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The rapid development of direct air capture (DAC) technologies has become

critical in order to remove CO2 from the atmosphere and limit global warming to

a maximum of 1.5◦C. In this perspective, we provide a mini review of the current

research on the emerging liquid- and solid-based sorbent materials to capture

CO2, summarize the existing challenges of DAC technologies, and suggest future

research directions to accelerate the development of DAC systems. In particular,

the desired properties for a breakthrough sorbent that e�ciently captures CO2

from the air and releases it for sequestration are described.
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1. Introduction

The growing global reliance on fossil fuels for energy and material production has
resulted in record-high carbon dioxide (CO2) emissions in the atmosphere (Kumar et al.,
2015; Sanz-Pérez et al., 2016). To mitigate the potential impact on climate change, ∼10
gigatons of CO2/year needs to be removed to limit global warming to a maximum of
1.5◦C by 2050 according to multiple reports (World Resources Institute, 2002; Philander,
2012; Ozkan, 2021; IEA, 2022). Direct air capture (DAC), a process that captures CO2

directly from air is critical to negative emissions technologies (NETs), and plays a significant
role in achieving net zero emissions by the 2050 Scenario, among other CO2 removal
(CDR) approaches (National Academies of Sciences, 2019; IEA, 2021). According to the
International Energy Agency (IEA) projection for achieving net-zero emissions by 2050
Scenario, the CDR removal target by DAC is ∼980 Mt CO2 per year (House et al., 2011).
However, capturing CO2, particularly from the air is a challenging and energy-intensive
process, because CO2 in the atmosphere is highly diluted, ca. 400 ppm (0.04%), when
compared to the CO2 concentration in a flue gas stream emitted from a power station,
cement or natural gas plant (≈4–15%). Further, a significant amount of CO2 must be
removed from the atmosphere and sequestered to have a quantifiable positive impact on
the environment, and thus the technological challenge is formidable.

Frontiers in Sustainability 01 frontiersin.org

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://doi.org/10.3389/frsus.2023.1167713
http://crossmark.crossref.org/dialog/?doi=10.3389/frsus.2023.1167713&domain=pdf&date_stamp=2023-06-15
mailto:beg23@case.edu
https://doi.org/10.3389/frsus.2023.1167713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsus.2023.1167713/full
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Zeeshan et al. 10.3389/frsus.2023.1167713

In this perspective, we provide an overview of the current
approaches of DAC systems and emerging sorbent materials
associated with CO2 capture from dilute streams. Sorbents typically
capture CO2 at ambient temperatures and are regenerated by
releasing the captured CO2 at elevated temperatures (e.g., by
applying convective heat) or using alternative heat sources (e.g.,
microwave) (Gomez-Rueda et al., 2022), as well as non-thermal
techniques such as electrochemical (Stern and Hatton, 2014;
Voskian and Hatton, 2018; Rahimi et al., 2020), ultrasound (Ying
et al., 2014) and pressure-swing (Wiheeb et al., 2016). Lackner
and co-workers introduced a moisture-swing process for DAC
where the sorbent absorbs CO2 when dry and releases it when wet
(Lackner, 2009; Wang T. et al., 2011; Shi et al., 2020). Sorbents
can be liquid, solid, or a hybrid material that has both liquid-
like and solid-like components. The development of sorbents
requires the consideration of numerous performance parameters,
such as high CO2 capacity, selectivity, fast sorption/desorption
kinetics, and chemical stability under variable temperature and
humidity. Furthermore, industry-related challenges such as the
operational cost and energy demand can only be addressed
when an efficient sorbent material is integrated into a DAC
system. Thus, a molecular-level understanding of sorption kinetics,
thermodynamics, and structure-property relations are imperative
for the discovery of a breakthrough sorbent. Further, research
focusing on alternative regeneration techniques is essential to
reduce the overall energy consumption and cost of CO2 removed,
i.e., joule per ton of extracted CO2 in a DAC system.

