective level of sensory
fidelity provided by a VR system; presence is a measure of
the subjective psychological response of a user experiencing
that VR system.

Vection is the sensation of body motion in space produced
purely by visual stimulation. This illusory motion of the whole
body or of body parts is induced in stationary observers viewing
environmental motion (Dichgans and Brandt, 1972; Dichgans
et al., 1972; Palmisano et al., 2015). Examples of such a conflict
occur in daily life when watching a moving train and sensing that
it is the train and not yourself who is moving (Burr and
Thompson, 2011). It is generally agreed that this illusion of
self-motion results from a sensory conflict or mismatch that
cannot be resolved by the CNS. Vection has also been defined
more broadly as the conscious subjective experience of self-
motion (Ash et al., 2013) that is crucial for successful
navigation and the prevention of disorientation in the real
world (Riecke et al., 2012).

Lastly, perception of self-motion is a challenging problem in
the interpretation of multiple sensory inputs, requiring the
neural combination of visual signals (e.g., optic flow),
vestibular signals regarding head motion, and also
somatosensory and proprioceptive cues (Deangelis and
Angelaki, 2012). To perform successfully, we need to link
sensory information to the context of the movement and
determine whether there is a match between the visual
motion and our vestibular and somatosensory afference and
then shape our movement to accurately match the demands of
the environment (Hedges et al., 2011). Consistent
multisensory information about self-motion, rather than
visual-only information, has been shown to reduce vection
and improve both heading judgment and steering accuracy
(Telford et al., 1995). Subjects demonstrated no compensation
for self-motion that was defined solely by vestibular cues,
partial compensation (47%) for visually defined self-motion,
and significantly greater compensation (58%) during
combined visual and vestibular self-motion (Dokka et al.,
2015). Body posture will orient to a visual, somatosensory,
or vestibular reference frame depending on the task,
behavioral goals, and individual preference (Streepey et al.,
2007b; Lambrey and Berthoz, 2007). Development across the
lifespan and damage to the CNS may produce a shift in sensory
preferences and thereby alter the responsiveness to any of the
sensory pathways resulting in altered motor behavior (Slaboda
et al., 2009; Yu et al., 2020). Thus, understanding how virtual
environment parameters influence motor planning and
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execution is essential if we are to use virtual reality effectively
for training and intervention.

Evidence From VR-Based Neuroimaging
Studies
Through the combination of VR and neuroimaging tools, key brain
regions involved in the perception and use of optic flow during
simulated “locomotor tasks” were unveiled. Human motion area
hMT+ and ventral intraparietal cortex (VIP) play a role in the
perception of egomotion from optic flow (Morrone et al., 2000;
Dukelow et al., 2001; Wall and Smith, 2008), while a region of the
intraparietal sulcus (IPS) would be responsible for identifying
heading from optic flow information (Peuskens et al., 2001; Liu
et al., 2013). PET and MRI studies indicate that when both retinal
and vestibular inputs are processed, there are changes in the medial
parieto-occipital visual area and parietoinsular vestibular cortex
(Brandt et al., 1998; Dieterich and Brandt, 2000; Brandt et al.,
2002), as well as cerebellar nodulus (Xerri et al., 1988;
Kleinschmidt et al., 2002), suggesting a deactivation of the
structures processing object-motion when there is a perception of
physical motion. When performing VR-based steering tasks,
additional regions such as the premotor cortex and posterior
cerebellum get recruited (Field et al., 2007; Billington et al., 2010;
Liu et al., 2013). The latter two brain regions would contribute to the
planning and online monitoring of observer’s perceived position in
space, while also contributing to the generation of appropriatemotor
responses (Field et al., 2007; Liu et al., 2013). Interestingly, a study
which combined EEG to a VR setup during Lokomat-supported
locomotion also showed an enhancement in premotor cortex
activation when performing a steering task in first or third
person view compared to conditions where no locomotor
adaptations were required, which the authors also attributed to
an enhanced need for motor planning (Wagner et al., 2014).

In most recent VR-based neuroimaging studies, individuals are
immersed in more realistic environments and perform tasks of
increasing complexity such as attending to or avoiding moving
objects during simulated self-motion, where both perceived self-
motion and object motion are at play (Calabro and Vaina, 2012;
Huang et al., 2015; Pitzalis et al., 2020). Collectively, the fundamental
knowledge acquired through VR-based neuroimaging experiments is
key as it has allowed rehabilitation scientists to pose hypotheses and
explain impaired locomotor behaviors and the heterogeneity of
thereof in clinical populations with brain disorders such as stroke
or Parkinson’s disease. Existing VR-based neuroimaging studies,
however, remain foremost limited by their lack of integration of
actual locomotor movements and nonvisual self-motion cues
(Chaplin and Margrie, 2020). Multisensory convergence takes
place at multiple levels within the brain. As an example, animal
research has shown that MSTd and the parietoinsular vestibular
contribute to a coherent percept of heading by responding both to
vestibular cues and optic flow (Duffy, 1998; Angelaki et al., 2011)—an
observation that was made possible by exposing the animal to a
combination of optic flow manipulation and actual body translation
in space. In human research, the emergence of mobile neuroimaging
tools (e.g., fNIRS, EEG) and more robust analysis algorithms now
makes it possible to examine the neural substrates of actual

locomotion (Gramann et al., 2011; Brantley et al., 2018; Gennaro
and De Bruin, 2018; Nordin et al., 2019; Wagner et al., 2019). Studies
combining VR as well as other technologies (e.g., motion platform,
robotic devices) to mobile neuroimaging can be expected, in the near
future, to flourish and advance our understanding of locomotor
control in complex, comprehensive yet controlled multisensory
environments.

