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Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent
upper airway obstruction during sleep. Despite the availability of continuous
positive airway pressure (CPAP) as the gold standard treatment, it is not well
tolerated by all patients. Accordingly, research has increasingly focused on
developing methods for OSA endotyping, which aims to identify underlying
pathophysiological mechanisms of the disorder to help guide treatment for CPAP-
intolerant individuals. Four key endotypic traits have been identified, namely:
collapsibility, upper airwaymuscle compensation, arousal threshold and loop gain.
However, most methods for extracting these traits require specialized training and
equipment not available in a standard sleep clinic, which has hampered the ability
to assess the full impact of these traits on OSA outcomes. This paper aims to
provide an overview of current methods for OSA endotyping, focusing on the
Endo-Phenotyping Using Polysomnography (PUP) method and its cloud-based
extension, PUPpy, which o�er scalable and accessible ways to estimate endotypic
traits from standard polysomnography.We discuss the potential for thesemethods
to facilitate precision medicine for OSA patients and the challenges that need to
be addressed for their translation into clinical practice.
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Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder that has major
consequences for neurocognitive, cardiovascular, and metabolic health. Unfortunately, the
leading therapeutic intervention, continuous positive airway pressure (CPAP), is limited
by patient tolerance despite its otherwise excellent efficacy (Lozano et al., 2010; Weaver
et al., 2012; Rotenberg et al., 2016; Bakker et al., 2019; Shapiro et al., 2021; NCA-
CPAP, 2022; Šiarnik et al., 2022). Of the array of available and experimental non-CPAP
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interventions—including weight loss (Schwartz et al., 1991),
oral appliances (Ng et al., 2003; Chan et al., 2010; Edwards
et al., 2016a; Dissanayake et al., 2021; Pattipati et al., 2022),
positional therapy (Randerath W. et al., 2021), hypoglossal nerve
stimulation (Certal et al., 2015; Costantino et al., 2020; Op de
Beeck et al., 2021b), pharyngeal surgery [particularly in pediatrics
(Schwartz et al., 1992; Joosten et al., 2017; Gozal et al., 2020)],
supplemental oxygen (Wellman et al., 2008), pharmacological
interventions to: activate dilator muscles (e.g., atomoxetine-plus-
oxybutynin) (Taranto-Montemurro et al., 2019, 2020; Hedner
and Zou, 2022a; Schweitzer et al., 2022), decrease arousability
from sleep (e.g., eszopiclone) (Eckert et al., 2011), and stabilize
ventilatory control (carbonic anhydrase inhibitors) (Hedner and
Zou, 2022a; Hedner et al., 2022)—each appears to be efficacious
in some patients more than others. For the most part, non-CPAP
therapies are administered in an empirical (i.e., trial-and-error)
manner, with limited mechanistic information available to the
clinician to predict the likelihood of a successful intervention in
individual patients.

Over the last decade, the field of sleep medicine has
come to the consensus that (1) there are different underlying
pathophysiological causes of OSA (i.e., endotypic traits) (Younes,
2003; Younes et al., 2007;McGinley et al., 2008; Edwards et al., 2012,
2019; Sands et al., 2014), (2) that these traits differ considerably
between patients (Wellman et al., 2011; Eckert et al., 2013; Xie
et al., 2013; Sands et al., 2023), and (3) that individual differences
in traits provide a mechanistic explanation for why some patients
respond preferentially to one therapy over another (Wellman
et al., 2008; Stanchina et al., 2015; Edwards et al., 2016a; Joosten
et al., 2017; Landry et al., 2017; Sands et al., 2018a; Light et al.,
2019). These concepts provide a potential avenue for precision

medicine, whereby a subgroup of patients sharing a common
underlying pathophysiology could be judiciously administered a
therapy with preferential benefit. Accordingly, investigators have
recently accelerated efforts to subclassify OSA based onmechanistic
endotypic traits (i.e., endotypes) or other clinically-observable
characteristics more generally (i.e., phenotypes), with the goal of
better matching interventions to patients in a way that maximizes
efficacy and tolerability (Edwards et al., 2019; Light et al., 2019;
Malhotra et al., 2020).