2. Current status and challenges

In general, CO2 capture or removal from a mixture stream
process includes adsorption, absorption, and/or membrane-
based separation. Adsorption and absorption-based processes are
typically considered more promising for directly capturing of CO2

at ultradilute conditions (McQueen et al., 2021). In an absorption-
based process, CO2 dissolves in a liquid solvent such as an aqueous
amine, aqueous sodium hydroxide, ionic liquid (IL), or a mixture of
solvents via physisorption or chemisorption (Mahmoudkhani and
Keith, 2009; Kumar et al., 2020). Alternatively, in an adsorption-
based process CO2 is chemisorbed or physisorbed onto a solid
surface that has chemical functionality for CO2-philicity, such as
in the case of zeolites, metal organic frameworks, or covalent
organic frameworks (Choi et al., 2011). CO2 binding processes
are exothermic in nature and requires active cooling to maintain
CO2 capacity. This challenge is mitigated to some extent due to
distributed heat of the solid surface material and the density of
sites in adsorption. Thermodynamically, the affinity between the
sorbent and the target gas molecule is quantified through the heat
of absorption or the isosteric heat of adsorption (Builes et al.,
2013). Recent studies comparing the energetics of temperature
swing vs. pressure swing CO2 separation processes for a generic
adsorbent (with a heat of adsorption of −65 kJ/mol) found the
temperature swing adsorption to be more efficient under dilute
CO2 concentrations (i.e., 50% removal from feed and 95% product
purity) (Lackner, 2013; Lively and Realff, 2016). Conversely,
pressure swing adsorption is more efficient for bulk gas separations,

as pressurizing the inlet feed with lowCO2 concentrationmakes the
process energetically costly.

Even with temperature swing processes, both adsorption and
absorption processes consume large amounts of thermal energy
during the sorbent regeneration, in addition to the energy required
to move air through the sorbents. In particular, the trade-off
between the strength of CO2 molecular interactions with the
sorbent and the required regeneration energy remains a challenge.
An aqueous solution of calcium hydroxide is an effective sorbent
for capturing CO2 from the air due to its high affinity to CO2.
For example, pilot plant of Carbon Engineering has the capacity
to remove 1 Mt of CO2/year (requires 8.81 GJ per ton of CO2

removed) by using an aqueous-sorbent (Keith et al., 2018). First,
air is passed through a series of filters to remove any particles and
pollutants. Next, the purified air flows into a contactor, a container
filled with a solution of potassium hydroxide (KOH). As the air
passes through the contactor, the CO2 in the air reacts with KOH
to form potassium carbonate (K2CO3) and water. The aqueous
solution is then regenerated for reuse by heating at 900◦C to
release the captured CO2. Table 1 summarizes the key comparisons
for DAC plants around the world, including Carbon Engineering
(Ozkan et al., 2022).

In contrast to absorption and adsorption processes, membrane-
based CO2 separation works on the principle of preferential
permeation, where the target gas molecules diffuse across the
membrane film under isothermal conditions. The gas molecule
can permeate through the membrane via different mechanisms
including size sieving, solution diffusion, surface diffusion, ion
and facilitated transport. For CO2 separations from air using a
membrane, combination of these diffusion mechanisms is needed
since there is a lack of high-pressure driving force to transport
CO2 across the membrane by solution diffusion alone. Few recent
studies explored facilitated transport membranes for DAC (Lee
and Gurkan, 2021; Matsuoka et al., 2021; Nabity et al., 2021; Lee
et al., 2022). Lee et al. (2022) prepared a thin film of poly(ionic
liquid) (PIL)–IL impregnated graphene oxidemembrane supported
on a poly(ethersulfone)/poly(ethylene terephthalate) substrate, and
reported excellent CO2 permanence of 3,923 GPU and CO2/N2

selectivity of 1,200 under 410 ppm CO2 with a 1 bar feed gas
(CO2/N2/H2O mixture) at 40% RH and 22◦C. In this example,
helium was used as the sweep gas on the effluent side which limits
the purity of the separated CO2 and the post-process application.
For post-sequestering purposes, higher purity CO2 is needed and
the study showed the separation performance of the membrane
decreases under vacuum conditions on the effluent side due to
the need to reinforce the membrane further. However, the purity
requirement does not have to meet prior targets set (i.e., > 95%)
for CO2 removal from post-combustion flue gas. While the recent
reports are encouraging to further develop facilitated transport
membranes for DAC, they also suggest the need of an integrated
approach based onmultiplemembranemodules or integrationwith
other separation units. Another emerging approach alternative to
temperature swing processes is the Faradaic electro-swing process
developed by Hatton and co-workers where the CO2 binding is
regulated by electroactive species [e.g., amine sorbents (Wang M.
et al., 2020) and quinone (Gurkan et al., 2015) carriers] (Voskian
and Hatton, 2019). Recently, they demonstrated a bench scale,
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TABLE 1 Comparison of CDR metrics of current and future planned (∗) DAC plants around the world.

