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Typical applications of LCA assume that the magnitude of life-cycle impact grows

proportionally to the volume of demand, while in reality the additional impact due to

marginal increase in demand may differ from the average impact. In the literature,

the calculation of marginal life-cycle impacts often involves the use of optimization

models, where typically the total economic costs are minimized. However, modeling

spatially explicit marginal responses of a system involving multiple producers and

consumers has not been discussed in LCA literature. In this paper, we demonstrate

a spatial optimization technique for modeling marginal responses of a multi-producer,

multi-consumer system. Our model determines the optimal production-by-location mix

and associated environmental stressor at minimum systems cost. We demonstrate the

model using a preliminary case study on blue water consumption by potato. We collected

state-by-state data on potato yield, cost of potato production, andwater use for irrigation,

as well as interstate transportation fuel costs. We also estimated the marginal increase

in demand for potato following USDA’s recommended diet. The results show that the

cradle-to-gate blue water consumption of potatoes based on 2016 demand was 96

m3/ton potato, which changes non-linearly along with the growth of potato demands. In

order to meet the USDA’s recommended diet, the additional demand on potato (530,000

ton per year) would result in a 29% lower blue water consumption per ton of potato

(68 m3/ton) as compared to the average result of the current production system. In

addition, we tested the model to analyze the marginal impacts under two scenarios:

(1) high fuel tax and (2) high water price. The preliminary results indicate that water

pricing is more effective than a fuel tax increase in reducing the marginal blue water

consumption of potato based on our scenarios of the recommended diet demand. The

results demonstrate that our model can be used to understand the non-linear behavior of

marginal effect over demand crease, and for testing alternative policy scenarios involving

a system with multiple producers and consumers across regions.
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INTRODUCTION

Despite its immense successes, modern agriculture is also driving
our planet beyond its safe operating space (Campbell et al.,
2017). It contributes considerably to an array of global problems,
from climate change, air pollution, water quality deterioration,
to biodiversity loss (Tilman et al., 1994; Ongley, 1996; Mosier
et al., 1998; Aneja et al., 2009; Qin and Horvath, 2020a; Suh
et al., 2020; Tao et al., 2020). The search is on for sustainable
strategies across the food supply chain to reduce agriculture’s
environmental impacts (Tilman et al., 2001; Mueller et al., 2012;
Springmann et al., 2018; Dai et al., 2020; Qin and Horvath,
2020b). One strategy that has received increasing attention is
a dietary shift toward healthy foods (Pimentel and Pimentel,
2003; Tilman and Clark, 2014; Springmann et al., 2016; Godfray
et al., 2018; Willett et al., 2019). However, how to accurately
determine the potential environmental benefits of such a dietary
shift remain debated and unclear (Plevin et al., 2014; Cucurachi
et al., 2016; Yang and Campbell, 2017).

Life-cycle assessment (LCA) is the main approach used to

measure foods’ environmental performance and then based

on their differences to infer environmental benefits, costs, or
tradeoffs between different food choices and diets (Weber and
Matthews, 2008; Roy et al., 2009; Tilman and Clark, 2014). But
this approach may fall short for this purpose (Cucurachi et al.,
2016). Food LCAs reflect the total resource use and emissions
of existing food systems across the supply chain. By suggesting
(i) we should consume more A and less B because food A is
“greener” than food B and (ii) this would result in certain benefits
as reflected in their different LCA results, this approach implicitly
assumes that one more unit of A will have the same life-cycle
impacts as an existing, average unit of A (the same for one less
unit of B). In other words, this approach linearly extrapolates
from existing food data to estimate marginal life-cycle impacts
resulting from a change in food consumption (Suh and Yang,
2014; Yang, 2016; Brandao et al., 2017). And the linearity rests
on further assumptions, including fixed input-output relations
for all life-cycle processes involved and an unlimited supply of
inputs (West, 1995; Yang, 2016; Boulay et al., 2020; Forin et al.,
2020; Heijungs, 2020). This linear approach would suffice when
the assumptions largely hold true but could be problematic when
they are severely violated. In the case of food, because agricultural
production has a high system variability and is constrained by
land, marginal emissions can be considerably different from
the average (Yang, 2016). In our study, marginal LCA refers
to the impacts of changes in the output of products from
the system, while average LCA represents the average impacts
for producing a unit of products in a system. The non-linear
relationship between demand and impacts is usually overlooked
in LCA studies. Therefore, we need to understand the non-linear
marginal changes in order to better determine the consequences
of dietary changes.