Key endotypic traits

There are at least four key endotypic traits that contribute
to OSA (Younes et al., 2007; Ratnavadivel et al., 2010; Wellman
et al., 2011; Eckert et al., 2013; Sands et al., 2018a; Light et al.,
2019; Malhotra et al., 2020). Increased pharyngeal collapsibility is
the primary determinant of OSA (Kirkness et al., 2008; Eckert
et al., 2013; Sands et al., 2018b, 2023; Alex et al., 2022), and is
characterized by an increased tendency of the pharyngeal tissues
to obstruct the upper airway during sleep. Specifically, greater
collapsibility manifests as a reduction in the ventilatory flow rate.
Second, reduced pharyngeal dilator muscle activity is characterized
by a failure of the dilator muscles (including the genioglossus
muscle) to provide a normal baseline level of activation and/or

the reflex increase in activation as ventilatory drive rises with
obstruction (Wellman et al., 2011; Sands et al., 2018b). Low reflex
compensationmay be consequent to reduced neural responsiveness
to stimuli and/or reduced neuromechanical efficiency. Third, a
low arousal threshold is also a key trait contributing to OSA
pathophysiology and is defined by a lower ventilatory drive
threshold that triggers arousal (Heinzer et al., 2008; Wellman
et al., 2011). Mechanistically, a lower arousal threshold places a
limit on the ventilatory drive stimulus that the dilator muscles
normally rely on to provide compensation support to the upper
airway. Finally, a greater ventilatory instability or loop gain is
defined as an excessive ventilatory drive response opposing a
change in ventilation from baseline eupneic breathing (Wellman
et al., 2011; Terrill et al., 2015). Despite being the hallmark of
central sleep apnea, increased loop gain is also a key factor in
the pathophysiology of OSA and is largely dominated by the
dynamic ventilatory response to carbon dioxide (Younes et al.,
2007). Conceptually, a higher loop gain contributes to OSA
by exacerbating the transient loss of ventilatory drive stimuli
needed to maintain muscle compensation in the presence of a
vulnerable airway.

An important advance in the understanding of OSA
pathophysiology is the notion that each of the four key traits
are defined by ventilation and ventilatory drive (Younes, 2003;
Wellman et al., 2011, 2013; Owens et al., 2015; Sands et al.,
2018b) (see Figure 1). Collapsibility determines the ventilation
during sleep at eupneic (normal resting baseline) ventilatory drive.
Compensation is the increase in ventilation between eupneic
drive and the maximum drive achievable during sleep, occurring
at the arousal threshold, e.g. just before the termination of a
respiratory event. Arousal threshold is the ventilatory drive
that causes arousals. Loop gain is the ventilatory drive response
to changes in ventilation from eupnea. Using this conceptual
framework, it is possible to combine the endotypes mechanistically
to explain the absence or presence of OSA and to understand
the degree to which the traits causing OSA can be leveraged
to ameliorate it (Wellman et al., 2013; Owens et al., 2015). For
example, lowering loop gain is unlikely to be beneficial in patients
with severe collapsibility and a poor muscle response, since such
patients will incur pharyngeal collapse and loss of ventilation
regardless of the level of ventilatory drive stimuli. For patients with
ineffective upper airway muscles, raising the arousal threshold
is unlikely to be helpful. These patients are expected to exhibit
pharyngeal collapse regardless of their ability to tolerate increased
ventilatory drive.

Accumulating evidence supports the concept that differences in
these traits can explain responses to available and emerging CPAP
and non-CPAP therapies. Key examples include the following:
Patients with a high arousal threshold tend to adhere more to CPAP
treatment, and increasing the arousal threshold pharmacologically
with eszopiclone has been found to further improve CPAP
adherence (Schmickl et al., 2020). Supplemental oxygen therapy to
lower loop gain appears to be most efficacious in patients with less
severe collapsibility, greater compensation, and higher loop gain
(Wellman et al., 2008; Edwards et al., 2016b; Sands et al., 2018a).
We caution that the use of hypnotics and supplemental oxygen
as OSA therapies is still experimental and has not been approved
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FIGURE 1

(A) Simulated respiratory event to illustrate the key concepts behind deriving sleep apnea endotypes from a ventilation signal. A simulated flow signal
is shown above to help visualize the respiratory event. Ventilation is derived from the flow signal. A mathematical model of the chemoreflex control
of breathing is fit to the unobstructed ventilation data, shown as a stepped blue line. The model is used to derive a continuous estimate of chemical
drive, shown as a black continuous line. The chemical drive can be interpreted as the intended ventilation, which was not achieved due to the airway
obstruction. Loop gain is then derived from the fitted model as the ratio of the output signal (chemical drive) to the input signal (ventilation).
Collapsibility is measured as the ventilation at 100%eupnea drive (V̇passive). Arousal threshold is defined as the chemical drive preceding arousal. Upper

airway muscle compensation (V̇comp) is the di�erence in ventilation at eupneic drive (100%eupnea) and ventilation at the arousal threshold. (B) From
the minute ventilation and drive data on (A) we create a ventilation-vs.-drive plot or “endogram.” Here, drive is binned into centiles and the median
ventilation value within each drive bin is plotted against the median value of the binned drive data. The ventilatory endotypes: compensation, V̇passive

and V̇active can be read directly from the plot. The endogram is used to aggregate and visualize the characteristic ventilation-drive relationships for a
whole sleep study.