Company
(plant type)

Location and
country

Sorbent
type

Regeneration
temperature
(◦C)

CO2 removal
capacity

(tCO2/year)

Thermal
energy
(GJ/tCO2)

Estimated cost
(GJ/t CO2)

Carbon Engineering
(2023) (Pilot)

British Columbia,
Canada

Liquid 900 350 ∼8 500–600

Carbon Engineering∗

(Commercial)
Texas, USA Liquid 900 1,000,000 N/A 94–232 (Keith et al.,

2018)

Climeworks (2023)
(Pilot)

Zurich, Switzerland Solid 80–100 900 ∼7 600

Climeworks
(Commercial)

Hellisheidi, Iceland Solid 80–100 4,000 N/A 600 (Giving Green
Earth, 2023)

Climeworks
(Pilot/Commercial)

Europe Solid 80–100 2,000 N/A 600

Global Thermostat
(2023)∗ (Commercial)

Oklahoma, USA Liquid 100–120 4,000 N/A 50

Infinitree LLC (2023)
(Pilot)

New York, USA Solid (Ion
exchange)

Humidity Swing 100 N/A N/A

The ∗ symbol indicates future planned. The N/A stands for not available.

solid-state Faradaic electro-swing reactive adsorption unit that
achieved > 90% Faradaic efficiency with a CO2 feed < 0.1%,
demonstrating a work of 40–90 kJ per mole of CO2 captured,
representing favorable thermodynamics comparison to most other
thermally regenerated adsorbents (Voskian and Hatton, 2018).

In the following sections, we focus on the conventional
and emerging sorbents based on absorption and adsorption-
based processes that have demonstrated promising CO2 capture
capabilities at ultradilute (400 ppm) conditions.

2.1. Conventional sorbents for CO2 capture

To date, most of the research on DAC has been focused on
hydroxide- or amine-based aqueous sorbents due to their efficacy
in capturing CO2 under ultradilute conditions (Sanz-Pérez et al.,
2016; Sodiq et al., 2023). The hydroxide based solvents need
900◦C for regeneration with energy requirement of 6–9 GJ/tCO2–
equivalent to the energy utilized by an average household in the
US for 2–3 months (Baciocchi et al., 2006; National Academies of
Sciences, 2019; McQueen et al., 2021; Lebling et al., 2022). Besides
this substantial energy requirement, sorbent loss incurred during
the sorption/desorption process via evaporation and degradation
is of significant concern. Further, water loss in the air contactor
of solvent-based carbon capture systems can also significantly
limit their deployment and techonomic effectiveness, particularly
in dry climates (Rosa et al., 2021; An et al., 2022). On the
other hand, porous solid-supported amines present higher stability
under moisture in ambient air, lower heat capacities (≈1–1.5 J/g
K compared to the CO2-loaded monoethanolamine ≈4 J/g K)
(Weiland et al., 1997; McQueen et al., 2021), and mild regeneration
temperatures (≈50–120◦C) (Wang et al., 2015). However, when
compared to liquid sorbents, amine supported solid sorbents are
limited by their slow sorption kinetics, limited CO2 capacities at
low partial pressures, and poor cyclability (absorption-desorption
cycles with maintained capacity) (Wang Q. et al., 2011; Lai et al.,

2021). The following sections discuss the improvements made over
conventional sorbents in consideration of these challenges.

2.2. Emerging liquid sorbents

Aqueous amino acids have been investigated for carbon
capture, which are relatively non-volatile, environmentally friendly,
and regenerable using mild heating (≈100◦C). For instance,
Custelcean and co-workers reported amino acid-based sorbent
with a capacity of 0.7mol of CO2 per mol of aqueous solution
at ambient air conditions (Custelcean et al., 2019). The CO2-
saturated bicarbonate species in the solution were then crystallized
using a 2,6-pyridine-bis(iminonoguanidine) (PyBIG) to form a
solid hydrated carbonate in an aqueous solution. Heating the
solid carbonate produced at a comparatively mild temperature
(120◦C) removes most of the bound CO2 and water via the reaction
mechanisms shown in Figure 1A. In general, amino acids with
a highly basic functional group are desirable for CO2 capture
(Ramezani et al., 2022), but the reported amino acids present lower
cyclic capacities typically in the range of 0.12–0.4mol CO2/mol
sorbent (Recker et al., 2022).