What Have We Learned From Lab-Based
Postural Control Studies
Our studies in immersive VR environments (using both projection
and headmounted display (HMD) technology) reveal that it is nearly
impossible for a performer to ignore the dynamic visual stimulus
(Keshner and Kenyon, 2000, 2009; Cleworth et al., 2012). As shown
in a seminal paper by Dichgans et al. (1972), sensitivity to a virtual
visual stimulus is greatly increased when there is a combination of
meaningful inputs (Dichgans et al., 1972). Measures of head, trunk,
and lower limb excursions revealed that the majority of participants
compensated in the opposite direction but at the same frequency for
motion of a translating platform in the dark (Keshner et al., 2004).
When on a stationary platform with a translating visual scene,
participants matched the frequency and direction of the scene
motion with their head and trunk but at much smaller
amplitudes. Combining platform and visual scene motion
produced the greatest amplitudes of motion occurred in all body
segments. Additionally, frequency content of that movement
reflected both the frequencies of the platform and the visual scene
suggesting that the sense of presence was greatly intensified when
producing self-motion within a dynamic visual environment
(Figure 1).

These results suggest that the postural response was
modulated by all of the available sensory signals. In fact, the
data strongly establish that kinematic variables of postural
behavior are responsive to the metrics of the multimodal
inputs. In particular, postural behavior has been shown to be
influenced by the velocity, direction, and frequency parameters of
the optic flow (Figure 2). For example, healthy young adults
standing on a tilting platform in a 3-wall projection environment
(Dokka et al., 2010; Wang et al., 2010) modified the direction,
velocity, and amplitude of their COM motion in relation to the
velocity of a visual scene rotating in the pitch direction. When
standing on a stable surface, healthy young adults matched the
direction of their head and trunk swaying to the direction of
visual motion in both pitch and roll.

Although velocity and direction may be governed by optic
flow, magnitude of the response does vary across individuals
(Keshner et al., 2004; Streepey et al., 2007a; Dokka et al., 2009).
Healthy young adults in front of a wide field of view virtual scene
that translated in the anterior-posterior (a-p) direction stood
upon a rod that supported 100% or 45% of their foot length; thus,
the base of support was whole or narrowed. Even in these healthy,
young adults, success at maintaining a vertical orientation was
compromised when standing on the narrowed base of support;
however, the sway of about half the participants matched the
frequency of the visual scene whereas the other half did not
demonstrate a predominant frequency. This suggests a
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preferential sensory referencing in some participants to the
sinusoidal visual signals and in others to the proprioceptive
signals from the body. Intraindividual variability and task
dependency that is demonstrated in the virtual environment
(Keshner and Kenyon, 2000; Streepey et al., 2007b) imply that
postural control is both task and organism dependent and should
not be treated as a stereotypical, automatic behavior.

A developmental impact on the ability to process optic flow
was revealed during a functional sit-to-stand task (Slaboda et al.,
2009). Healthy children (8–12 years) and adults (21–49 years)

were seated in a virtual environment that rotated in the pitch and
roll directions. Participants were told to stand either (1)
concurrent with onset of visual motion or (2) after an
immersion period in the moving visual environment and (3)
without visual input. Both adults and children reduced head and
trunk angular velocity after immersion in the moving visual
environment. Unlike adults, children demonstrated significant
differences in displacement of the head center of mass during the
immersion and concurrent trials when compared to trials without
visual input. These data support previous reports (Keshner and

FIGURE 1 | (A) Trunk excursion (top trace) to sinusoidal a-p translation (bottom trace) of the base of support (BOS) at 0.25 Hz. (B) Trunk excursion (top trace) to
sinusoidal a-p optic flow (scene) at 0.1 Hz. (C) Trunk excursion (middle trace) when 0.25 Hz motion of the BOS (bottom trace) and 0.1 Hz of the scene (top trace) occur
simultaneously. (D) FFT analysis demonstrating power at the trunk reflects frequency of the stimulus, i.e., the scene (left), the BOS (middle), and simultaneous BOS and
scene motion (right).