Owing to the complexity of the human-environment system,
marginal changes resulting from our decisions can be potentially
influenced by many factors, from economic, social, to political,
thus requiring an integrated approach to capture the possibilities.
Economic aspects like production cost and consumer spending
have traditionally been the focus of impact modeling (Dixon and

Jorgenson, 2012), but social issues and considerations can also
matter. For example, the rise of organic foods, despite higher
prices, has been driven by concerns about health, environment,
food safety, and taste (Massey et al., 2018). Moreover, policy per
se plays an important role, and different policy interventions,
even with the same goal, can lead to different outcomes.
Rajagopal et al. (2011) showed that the production mandate
and subsidy affects the biofuel-petroleum displacement ratio
differently, highlighting that the environmental outcome of
technology depends also on the policy regime.

Traditional consequential LCA studies rely on economic
models such as partial equilibrium and computational general
equilibrium, while they are mathematically complicated and only
represent an aggregate resolution of the economy (Yang and
Heijungs, 2018). The optimizationmethod has been used recently
to estimate the effects in a detailed process-level market (Gong
and You, 2017; Garcia and You, 2018; Palazzo et al., 2020). For
example, optimization models are applied in rice production and
energy storage systems (Kätelhön et al., 2016; Elzein et al., 2019).
However, the effects of change in demand involving producers
and consumers from multiple regions have not been fully
addressed in LCA studies. An integrated approach to marginal
estimation should, therefore, take these into consideration,
tailored to the particular question under study.

The main purpose of the study is to demonstrate this
integrated approach. We applied the proposed approach to a
preliminary case study of irrigation water use in marginal U.S.
potato production, and the policy implications may be limited
due to assumptions. In general, irrigation water dominates
the blue water footprint of crops. Specifically, we estimate
additional irrigation water use caused by a hypothetical increase
in potato production, which could occur as a result of a shift
toward plant-based diets. We build several scenarios at the
state level to capture the possibilities of what could happen
under different influences, from economic, social, to political
perspectives. Below, we provide details on the scenarios, present
key results, and conclude with implications of our study for LCA
methodology development.

MATERIALS AND METHODS

Overview
We model changes in potato demand due to a healthier diet as
recommended by the U.S. Department of Agriculture (USDA)
and how this would increase irrigation water use for potato
production. To this end, we build four sets of production
scenarios. The first is the average production pattern in which
production in each state expands in proportion to its current
level, reflecting the linear extrapolation method. The second
is the marginal production pattern, reflecting additional potato
would be produced by the most cost-competitive states which
supply potatoes at low prices. The third is a high fuel price
scenario, reflecting a growing trend of local and regional food
systems in the U.S. (Low et al., 2015). The fourth is a high water
price scenario, reflecting policy support of agricultural water
conservation. Scenarios two to four are non-linear models and
analyzed by minimizing cost under different constraints.
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TABLE 1 | Data sources and key assumptions of fresh potatoes.

Item Value Source

Cost

Production cost ($/kg) various* UCD report (Wilson et al., 2015)

Truckload (kg) 18,000 USDA (Willkie, 2020)

Fuel price ($/liter) 0.79 U.S. Energy Information Administration, 2019

High fuel price ($/liter) 1.5 U.S. Energy Information Administration, 2019

Water price ($/m3) 0.90 Bunch et al., 2017

High water price ($/m3) 2.0 Bunch et al., 2017

Production

Production data (kg) various* USDA (U.S. Department of Agriculture, 2016a)

Demand

Current consumption (kg/person/year) 13 USDA (U.S. Department of Agriculture, 2016b)

Recommended consumption (kg/person/year) 15 USDA (U.S. Department of Agriculture, 2015)

Additional consumption (kg/person/year) 1.7 Calculation

Total additional national consumption (ton/year) 530,000 Calculation

Environmental stressor

Irrigation water use (m3/kg) various* USDA and our own calculation (U.S. Department of Agriculture, 2013)

*Values vary across data sources. Details are shown in the Supplementary Material.