Researchers have also explored the use of amino acid derived
ILs as an alternative liquid sorbent for CO2 capture. ILs are
unequivocally versatile materials for CO2 capture with negligible
volatility and high chemical stability (Zhang et al., 2012). For
instance, Gurkan et al. synthesized an amino acid-based IL,
trihexyl(tetradecyl)phosphonium prolinate, ([P66614][Pro]), which
exhibited a CO2 capacity of ∼0.9mol CO2/mol IL in low
partial pressure region at 22◦C (Gurkan et al., 2010a). A
significant disadvantage of amine-functionalized ILs for CO2

capture application is their high viscosity leading to slow sorption
kinetics. In this regard, Schneider, Brennecke, and co-workers
developed aprotic heterocyclic anion (AHA) ILs for CO2 capture
and showed that the viscosity of ILs remained unchanged before
and after the CO2 absorption while maintaining a 1:1 CO2 sorption
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FIGURE 1

(A) CO2 capture reaction mechanism with aqueous amino acids. Reproduced with permission (Custelcean et al., 2019). Copyright 2019, American

Chemical Society. (B) Proposed reaction mechanism routes between CO2 molecules and DES. Reproduced with permission (Lee et al., 2021) under

CC-BY-NC-ND license.

stoichiometry (Gurkan et al., 2010b; Seo et al., 2014). In addition,
the reaction enthalpy (∼ 50 kJ/mol) was lower than conventional
amines such that regeneration was possible at temperatures <

100◦C, giving a reasonable working capacity (capacity difference
between absorption and desorption). However, the demonstrated
AHA ILs had low gravimetric CO2 capacities (∼9%) due to their
large molar mass. Although there has been extensive research on
the use of ILs for capture and utilization of pure CO2 (Aghaie et al.,
2018; Shukla et al., 2019), studies on their application in DAC have
been limited (Yang and Dai, 2021).

Similar to ILs, deep eutectic solvents (DESs) are known to
have significant physisorption capacity for CO2 (García et al., 2015;
Trivedi et al., 2016). DESs are mixtures of two or more components
that form stable, low-melting-eutectics and are typically composed

of a hydrogen bond acceptor, such as a halide salt, and a hydrogen
bond donor (Smith et al., 2014; Hansen et al., 2021). Recent studies
demonstrated functionalized DESs and eutectics that demonstrate
CO2 chemisorption capacity, similar to amine functionalized ILs
(Zhang et al., 2018; Yan et al., 2020; Lee et al., 2021; Klemm
et al., 2023). Lee et al. reported a functionalized DES for CO2

capture that overcomes the limitations of traditional ILs, such as
high viscosity and poor gravimetric CO2 capacity at low partial
pressures (Lee et al., 2021). In that study, a reactive IL, 1-ethyl-
3-methylimidazolium 2-cyanopyrrolide, was used as a hydrogen
bond acceptor component and ethylene glycol (EG) was the
hydrogen bond donor. The 1:2 molar mixture of IL:EG showed
a capacity of 0.85mol CO2/mol solvent at 1 bar of CO2 and
0.31mol CO2/mol solvent at 410 ppm of CO2 at 25◦C. Here, it
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FIGURE 2

(A) Schematics of amine-functionalized solid adsorbents for CO2 capture. Reproduced with permission (Forse and Milner, 2021). Copyright 2021,

Royal Society of Chemistry. (B) CO2 uptake of MOF (Mg/DOBDC) under ambient air conditions. Reproduced with permission (Choi et al., 2012).