FIGURE 2 | Center of mass (COM) excursions during a-p translations of a platform at 0.25 Hz while standing in the dark (bold black line) and while viewing
continuous pitch rotations of optic flow at 30 deg/sec (thin black line) and 45 deg/sec (bold gray line). Top graphs: responses to pitch-up rotations of the scene in a
healthy 62-year-old adult (left) and 65 year-old-adult with right hemiplegia (right). Bottom graphs: responses to pitch down rotations of the scene in a healthy elderly
adult (left) and elderly adult with stroke (right). Vertical thin line indicates start of optic flow field.
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Kenyon, 2000; Keshner et al., 2004) of a time-dependent effect of
vision on response kinematics in adults. Responses in children are
more influenced by the initial presence or absence of vision from
which we might infer poorer error correction in the course of an
action.

Utilizing Optic Flow for Postural
Rehabilitation
Optic flow in the virtual environment robustly influences the
organization of postural kinematics. This influence, however,
fluctuates with the integrity of the CNS and the perceptual
experiences of each individual. Sensory signals are often
reweighted in individuals as they age and with neurological
disability, which then alters the postural response to optic flow
(Slaboda et al., 2009; Yu et al., 2018). Thus, the success of any
therapeutic intervention employing VR needs to consider the
parameters of visual motion of the virtual environment. There
are, however, some global precepts that can guide the deployment
of any VR intervention. Specifically, studies have consistently
demonstrated that (1) the direction of full-field optic flow will
regulate the direction of postural sway (Keshner and Kenyon,
2009); (2) increasing velocity will increase the magnitude of
postural sway (Dokka et al., 2009; Wang et al., 2010); (3)
multiple sensory frequencies will be reflected in the body
segment response frequencies (Keshner et al., 2004; Slaboda
et al., 2011a); and (4) the influence of optic flow becomes
more substantial during self-motion (Dokka et al., 2010).

Training individuals that have instability and sensory
avoidance to produce effective postural behaviors have obvious
value and there are some studies demonstrating carryover to the
functional postural behavior of individuals with labyrinthine loss
(Haran and Keshner, 2008; Bao et al., 2019), Parkinson’s disease
(Bryant et al., 2016; Nero et al., 2019; Rennie et al., 2020), and
stroke (Van Nes et al., 2006; Madhavan et al., 2019; Saunders
et al., 2020). The very strong directional effect of optic flow on
posture and spatial orientation (Keshner and Kenyon, 2000)
would support incorporating this technology into any balance
rehabilitation program.

The ability to change response magnitudes relative to visual
velocity has been demonstrated in young healthy adults and in
individuals diagnosed with dizziness (Keshner et al., 2007), stroke
(Slaboda and Keshner, 2012), and cerebral palsy (Yu et al., 2018;
Yu et al., 2020) when support surface tilts were combined with
sudden rotations of the visual field. Both of these variables are
time dependent and require further clinical trials to determine
appropriate dosage of these interventions. Sensory reweighting,
however, has been shown to be frequency dependent and requires
control of multimodal stimuli. Angular displacements of the
head, trunk, and head with respect to the trunk consistently
revealed that healthy individuals linked their response parameters
to visual inputs and those with visual sensitivity as measured with
a Rod and Frame test could not use the visual information to
appropriately modulate their responses. Instead, individuals with
visual dependence, with or without a history of labyrinthine
dysfunction, tended to produce longer duration and larger
magnitude angular velocities of the head than healthy

individuals in all planes of motion and at all scene velocities
(Keshner and Dhaher, 2008; Wright et al., 2013).

These findings could be explained by an inability to adapt the
system to the altered gains resulting from the neurological
damage so that they could not accommodate to sensory
signals with which they had no prior experience (i.e., constant
motion of the visual world). A similar outcome was observed in
healthy young adults who received vibrotactile noise on the
plantar surface of the foot during quiet stance. Stochastic
resonant vibration of the lower limbs in older adults and
patients with stroke has been shown to reduce postural
instability (Van Nes et al., 2004; Guo et al., 2015; Lu et al.,
2015; Leplaideur et al., 2016). Although vibration does not
shorten the time to react to instability, it can decrease the
amplitude of fluctuation between the controlled body segment
and unstable surface thereby increasing the likelihood that a
corrective response will be effective. While viewing visual field
rotations, however, magnitude and noise of their center of mass
(COM) and center of pressure (COP) responses increased rather
than decreased with vibration (Keshner et al., 2011) suggesting
that, by increasing noise in the system, individuals were unable to
fully compensate for the disturbances. The use of noise and
sensory mismatch to encourage desensitization or
compensation is currently being explored for the treatment of
dizziness and postural instability (Pavlou et al., 2011; Pavlou et al.,
2012; Sienko et al., 2017; Bao et al., 2019). Individuals with
dizziness from concussion or labyrinthine dysfunction have
also been exposed to erroneous or conflicting visual cues
(visual-vestibular mismatch) while attempting to maintain
balance (Bronstein and Pavlou, 2013; Pavlou et al., 2013).
Results suggest that exposure to unpredictable and noisy
environments can be a valuable tool for motor rehabilitation.
Dosages (e.g., timeframe and range of stimulation) of the
intervention need to be further explored with controlled trials.