Data Sources and Assumptions
We build a model based on state-specific production
technologies, constraints of production capacity, and additional
demands. For this case study, we collected state-by-state data
on potato demand, production, and transportation, including
available land for potato cultivation, potato yield per acre of
land, irrigation water use, and interstate transportation fuel
costs. The key data and their sources are summarized in Table 1.
Detailed data on cost and production can be found in the
Supplementary Material. We used the state averages for those
states which did not have data for production cost and irrigation
water use.

Our cost estimates consist of two parts: production cost and
transportation fuel cost. The production cost is from a USDA
potato report (U.S. Department of Agriculture, 2016a), and
interstate transportation fuel cost is the fuel cost consumed by
transporting potato from the geographic center of a producing
state to the geographic center of a consuming state (U.S. Energy
Information Administration, 2019). The data of the centers of
the states and interstate transportation distances were obtained
from Google Map. The production cost includes the costs
of materials, fertilizers, biocides, irrigation water, agricultural
machinery, direct fuels, and labors. The high fuel price, $1.5 per
liter, used in the high fuel price scenario, is estimated by EIA in
the high oil price case for the year 2050 (U.S. Energy Information
Administration, 2019). The high water price, $2.0 per m3, used
in the high water price scenario, is estimated in a survey of
annual water prices for selected cities in the U.S. (Bunch et al.,
2017). We used the increase in water price from the high water
scenario to the average water scenario, $1.1 per m3, in our study
to demonstrate the effect of high water price.

Since potato can be grown almost in any types of soils
and conditions, soil types and climates are not considered as
constraints in this study. We find that production in a given year

did not exceed 170% of the previous year in most states, so we
cap the additional potato production in each state at 70% of its
current production. Potato demand is determined by the USDA
recommended amount and the current consumption quantity for
each state.

Marginal Production and Scenario Analysis
In the study, we estimate the marginal production pattern for the
additional demand of potatoes under the goal of minimizing cost
that the total cost of producing and transporting potato across
the nation is minimized. Three scenarios are developed to find
where the additional potato production would occur, given that
all states in the USA would likely seek to meet the additional
demand at a minimum cost. Specifically, (1) in the marginal
production scenario, potatoes may be produced from the state
with the lowest total costs first and then from the state with
second lowest cost; (2) in the high fuel price scenario, demand
may be fulfilled by production within the state first and then from
neighboring states; and (3) in the high water price scenario, water
use may largely influence the location of production.

Optimization Models
The optimization problems of multi-agent systems belong to the
class of problems referred to as transportation problems (Vignaux
and Michalewicz, 1991; Ferguson, 2000). The transportation
problem is a classic area in optimization. The transportation
model is used to solve the problem of allocating commodity
from sources where the supply of some commodity is available
to destinations where the commodity is demanded. The
transportation problem was first formalized by a French
mathematician called Gaspard Monge in 1781 (Monge, 1781).

The main applications of transportation problems involve
(1) minimizing transportation costs, (2) determining low-cost
location, (3) finding minimum cost production schedule, and
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FIGURE 1 | Maps of additional potato production under average production, marginal production, high fuel price, and high water price scenarios.

(4) optimizing distribution system. Nowadays, its applications
have been expanded to many fields such as operations research,
transportation and logistics research, chemical engineering,
mathematics, and economics. The transportation model has
a wide application in the field of operation research and
management science to provide better planning andmanagement
from the location and allocation analysis (Conway and Maxwell,
1961; Cooper, 1963; Feldman et al., 1966; Scott, 1970).

The purpose of applying the transportation model in this
study is to minimize the total cost of transportation and
production so that the demand of each state is met and every
producing state operates within its capacity. Suppose there are
Istates, M1 ... MI , that produce potato, and there are Jstates,
N1 ... NJ , receiving potato to fulfill the additional demand
determined by the dietary shift. Let xij be the quantity of potato
shipped from stateMi to state Nj.