Copyright 2012, American Chemical Society. (C) Adsorption of CO2 in MOF [Mg2(dobpdc)] in the pressure range of 1–1,000 mbar. Reproduced with

permission (McDonald et al., 2012). Copyright 2012, American Chemical Society. (D) CO2 uptake of NbOFFIVE-1-Ni MOF at low pressure and 25◦C

and (E) CO2 heat of adsorption in comparison with other benchmark materials. Reproduced with permission (Bhatt et al., 2016). Copyright 2016,

American Chemical Society.
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is worth noting that the gravimetric CO2 capacity of the DES
(2.7mol CO2/kg sorbent) was higher than that of the neat IL
(2.1mol CO2/kg sorbent) at 410 ppm CO2. This was attributed to
carbonate formation with the deprotonated EG, in the presence
of the pyrrolide anion, which was stabilized by the hydrogen
bonding network (Figure 1B). This study demonstrates that while
the H-bonding network in DESs may increase viscosity, it can
also modulate the CO2 interactions with the sorbent, leading to
an alternative reaction route as compared to neat IL. To tune
functionalized DESs for DAC beyond the capture capacity, thermal
and oxidative stability upon cycling must be established, since some
of the parent compounds are volatile (unlike ILs).

2.3. Emerging solid sorbents

Traditional amine functionalized sorbents such as zeolites (Fu
et al., 2022), mesoporous silicas (Shi et al., 2020) (Figure 2A),
and moisture-swing resins/polymers (Wang et al., 2017; Wang
T. et al., 2020) have been investigated for CO2 capture, yet
they have considerable shortcomings for DAC. This includes
low CO2 capacities, slow kinetics, diffusion-limited sorption,
small surface area, and poor multi-cycle capacity, all of which
significantly impact the sorbent material’s overall performance.
In this context, MOFs are considered superior to conventional
solid sorbents because of their highly accessible surface area
and adjustable chemical functionality (Sadiq et al., 2020). Choi
et al. (2012) developed ethylene diamine (ED) modified ED-
Mg/DOBDC (Figure 2B), which showed a capacity of 1.5 mmol/g
under ambient air conditions together with excellent thermal
stability and regenerability. The amine groups grafted on the
open metal sites introduced additional sites for chemisorption,
which improved the CO2 capacity compared to the parent MOF
(1.35 mmol/g). Similarly, McDonald et al. (2012) demonstrated
that alkylamine-loaded Mg2(dobpdc) have exceptional CO2 uptake
capacity (2 mmol/g) under 390 ppm at 25◦C (Figure 2C). This
improvement in the CO2 uptake at very low partial pressure was
ascribed to the interaction of electrophilic carbon of CO2 with the
nitrogen electron pair in diamine.

Eddaoudi and coworkers synthesized a MOF, NbOFFIVE-
1-Ni, which exhibited excellent CO2 sorption capacity (1.3
mmol/g) under 400 ppm CO2 at 25◦C due to the favorable
interactions of CO2 with the fluorine centers of the MOF, with
a regeneration energy of 54 kJ/mol (Figures 2D, E) (Bhatt et al.,
2016). Alternatively, Darunte et al. illustrated that the CO2

capacity of a simple MOF [MIL-101(Cr)] could be improved by
incorporating amine molecules into the MOF pores (Darunte
et al., 2016). Accordingly, tris(2-amino ethyl) (TREN)-loadedMIL-
101(Cr) exhibited eight-times higher CO2 capacity (2.8 mmol/g)
than the corresponding pristine MOF (0.35 mmol/g) at 0.4 mbar
(400 ppm CO2 in He) and 25◦C. The composite sample, however,
showed a significant loss in cyclic capacity due to the excessive
amount of TREN loading (more than the available unsaturated
coordination sites). Therefore, future research on MOFs for
DAC should focus on stability under various temperature and
humidity conditions, cycling capacity, high CO2 selectivity, and
cost-efficient scalability.

3. The way forward: key matrix for a
breakthrough sorbent

Fundamental studies aiming to develop structure-property-
performance relations are still needed to further develop sorbents
for widespread application in DAC. In addition, computational
studies, for example utilizing machine learning, are needed to
accelerate sorbent discovery (Mohan et al., 2022). For example,
simulations can provide insight into material properties that
maximize CO2 sorption (Guan et al., 2022) as well as CO2 binding
sites and their corresponding thermodynamics and kinetics
(Qazvini et al., 2021; Ahmad et al., 2022). In the following sections,
we discuss the significance of individual properties of the sorbents
that make up the key matrix for a breakthrough sorbent which
would significantly expedite the development of DAC technologies
to help meet the global goal of decreasing atmospheric CO2 levels.