What Have We Learned From Lab-Based
Locomotor Studies
An extensive body of literature has examined the role of visual
self-motion in the control of locomotion by selectively
manipulating the direction or speed of the optic flow provided
through the virtual environment. Our work and that of others
have shown that one’s walking speed is affected by changing optic
flow speeds and show an out-of-phase modulation pattern. In
other words, slower walking speeds are adopted at faster optic
flow speeds while faster walking speeds are observed at slower
optic flows (Pailhous et al., 1990; Konczak, 1994; Prokop et al.,
1997; Varraine et al., 2002). Such strategy would allow reducing
the incongruity that arises from the mismatch between
proprioceptive information from the legs and the visual flow
presented in the virtual simulation (Prokop et al., 1997;
Lamontagne et al., 2007). The presence of optic flow during
treadmill walking also influences one’s ability to correct small
stepping fluctuations (Salinas et al., 2017). Compelling evidence
also support the role of optic flow in the control of locomotor
steering (Jahn et al., 2001; Warren et al., 2001; Mulavara et al.,
2005; Turano et al., 2005; Bruggeman et al., 2007). In the latter
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body of literature, a shift in the focus of expansion of the optic
flow is externally induced and this causes the participants to
perceive a shift in their heading direction. As a result, the
participants correct the perceived shift by altering their
walking trajectory in the opposite direction. Our team has also
shown that depending on whether the shift in the focus of
expansion is induced through rotational vs. translational flow,
different steering strategies emerge (Sarre et al., 2008). In the
former scenario, a steering strategy characterized by head, trunk,
and foot reorientation is observed, while the latter scenario rather
induces a typical “crab walk pattern” characterized by a change of
walking trajectory with very little body segment reorientation.
Such crab walking pattern has also been reported in other VR
studies that used translational optic flow (Warren et al., 2001;
Berard et al., 2009).

Interestingly, if the same rotational optic flow is generated via
a simulated head yaw rotation (camera rotation in VR) vs. an
actual head rotation, a different locomotor behavior also emerges,
whereby the simulated but not the actual head rotation results in a
trajectory deviation (Hanna et al., 2017). Such findings support
the potential contribution of the motor command (here neck and
oculomotor muscles) in heading estimation (Banks et al., 1996;
Crowell et al., 1998). These findings also corroborate the presence
of multisensory integration of both visual and nonvisual
information (e.g., vestibular, proprioceptive, and
somatosensory) to generate a single representation of self-
motion and orientation in space (De Winkel et al., 2015;
Acerbi et al., 2018).

Influences of Optic Flow on Locomotor
Rehabilitation
Collectively, the above-mentioned observations demonstrate that
while locomotor adaptions rely on multisensory integration,
vision and here, more specifically, optic flow exert a powerful
influence on the observed behavior. Findings presented also
provide concrete examples as to how optic flow information
can be selectively manipulated to alter locomotor behavior. Thus,
not only is the replication of reality in VR not a necessity, but the
selective manipulation of the sensory environment can and
should as needed be capitalized on to promote the desired
outcome. To allow for such manipulations to be effective in a
given clinical population, however, the latter must show a residual
capacity to perceive and utilize optic flow information while
walking.

The perception of optic flow and its use in locomotion have
been examined in several clinical populations such as older adults
(Chou et al., 2009; Lalonde-Parsi and Lamontagne, 2015) and
Parkinson’s disease patients (Schubert et al., 2005; Davidsdottir
et al., 2008; Young et al., 2010; Van Der Hoorn et al., 2012), but let
us use stroke as an example to demonstrate applications in
rehabilitation. Following stroke, the perception of optic flow
often is preserved (Vaina et al., 2010; Ogourtsova et al., 2018)
but becomes affected when the lesion is located in rostrodorsal
parietal and occipitoparietal areas of the brain, which are involved
in global motion perception (Vaina et al., 2010). In presence of
unilateral spatial neglect (USN), the bilateral perception of optic

flow (e.g., optic flow direction and coherence) becomes
dramatically altered (Ogourtsova et al., 2018). In fact, altered
optic flow perception along with USN severity as measured by
clinical tests explain 58% of the variance in locomotor heading
errors in individuals with poststroke USN (Ogourtsova et al.,
2018). Such observations emphasize the need to consider the role
of visual-perceptual disorders in poststroke locomotor
impairments.

Beyond studies examining the perception of optic flow
perception, our group has also examined the use of optic flow
during locomotion by manipulating the direction or speed of the
virtual environment (Lamontagne et al., 2007; Lamontagne et al.,
2010; Berard et al., 2012; Aburub and Lamontagne, 2013). From
these experiments emerged three main observations: (1) globally,
the ability to utilize OF information during walking is altered
following stroke; (2) there is however a large heterogeneity across
individuals, ranging from no alterations to profound alterations
in locomotor responses to optic flowmanipulations; and (3) most
individuals show some degree of modulation (albeit incomplete
or imperfect) of their locomotor behavior in response to optic
flow manipulation. Thus, one can infer that there is potential to
induce the desired locomotor adaptations through optic flow
manipulation in stroke survivors. However, integration of such
manipulations in intervention studies for locomotor
rehabilitation is scare and evidence of effectiveness is lacking.