First, the quantity of potatoes supplied by producing state Mi

to receiving state Nj is
J∑

j=1
xij, which cannot exceed the maximal

amount of potatoes, si, that can be produced inMi:

J∑

j=1

xij ≤ si for i = 1, ..., I (1)

si = ai × li (2)

where ai is the amount of additional land available to cultivate
potato and li the yield of the newly cultivated land.

Second, the quantity of potatoes received by state Nj is
I∑

i=1
xij,

which must at least exceed the additional demand of potato, rj,
in state Nj:

I∑

i=1

xij ≥ rj for j = 1, ..., J (3)

It is also assumed that no negative quantities of potatoes can be
shipped fromMi to Nj:

xij ≥ 0 for i = 1, ..., I and j = 1, ..., J (4)

Let bij be the cost per unit of potato shipped from stateMi to Nj.
We assume that bij is a function of the production cost of potato
in stateMi, pi, the distance betweenMi and Nj, dij, and unit cost
to transport the needed quantity of potato fromMi to Nj, cij:

bij = pi + cij × dij (5)

The total cost to meet all additional demand of potatoes is thus:

I∑

i=1

J∑

j=1

xijbij (6)
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FIGURE 2 | Weighted average water use for additional potato production

under average production, marginal production, high fuel price scenario, and

high water price scenario.

The linear programming problem can be formally specified as:

minimize:

I∑

i=1

J∑

j=1

xijbij

subject to:

J∑

j=1

xij ≤ si for i = 1, ..., I (7)

I∑

i=1

xij ≥ rj for j = 1, ..., J

xij ≥ 0 for i = 1, ..., I and j = 1, ..., J;

In our analysis, we used the least cost method to solve the
transportation problem, a subset of optimization problems. The
least-cost method usually provides a better and more efficient
solution than other optimization approaches such as northwest
corner rule method to solving transportation problems (Joshi,
2013). The least-cost method starts from the smallest unit cost
in the entire cost matrix, checks whether the demand and supply
can be satisfied, and then moves to the next lowest cost until
all the demands are fulfilled. After the locations of production
were determined by the optimization model, we calculated the
marginal water use for additional production based on the blue
water use for growing potatoes in the producing states.

RESULTS

Marginal Potato Production by State
Our results show that the additional amount of potato
produced by each state to meet greater demand may look
very different from their current production levels as shown as
the “average production” in Figure 1. The current top potato
producing states are Idaho (30% of the total potato production),
Washington (22%), and Wisconsin (6.0%), and most production
is concentrated in the northern part of the U.S. These results
would also apply to the average production because of the
assumption of linear extrapolation or proportional increase.
Under the marginal production, most additional production

would come from Idaho (16%), Maine (14%), Illinois (13%), and
Colorado (11%). Compared with the average production pattern,
California, North Dakota, and Texas significantly would reduce
their production due to the high production costs in order to
minimize total cost.

Under the high fuel price scenario, California (14%), Texas
(9.8%), and New York (7.3%), and Florida (7.2%) would
become the four top-producing states for the additional potato
production tomeet the recommended dietary of increased potato
consumption. This pattern of marginal production was due to the
population size of each state because high fuel price leads to more
local production and supply than long-distance transportation.
The production volume increases as population increases, for
example, California and Texas. The average production pattern
was close to the combination of marginal production and high
fuel price scenarios: (1) northern states produce more potatoes
than southern states do in general, and (2) states with larger
populations like California and Texas produce more potatoes
than states with smaller populations. Under the high water price
scenario, the top producing states formarginal potato production
were New York (43%), North Carolina (18%), Pennsylvania
(16%), andGeorgia (8.5%). Thismarginal production pattern was
mainly caused by the irrigation water requirement for producing
potatoes at the state level. Because less blue water was needed
in the East Coast area than other states in the U.S., the potato
production would be concentrated in those areas if water use
minimization was the goal for policy-making.