3.1. Sorption, kinetics, and di�usion

Sorbents with high basicity can increase affinity to CO2

which is an acidic gas. However, strong binding of CO2,
such as with primary and secondary amines relative to tertiary
amines for example, also increases the overall energy required to
regenerate the sorbent. Therefore, both the enthalpy of the reaction
(recommended ≈ −49 to 65 kJ mol−1) (Lively and Realff, 2016;
Yang andDai, 2021) and the CO2 capacitymust be consideredwhen
designing a sorbent for DAC. Similarly, there is a trade-off between
capacity and adsorption rate for solid sorbents. Grafting of CO2-
philic moieties such as amine, hydroxy, sulphonate, imidazole,
triazine, and imine groups onto solid sorbent pore surfaces to
improve CO2 capacity (Petrovic et al., 2021) can result in blocking
of the pore openings and prevents CO2 diffusion. In a solid
adsorbent, gas diffusion can be tuned by modification of pore
openings and creating a high surface-to-volume ratio to facilitate
the accessibility to the active surface area.

For liquid sorbents, gas diffusion is impacted by the viscosity.
Mota-Martinez et al. examined the impact of physiochemical and
transport properties of CO2 capture solvents in terms of the cost of
the overall separation process for the emissionmitigation purposes.
They report that viscosity is a critical parameter determining the
absorber size and the associated operational and capital costs
(Mota-Martinez et al., 2017). For example, the aqueous amine
benchmark solvent with a viscosity of 2.5 cP requires a 50m
tall absorber column whereas a solvent with a viscosity of 16 cP
requires 133m in height for the absorber. For post-combustion
CO2 capture, to maximize the efficiency of CO2 capture process,
it is generally recommended to keep the viscosity of a CO2-
capturing solvent under 5 cP when operating in an absorber
column (Song et al., 2017). However, similar analysis are not yet
available for emerging DAC solvents. In complement to designing
novel liquid sorbents with low viscosity, packaging sorbents,
e.g., via encapsulation, is an attractive strategy for enhancing
performance. Provided a capsule shell that is permeable to CO2

is used, encapsulation can increase the effective surface area of
the liquid sorbent and lead to more rapid gas uptake. Capsules
of IL can be prepared by impregnation of a hollow carbon
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shell using a co-surfactant (Moya et al., 2018), extrusion (Zhang
and Cai, 2012), or interfacial polymerization (Weiss and Abu-
Reziq, 2017). For example, Pentzer, Gurkan, and coworkers used
interfacial polymerization in IL-in-water or IL-in-oil emulsions to
prepare capsules a core of IL and polyurea-based shell (Huang
et al., 2019; Luo et al., 2019; Gaur et al., 2021). The same
group encapsulated a task specific IL for the chemisorption of
CO2 and performed breakthrough and regeneration experiments;
the capsules were stable under humid conditions, outperformed
zeolites at low pressure, and were stable through the multiple
absorption-desorption cycles (Lee et al., 2020). Thus, in addition
to enhancing the physical properties of liquid sorbents, e.g., by
decreasing viscosity, such composites can give access to new
structures with various knobs to tune performance related to
capacity, selectivity, and regeneration.

3.2. CO2 selectivity

Selective capture of CO2 from atmospheric air is crucial since
molecules such as N2, H2O, and O2 can also be physisorbed.
Further, volatile organic components can permanently bind to
active sites that would otherwise be available to bind CO2, leading
to a decrease in the overall CO2 capacity of a sorbent. It is
important to note that CO2 capacity of liquid sorbents generally
improves under moist conditions, since the interaction between
CO2 and water can also lead to the formation of carbonic acid and
increase the CO2 capacity (Avelar Bonilla et al., 2019). However,
the presence of co-adsorbed moisture consumes additional thermal
energy during the solvent regeneration. This is because water has
a high heat capacity (4.2 J/g K), and the presence of moisture in
the sorbent will consume more energy for regeneration (Quang
et al., 2015). Additionally, in the context of adsorptive processes,
water has higher selectivity compared to CO2 toward sorption
sites, thus hindering CO2 sorption at the amine sites (Shaik
et al., 2022). Recently, Young et al. (2021) proposed a mechanistic
isotherm model for amine-containing sorbents that successfully
predicted CO2 co-adsorption performance in humid conditions
on Lewatit

R©
VP OC 1065 (a commercially available benchmark

sorbent comparable to first-generation sorbent used by Climeworks
for DAC process). However, the applicability of such accurate co-
adsorption models to other types of amine-functionalized sorbents,
especially under high relative humidity representing real-world
condition remains unclear and requires further development to
uncover potential opportunities for enhancing the overall efficiency
of a DACprocess. Finally, high-purity CO2 must be obtained so that
it can be further sequestered or utilized as a feedstock to produce
renewable fuels or value added chemicals. Therefore, to produce
highly pure CO2 from a mixture stream, pore openings of solid
sorbent materials should be tuned according to the kinetic diameter
of CO2 (3.3 Å) together with high chemical affinity toward CO2.