In 2012, Khang and collaborators combined treadmill training
to optic flow speed manipulation for 4 weeks and examined the
effects on balance and locomotion following stroke (Kang et al.,
2012). Unfortunately, although the study showed larger
posttraining gains in walking speed and endurance in the
optic flow manipulation group vs. control groups receiving
either conventional treadmill training or a stretching program,
the study design did not allow to dissociate the contribution of VR
itself from that of the optic flow manipulation. Furthermore, it is
unclear if any online walking speed adaptation took place during
training given the absence of a self-pace mode on the treadmill. A
study from Bastian’s lab also showed that combining split-belt
walking to an incongruent optic flow that predicted the belt speed
of the next step enhanced the rate of learning during split-belt
locomotor adaptations in healthy individuals (Finley et al., 2014).
To date, however, the integration of such paradigm as part of an
intervention to enhance poststroke gait asymmetry remains to be
examined.

INTERACTION WITH AVATARS

In recent years, and thanks to technological development that
allows tracking and displaying body movements in real-time in a
virtual environment, the development of avatar-based paradigms
in rehabilitation has emerged. Unlike virtual humans or agents
which are controlled by computer algorithms, avatars are
controlled by the users and “mimic” their movements in real-
time. The avatar can represent either selected body parts (e.g.,
arms or legs) or the full body. They can also be viewed from a
first-person perspective (1 PP) or third-person perspective
(3 PP). In the paragraphs below, we are mainly concerned
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with exploring the impact of avatar-based feedback as a paradigm
to enhance postural control and locomotion in clinical
populations, but literature on upper extremity research that
explores mechanisms is also examined.

Why Avatar-Based Feedback
Potential principles of action of avatar-based feedback are
multiple and, as stated in a recent expert review on virtual
reality, they open a “plethora of possibilities for rehabilitation”
(Tieri et al., 2018). When exposed to virtual simulations
representing body parts or the full body, a phenomenon
referred to as virtual embodiment can develop. This sense of
embodiment translates as the observer experiencing a sense of
owning the virtual body simulation (ownership) and of being
responsible for its movement (agency) (Longo et al., 2008; Pavone
et al., 2016). While such sense of embodiment is subjectively
reported as higher for 1 PP vs. 3 PP (Slater et al., 2010; Petkova
et al., 2011; Pavone et al., 2016), we argue that the latter
perspective remains very useful for postural and locomotor
rehabilitation (as one does not necessarily look down at their
feet, for instance, when standing or walking). The similarity
between the virtual vs. real body part(s) (Tieri et al., 2017;
Kim et al., 2020; Pyasik et al., 2020), the real-time attribute or
synchrony of the simulation with actual movements (Slater et al.,
2009; Kim et al., 2020), and the combination of sensory
modalities (e.g., visuotactile (Slater et al., 2008) or
visuovestibular (Lopez et al., 2008; Lopez et al., 2012)) are
factors that enhance the illusory sensation.

Neuroimaging experiments indicate that the premotor areas
(pre-SMA and BA6) are involved in the sense of agency (Tsakiris
et al., 2010), while ownership would be mediated through
multimodal integration that involves multiple brain areas
including the somatosensory cortex, intraparietal cortex, and
the ventral portion of the premotor cortex (Blanke, 2012;
Guterstam et al., 2019; Serino, 2019). Mirror neurons located
in the ventral premotor cortex and parietal areas, but also in other
regions such as visual cortex, cerebellum, and regions of the
limbic system, also fire when an individual observes someone
else’s action (Molenberghs et al., 2012) and are likely activated
when exposed to avatar-based feedback. Passively observing
modified (erroneous) avatar-based feedback also leads to
activation of brain regions associated with error monitoring
(Pavone et al., 2016; Spinelli et al., 2018), which is a process
essential for motor learning.

During actual locomotion, the performance of a steering task
while exposed to avatar feedback provided in 1 PP or 3 PP was
shown to induce larger activation in premotor and parietal areas
compared to movement-unrelated feedback or mirror feedback
(Wagner et al., 2014). While such enhanced activation appears
primarily caused by the motor planning and visuomotor
demands associated with gait adaptations (Wagner et al.,
2014), it may as well have been potentiated by a sense of
embodiment and/or mirror neuron activations. More recently,
another study reported an event-related synchronization in
central-frontal (likely SMA) and parietal areas both during
actual and imagined walking while exposed to 1 PP avatar-
based feedback (Alchalabi et al., 2019). This event-related

synchronization was attributed by the authors to the high
sense of agency experienced during these conditions. Together,
the latter two locomotor studies provide preliminary evidence
that the body of knowledge on avatar-based feedback gathered
primarily via upper extremity experiments can be extended, at
least in part, to locomotion. Most importantly, observations from
neuroimaging experiments as a whole indicate that avatar-based
feedback does modulate brain activation. Through repeated
exposure, such a paradigm could thus support neuronal
reorganization and recovery following a neurological insult.