Marginal Water Use Intensity
The weighted average blue water consumption for the additional
production under the four production scenarios are presented
in Figure 2. The results represent the weighted average national
water use for one ton of marginal potato production based on
the regional water use in the producing states. However, the
weighted average results in the marginal and two policy scenarios
should not be interpreted as linear factors. The water uses of
additional demand are presented in Figure 3. The blue water
intensity under the average production pattern was 96 m3 per
ton of potato production. The water use intensity of marginal
potato production was 68 and 66 m3 per ton under the marginal
production and the high fuel price scenarios, respectively (29
and 31% lower than the average water use). Under the marginal
production, California and Taxes where water use for potato
production is relatively high compared with other states produce
much less potato than the BAU, which significantly decreases the
overall water use. Under the high fuel price scenario, eastern
states which have sufficient rain and require less irrigation
produce more potato than BAU, which reduces the overall water
use. Potato production under the high water price scenario
consumed the lowest amount of water, 26 m3 per ton, reducing
73% water use than BAU because the additional potatoes were
produced in the states with low irrigation water consumption.

Total Water Consumption
The total water use in the average and marginal production
for additional potatoes is shown in Figure 3. The water use
of the current production volume is 2,006 million m3 per
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FIGURE 3 | Water use for the current and the future potato production.

year. If we use the average production pattern to estimate
future production, the water consumption of future potato
production will follow a linear relationship as shown in
the average impact in Figure 3. The cumulative water use
for future production including the current and additional
production would be 2,057 million m3 followed the current
production pattern. However, the future production pattern
would be different from the current production under marginal
production and different policy goals. The total water use
for the future production shows a non-linear relationship
for marginal impact, high fuel price, and high water price
scenarios, saving 16, 14, and 27 million m3 of water per
year, respectively.

CONCLUSIONS AND DISCUSSION

Our study applied an optimization method, the transportation
model, to estimate the marginal production and environmental
stressor. This work demonstrated the transportation model
method to predict blue water consumption using a numerical
example of potato production to demonstrate the applicability.
The case study used additional potato demand which USDA
recommends as themarginal potato demand. The results indicate
different environmental outcomes would be possible depending
on how economic constraints, social factors, and policy measures
play out. Unlike the majority of the LCA studies which use
average values to linearly estimate marginal water use, the results
using the transportation model show a non-linear relationship
between marginal potato production and corresponding water

use. Therefore, a “snapshot” of the current economic system
as portrayed in LCA studies using average values falls short
of addressing the question of dietary shift and supporting
decision making.

Four production scenarios including the average, marginal,
and two policy scenarios were analyzed in the study. Marginal
production, high fuel price scenario, and high water price
scenario reduced the marginal water use from the average
production by 29, 31, and 73%, respectively. Our study indicates
that marginal and alternative policy scenarios may lead to
different policy outcomes than the average. Such marginal
and policy scenario analysis can help understand the different
pathways through which a decisionmay impact the economy and
the environment.

The case study presented was meant to serve as an illustrative
example. For more realistic results, it needs to be improved
focusing particularly on the following key assumptions. The
results from this analysis were based on the state-level data
due to the data limitation of irrigation water use, and we
assumed that potatoes would be delivered from the center of
the producing state to the demanding state. We also assumed
that the transportation fuel costs of transporting potatoes were
proportional to the weight of potatoes excluding the case
of unfilled trucks. Due to the lack of water use data for
growing potatoes in some states, average water use data was
applied to some states. The analysis didn’t include the effect of
dietary displacement and nutritional characterization that can be
considered by future studies. In addition, we only considered fuel
cost to represent transportation cost, which underestimated the
actual transportation cost.
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Our study only investigates the effect of additional potato
demand on irrigation water use excluding the water use
embodied in transportation, while other environmental stressors
and more life cycle stages can be examined in future studies.
We used cost minimization as the objective of the optimization
model, but our method can be applied to other objectives such
as minimizing greenhouse gas emissions and minimizing non-
renewable energy consumption.

The method presented in the paper can be applied to
spatially-explicit and scale-dependent modeling of other
production systems in LCA involving multiple producers
and consumers. Our model can be used to understand the
non-linear behavior of marginal impacts over a change
in demand. Future work might expand this method to
assess other environmental impacts and test alternative
policy scenarios. The development of regionally specific
environmental data of crops is also crucial for improving
the accuracy of the results and supporting optimal
decision-making.
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