3.3. Regeneration energy

The regeneration of sorbents in DAC currently requires energy
in the range of 6–10 GJ/tCO2 and 4–6 GJ/tCO2 for liquid and solid
sorbents, respectively (Ozkan et al., 2022). As mentioned earlier,

the regeneration energy is related to the heat capacity and the
reaction enthalpy of CO2 binding. To make DAC cost-effective,
developing sorbents that can be regenerated using energy similar
to the flue gas CO2 capture process (≈ 2 GJ/tCO2) is crucial
(Zhang et al., 2016). Furthermore, theoretical calculations estimate
that the energy requirement to produce a highly concentrated
stream of CO2 (>90% purity) is 20 kJ/mol CO2 under ≈400
ppm of CO2 concentration (House et al., 2011). However, DAC
technologies are currently not as efficient, with typical energy
requirements of ∼400 kJ/mol CO2, assuming an efficiency of
5% for DAC system (House et al., 2011). Thus, increasing the
CO2 capture efficiency, ideally above 20%, is a critical target
for making DAC more economically sustainable. Additionally,
the high regeneration temperature requirement (e.g., 900◦C for
hydroxide-based solvents) (Keith et al., 2018; National Academies
of Sciences, 2019) poses a challenge in terms of thermal energy
and heating rate efficacy; necessitating the need for alternative
energy sources and the targeted delivery of energy (i.e., overcome
reliance on bulk convective heating). In this context, electrical
energy can be utilized to regenerate sorbents through techniques
such as microwave (MW) and induction-based heating, which
offer rapid dielectric heating rates compared to conventional
thermal heating (Wilcox, 2020; Mohd Pauzi et al., 2022). Ozkan
et al. (2022) demonstrated that the use of electricity for both
liquid and solid sorbent regeneration yields a lower thermal
energy equivalent for DAC. In addition, MW based-heating has
several potential benefits compared to conductive heating methods,
including energy efficiency, rapid heating rates, and the ability
to provide instantaneous dielectric heating without heat transfer
limitations (Gomez-Rueda et al., 2022). Lee et al. (2023) recently
demonstrated the susceptibility of IL sorbents to dielectric heating
and rapid CO2 desorption. These benefits may help to reduce the
overall energy consumption, regeneration rate, and cost of DAC
operations. However, further research is needed to fully understand
the potential of MW assisted regeneration method and its impacts
on sorbent stability and absorption-desorption cyclability for DAC.

3.4. Thermal stability and oxidative
degradation

Cyclic capacity is dependent on the thermal and oxidative
stability of a sorbent. Oxidative degradation can be particularly
problematic in amine-based CO2 capture systems where the
material is exposed to oxygen; amines can undergo chemical
reactions in the presence of O2 resulting in the formation
of undesired byproducts, such as ammonia and amine-derived
carbonates (Spietz et al., 2018; Vevelstad et al., 2022). Indeed,
oxidative and thermal degradation in amines leads to significant
CO2 capacity loss (Vevelstad et al., 2022). In addition, degradation
of solvent can increase corrosion, foaming, and fouling in a
CO2 capture unit, thus decreasing the lifetime of a system and
increasing the cost of the CO2 capture process (Saeed et al.,
2018). Using a thermally stable solvent can help to minimize
the need for frequent solvent replacement and reduce the overall
cost of the process, as well as minimize environmental impacts.
Recently, we reported on the oxidative and thermal degradation
mechanism of a functionalized IL where its superior stability,
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compared to conventional CO2 capture solvents, was shown to
maintain its high capacity (Lee et al., 2023). Hence, developing
sorbent materials with minimal thermal degradation and excellent
oxidative stability is essential for the development of practical DAC
technologies. For most of the emerging sorbents, detailed stability
and cyclability studies are scarce and thus their practicality cannot
be fully assessed.