From a more pragmatic perspective, avatar-based feedback
also capitalizes on the remarkable ability of the human brain to
perceive and interpret biological motion information
(Johansson, 1973). This remarkable ability allows recognizing
features such as the nature of the activity being performed (e.g.,
walking), gender and emotion, even when exposed to
impoverished visual simulations such as point-light displays
(Johansson, 1973; Troje, 2002; Atkinson et al., 2004; Schouten
et al., 2010). For similar reasons, we as human can easily identify
even the most subtle limp when observing a walking pattern,
which makes avatar-based feedback a potentially powerful
approach to give and receive feedback on complex tasks such
as locomotion. Avatar feedback further allows providing real-
time feedback on the quality of movement (knowledge of
performance) (Liu et al., 2020b), which is especially
challenging for clinicians to do. In line with previous
literature on embodiment presented earlier, avatar-based
feedback may also impact recovery by enhancing movement
awareness, which is affected in clinical populations such as
stroke (Wutzke et al., 2013; Wutzke et al., 2015).

Manipulation of Avatar-Based Feedback
Avatar-based feedback can be manipulated in different ways (e.g.,
view, available sensory modality, modified vs. unmodified
feedback, etc.), yet the optimal parameters to obtain the
desired responses remain unclear. In a recent study from our
laboratory, we posed the question “which avatar view between the
front, back and side view, yields the best instantaneous
improvement in poststroke gait asymmetry?” (Liu et al.,
2020b). Participants were tested while exposed to 3 PP full-
body avatars presented either in the front, back, or paretic side
view and resulting changes in gait symmetry were examined. The
side view, which likely provides the best perspective on the
temporal-distance parameters of gait, was the only view that
induced enhanced spatial symmetry but only in those participants
who initially presented a larger step on the paretic side. This
finding was caused by the participants increasing their step length
on the nonparetic side when exposed to the avatar, which resulted
in improved symmetry only in those with a large paretic step.
Such an observation suggests that the initial profile of the
participant matters and, by extension, that avatar-based
feedback may not be suitable for all individuals. Of note,
manipulating 3 PP viewing angle of a virtual arm was also
found to alter kinematic outcomes during a reaching task
performed while standing (Ustinova et al., 2010). Avatar view
thus emerges as a factor to consider in the design of an
intervention.
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In a second series of experiments, we examined the impact
of modulating the sensory modality of avatar-based feedback
on poststroke gait asymmetry. The feedback consisted either of
a 3 PP visual avatar in the side view (visual), footstep sounds
(auditory), or a combination of visual avatar and footstep
sounds (combined modality) (Liu et al., 2020a). Although
these results are preliminary, there is a clear implication
that combining sensory modalities yielded the largest
improvements in spatial symmetry (Figure 3). These results
are in agreement with prior studies on other types of
multimodal simulation, such as the combination of a visual
avatar to tactile or haptic feedback, that were found to have
additional beneficial effects on the performance of healthy
individuals performing a stepping task (Koritnik et al., 2010)
and on the ability of individuals with spinal cord injury to
integrate virtual legs to their body representation (Shokur
et al., 2016).

The evidence supports the use of multimodal feedback to
modulate or train functional locomotion from a rehabilitation
perspective. In upper extremity rehabilitation research, a well-
studied approach consists of artificially increasing the
perceived performance error through visual or haptic
feedback (i.e., error augmentation paradigm) (Israely and
Carmeli, 2016; Liu et al., 2018). Similarly, manipulating
avatar-based feedback offers an opportunity to modify the
locomotor behavior. In 2013, Kannape and Blanke
manipulated the temporal delay of avatar-based feedback
and found that, while gait agency decreased with longer
delays, participants “systematically modulated their stride

time as a function of the temporal delay of the visual
feedback”, making faster steps in presence of incongruous
temporal feedback (Kannape and Blanke, 2013). More
recently, a preliminary study examined the impact of stride
length manipulation through hip angle modifications and
found a clear trend toward larger step lengths when
exposed to larger avatar step lengths (Willaert et al., 2020).
Such experiments provide preliminary evidence that modified
avatar-based feedback can lead to locomotor adaptations
either in the temporal or spatial domain. Avatar-based
feedback can further be augmented with visual biofeedback
on specific kinematic or kinetic features of the gait cycle. In
children with cerebral palsy, for instance, avatar-based
feedback was augmented with biofeedback on knee or hip
excursion, as well as step length, resulting in further
improvements in those parameters compared to avatar-
based feedback alone (Booth et al., 2019).

Collectively, findings in this section demonstrate that avatar-
based feedback can be effectively manipulated to modify
locomotor behavior and target specific features of gait. It can
also be used as a mean to enhance the control of movement
through brain computer interface (Wang et al., 2012; King et al.,
2013; Nierula et al., 2019). Further research is needed, however, to
understand how it can be optimized to promote the desired
outcome. At this point in time, intervention studies that
specifically focus on repeated exposure to avatar-based
feedback as an intervention for postural or locomotor
rehabilitation in populations with sensorimotor disorders are
crucially lacking.

FIGURE 3 | Step length ratio values exhibited by stroke survivors walking on a self-paced treadmill while exposed to avatar-based feedback in the visual, auditory,
and combined (visual + auditory) sensory modality. Values are presented for the preadaptation (no avatar for 30 s), adaptation (avatar present for 1 min), and
postadaptation periods (avatar removed for 1 min). Responders, that is individuals showing a reduction of their step length ratio during the adaptation period, are
represented by a plain line, while non-responders are represented by a dotted line. Note the larger number of responders to the combined vs. individual sensory
modalities.
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INTERACTION WITH VIRTUAL HUMANS

External Cuing
Inclusion of external agents (i.e., virtual humans) in virtual
scenarios has emerged as a means to modulate locomotion in
the context of rehabilitation. Such an approach stems in part
from a large body on research on the use of external sensory
cueing (e.g., visual or auditory) to modulate the temporal-
distance factors of gait both in healthy individuals (Rhea
et al., 2014; Terrier, 2016) and individuals with gait disorders
(Roerdink et al., 2007; Spaulding et al., 2013). It also stems from
the fact that when two individuals walk together (i.e., when
exposed to biological sensory cues), the locomotor behavior is
modulated as a result of a mutual interaction between the two
walkers (Ducourant et al., 2005) and a phenomenon of “gait
synchronization”, whereby a follower matches the gait pattern
of the leader, can be observed (Zivotofsky and Hausdorff, 2007;
Zivotofsky et al., 2012; Marmelat et al., 2014; Rio et al., 2014).
Such gait synchronization can be fostered through different
sensory channels (e.g., visual, tactile, and auditory) and is
enhanced with multimodal simulations (Zivotofsky et al.,
2012). In postural tasks, a similar phenomenon of
synchronization of postural sway is observed when
individuals are standing and having a physical contact
(Reynolds and Osler, 2014), while looking at each other
(Okazaki et al., 2015) or while sharing a cooperative verbal
task (Shockley et al., 2003). Given the flexibility and control
afforded by VR, virtual humans can also be used to “cue” and
modulate behavior, as demonstrated through different studies
which have examined instantaneous effects on locomotion
(Meerhoff et al., 2017; Meerhoff et al., 2019; Koilias et al.,
2020). While promising as a tool for rehabilitation, however,
evidence of effectiveness of external cueing through virtual
humans as an intervention either for posture or locomotion
remains to be established.

Pedestrian Interactions
Virtual humans can also be used for the assessment and training
of complex locomotor tasks such as avoiding collisions with other
pedestrians, which is a task essential for independent community
walking (Patla and Shumway-Cook, 1999; Shumway-Cook et al.,
2003). Collision avoidance heavily relies on the sense of vision, in
comparison to other senses such as audition (Souza Silva et al.,
2018). For this reason, most of the literature has focused on the
visual modality to infer the control variables involved (Cutting
et al., 1995; Gerin-Lajoie et al., 2008; Olivier et al., 2012; Fajen,
2013; Darekar et al., 2018; Pfaff and Cinelli, 2018). VR has
brought major contributions to our understanding of collision
avoidance, with some elements that are especially relevant to
rehabilitation. A first key element is that different collision
avoidance strategies emerge when avoiding virtual objects vs.
virtual humans. The latter were shown to lead to smaller obstacle
clearances which were interpreted as a use of less conservative
avoidance strategies (Lynch et al., 2018; Souza Silva et al., 2018).
Factors that may explain such difference include the level of
familiarity with the task (i.e., avoiding pedestrians is far more
common than avoiding an approaching cylinder/sphere), the

social attributes of the virtual humans (Souza Silva et al.,
2018), as well as the local motion cues arising from the limb
movements that were shown to shape some aspects of the
avoidance strategy (Lynch et al., 2018; Fiset et al., 2020). A
combination of real-world and VR studies has also shown that
the collision avoidance strategy in response to a human interferer
is modulated by factors such as the static vs. moving nature of the
interferer (Basili et al., 2013) as well as its direction (Huber et al.,
2014; Knorr et al., 2016; Buhler and Lamontagne, 2018; Souza
Silva et al., 2018) and speed of approach (Huber et al., 2014; Knorr
et al., 2016). All these factors can easily and effectively be
manipulated in VR to promote the desired behavior and
expose users to the diversity of scenarios they would
encounter while walking in the community. Whether personal
attributes of the interferers impact on collision avoidance
strategies, however, is still unclear (e.g., Knorr et al., 2016;
Bourgaize et al., 2020) and deserves further investigations.