3.5. Design and cost

DAC technology has an estimated cost of $264–1,000 per
tCO2 assuming 75% air capture efficiency and 95% CO2 purity
(National Academies of Sciences, 2019), which is still significantly
higher than the cost of CO2 capture from flue gas ($50–100/tCO2)
(Lebling et al., 2022). It is important to note that the current
capture efficiency of DAC technology is <10% (Zeman, 2007;
Long-Innes and Struchtrup, 2022), which significantly impacts the
cost, making the debate to achieve the highly ambitious target of
$100–300/tCO2 viability skeptical (Küng et al., 2023). Since, DAC
is an emerging technology, it is imperative to comprehensively
explore the general energy requirements and economic feasibility,
as well as the environmental viability of a breakthrough sorbent. An
optimized design of an air-sorbent contactor column is critical to
efficiently remove CO2 from the air, especially in the case of powder
sorbents. However, driving large volumes of atmospheric air and
the associated pressure drop in a sorbent unit incur a substantial
operational cost (Zolfaghari et al., 2022). Thus, developing an
effective contactor to process the large volume of air will also
help lower the overall cost of capturing CO2. Recent studies have
indicated that fossil fuels remain a cost-effective energy source,
but their use may also render the CO2 capture process ineffective
as it releases significant amounts of CO2 (Terlouw et al., 2021).
Therefore, for net zero emissions, in a DAC unit that utilizes fossil
fuel-derived thermal energy, the downstream emissions should be
captured while controlling the upstream emissions (Ozkan et al.,
2022). On the other hand, integrating renewable energy resources
such as wind and solar to a DAC unit would enable a cost-effective
and environmentally friendly solution for reducing the current
atmospheric CO2 concentration (Zolfaghari et al., 2022).

3.6. Environmental impacts of sorbents

Environmental assessment of sorbents in DAC technologies is
often overlooked. To fully evaluate DAC feasibility, it is crucial
to consider the environmental impacts of sorbent production,
disposal, and lifecycle costs (Leonzio et al., 2022). For example,
sodium hydroxide used in DAC process is corrosive and
generates toxic chlorine gas during production (Realmonte et al.,
2019). ILs, on the hand, are relatively benign, in particular
due to their negligible volatility, but require proper disposal
(de Jesus and Maciel Filho, 2022). A recent study linked
the presence of high levels of imidazolium-based cations in
soil (i.e., landfill site sampled in United Kingdom) to human
health issues such as primary biliary cholangitis which is a
chronic autoimmune liver disease (Abdelghany et al., 2020).

Likewise, MOF synthesis often involves solvothermal strategies
that use toxic solvents (Kumar et al., 2019; He et al., 2022).
To address these issues, further research should focus on
developing environmental friendly synthesis routes for emerging
CDR sorbents that avoid the use of hazardous solvents and explore
innovative techniques like microwave-assisted synthesis (Thomas-
Hillman et al., 2018), electrosynthesis (Al-Kutubi et al., 2015),
or 3D printing (Lieu et al., 2022). For MOF synthesis, these
approaches are also shown to reduce synthesis time, promote
rapid growth, and enable homogeneous packing assemblies as
additional benefits.

4. Conclusions

In this perspective, we have highlighted the emerging sorbents
to capture CO2 directly from the air. Most current research focuses
on improving CO2 working capacity sorption kinetics and does
not typically address cyclability or the design of scalable DAC
infrastructure. In the development of new sorbents, computational
studies identifying descriptor for molecular design and approaches
that accelerate sorbent discovery and prediction of properties are
required. These will likely require multiscale modeling aimed at
interrogating both bulk sorbent properties as well as detailed CO2

binding energetics (Alizadeh et al., 2021; Heydari Dokoohaki and
Zolghadr, 2021; Malik et al., 2021). The field is still in search of a
breakthrough sorbent that possess high selectivity, high working
capacity under varied humidity and temperature conditions,
improved thermal and oxidative stability and cyclability. Even with
a breakthrough sorbent, the critical factor in ensuring the successful
net and sustainable removal of CO2 is integrating the DAC system
with low-carbon energy sources and establishing the lifetime of the
sorbent, including appropriate operating conditions and stability
to CO2 uptake-release cycles. Therefore, there is also the need
to develop technology platforms that transfer energy efficiently.
Taken together, intensive research focus, government policy and
support, and private industry funding are needed to overcome
the technological challenges of developing viable DAC systems to
operate at a net-zero cost.
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