VR-based studies on pedestrian interactions and collision
avoidance, including recent work from our laboratory, have
proven to be useful in unveiling the altered collision avoidance
strategies experienced by several populations such as healthy
older adults (Souza Silva et al., 2019; Souza Silva et al., 2020),
individuals with mild traumatic brain injury (Robitaille et al.,
2017), and individuals with stroke with (Aravind and
Lamontagne, 2014; Aravind et al., 2015; Aravind and
Lamontagne, 2017a; b) and without USN (Darekar et al.,
2017b; a). We and others have also shown that simultaneously
performing a cognitive task alters the collision avoidance
behavior and can compromise safety by generating addition
collisions (Aravind and Lamontagne, 2017a; Robitaille et al.,
2017; Lamontagne et al., 2019a; Souza Silva et al., 2020;
Deblock-Bellamy et al., 2021—accepted). In parallel to those
clinical investigations, other studies carried out in healthy
individuals have demonstrated that similar obstacle avoidance
strategies are used when avoiding virtual vs. physical humans,
although with subtle differences in walking speed and obstacle
clearance (Sanz et al., 2015; Buhler and Lamontagne, 2018;
Olivier et al., 2018; Bühler and Lamontagne, 2019). Such
results support the use of virtual humans as a valid approach
to evaluate and train pedestrian interactions as experienced in
daily life. Pedestrian interactions can be facilitated by the use of
omnidirectional treadmills that allow speed and trajectory
changes (Lamontagne et al., 2019b; Soni and Lamontagne,
2020) and should be added as an essential dimension of
community walking to complement existing VR-based
interventions that focus on locomotor adaptations (e.g., Yang
et al., 2008; Mirelman et al., 2011; Mirelman et al., 2016; Peruzzi
et al., 2017; Richards et al., 2018).

DISCUSSION

A recent review (Tieri et al., 2018) of the contributions of VR to
cognitive and motor rehabilitation suggests that the most
promising effects of VR are the ability to multitask in a virtual
environment that can replicate the demands of a physical
environment, i.e., it is an ecologically valid rehabilitation tool.
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Our data and others indicate that the sensory environment can be
effectively manipulated to promote a desired motor outcome so
that engagement with the task is encouraged and the process of
active motor control is facilitated even if the VR environment
deviates from physical reality. In order to accomplish this,
however, we need to understand the properties of VR
technology that create meaningful task constraints such as
sensory conflict and error augmentation. One of the greatest
weaknesses afflicting identification of the value of VR to
rehabilitation is the application of the term “VR” to describe a
myriad of paradigms that do not meet the requirements to truly
be considered virtual reality. In order for a VR guided
rehabilitation program to be successful, immersion in an
environment that produces presence and embodiment is
necessary if the user is to respond in a realistic way (Kenyon
et al., 2004; Keshner and Kenyon, 2009; Tieri et al., 2018). Thus,
only by activating the perception-action pathways for motor
behavior will appropriate emotional reactions, incentives to
act, and enhanced performance take place.

Results from the studies presented here clearly demonstrate
that one of the primary contributions of VR to physical
rehabilitation interventions is the ability to engage the whole
person in the processes of motor learning and control (Sveistrup,
2004; Adamovich et al., 2009). Principal strengths of utilizing VR
for rehabilitation is that it encourages motor learning through
practice and repetition without inducing the boredom often
resulting during conventional exercise programs. With this
technology, interventions can be designed to address the
particular needs of each individual, activity can be induced
through observation, and intensity of practice can be modified
in response to individual needs. But, in order to accomplish any of
these goals, it is essential that the clinicians understand how and
why they are choosing VR to meet their treatment goals and how
to optimally tailor treatments for a desired outcome. Factors to
consider when choosing to incorporate VR into a treatment
intervention include whether (1) the donning of devices such
as goggles alter motor performance (Almajid et al., 2020); (2) the
manipulation of objects in the environment will alter the sense of
presence; (3) certain populations are more susceptible to the
virtual environment and, therefore, will respond differently than
predicted (Slaboda et al., 2011b; Almajid and Keshner, 2019); and
(4) a visual or multimodal presentation of the environment and
task will be best to obtain the desired behavior. In addition,

significant weaknesses remain in our understanding about the
impact of VR on physical rehabilitation because of the dearth of
well-designed clinical trials that consider dosages and
technological equivalencies (Weiss et al., 2014).

In this article, we have focused on research demonstrating how
multisensory signals delivered within a virtual environment will
modify locomotor and postural control mechanisms. Studies
using motor learning principles and complex models of
sensorimotor control demonstrate that all sensory systems are
involved in a complex integration of information from multiple
sensory pathways. This more sophisticated understanding of
sensory processing and its impact on the multisegmental body
has altered our understanding of the causality and treatment of
instability during functional movements. Therefore,
incorporating VR and other applied technologies such as
robotics has become essential to supplying the impact of
multisensory processing on motor control (Saleh et al., 2017).

Motivation and enjoyment are an essential component in a
rehabilitation program, and we are in no way suggesting that
computer gaming and exercise and augmented reality
technologies should be ignored because they do not necessarily
deliver all components of a virtual reality environment. Rather,
we are contending that there are additional pathways for training
andmodifying postural and locomotor behaviors in an immersive
and multimodal virtual environment that will facilitate transfer of
training of the neurophysiological and musculoskeletal
mechanisms underlying functional motor behavior.
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