for clinical use. Oral appliance therapy appears most beneficial in
patients with less severe collapsibility and lower loop gain (Edwards
et al., 2016a; Vena et al., 2020; Op de Beeck et al., 2021a), and
may also be more efficacious in those with lower compensation and
higher arousal threshold (Bamagoos et al., 2019). Hypoglossal nerve
stimulation was most successful in patients with a higher arousal
threshold, lower loop gain and good compensation; it may also be
more efficacious in those with greater collapsibility (Op de Beeck
et al., 2021b). On the other hand, according to a recent analysis
(Wong et al., 2022), endotyping does not seem to be predictive
of pharyngeal surgical outcomes. A key point emerging from the

available response to therapy studies is that there is often no single
trait that predicts the response to any non-CPAP therapy–even

when the trait is explicitly targeted. Rather, knowledge of the traits
in combination appears to be required. While further prospective

validation studies are needed to confirm the use of endotypes in this

context, knowledge of endotypic traits provides a promising means
to identify subgroups of patients who aremost likely to benefit from

different therapies. Ultimately, clinically-applicable measurements

of these traits will be needed before clinicians can utilize them
to make treatment decisions for different subgroups of patients,

i.e., precision medicine (Eastwood et al., 2011; Eckert et al., 2011;
Edwards et al., 2012; Joosten et al., 2017; Randerath et al., 2018;
Sands et al., 2018a; Bamagoos et al., 2019; Light et al., 2019; Taranto-
Montemurro et al., 2019, 2020; Vena et al., 2020, 2022; Carter and
Eckert, 2021; Op de Beeck et al., 2021a,b; Duong-Quy et al., 2022;
Hedner and Zou, 2022b).

Methods for quantifying endotypic
traits

Here, we review current sleep apnea endotyping methodologies
and how they can be translated from laboratory research into
standard clinical practice. There are three streams of research
methods for investigating endotypic traits. First, the simplest
method for trait estimation is to relate direct output parameters
from standard polysomnography (PSG) to the underlying sleep
apnea pathophysiology [e.g., high apnea index (AI) as an
indicator for high upper airway collapsibility]. These methods
often require minimal additional calculations but do not take
advantage of the wealth of mechanistic information available
in PSG studies. Second, in the physiological laboratory, gold
standard signals are directly measured to assess ventilation and
ventilatory drive, with or without careful experimental procedures
to manipulate ventilatory drive. Such studies typically seek to
demonstrate physiological differences between patients or effects
of therapies. These methods require invasive measurements using
specialized equipment and training that are not available in
standard sleep clinics. Finally, in the clinical setting, methods of
estimating ventilation and ventilatory drive have been developed,
with the goal of translating physiological knowledge from
the physiology laboratory to the clinical arena where gold
standard recordings are not feasible. Such studies use data
collected during a routine sleep study and seek to provide
a physiologically-sound means to predict the likelihood of
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responding to different interventions. These three approaches are
summarized below.

Pathophysiological insights from the
polysomnography report

Useful but somewhat rough estimates of most OSA endotypes
can be garnered without complex calculations or non-standard
measurement equipment. One common approach is to estimate
upper airway collapsibility from routine PSG indices as well as
anthropometric measures. Several indicators have been explored
in the literature, including the fraction of hypopnea vs. apnea
(i.e., Fhypopnea; lower values reflect greater collapsibility), apnea
index (Vena et al., 2022), waist circumference, mean obstructive
apnea duration, rapid eye movement apnea hypopnea index (REM-
AHI), and non-REM obstructive apnea index (NREM-OAI) over
NREM-AHI (Genta et al., 2020).

In addition, nadir oxygen saturation, high AHI and Fhypopnea
have been found to be independent predictors of arousal threshold
(Edwards et al., 2014a), and short respiratory event duration has
been used as an indicator for increased arousability from sleep
(Sands et al., 2018c; Butler et al., 2019). Quantifying loop gain from
PSG using simple approaches has remained elusive. Algorithms
have been developed for predicting high loop gain from the cyclical
self-similarity of respiratory events during sleep (Oppersma et al.,
2021). A simpler approach was proposed recently where higher
AHI and lower hypopnea-percentage (i.e., Fhypopnea) were used to
predict higher loop gain values with moderate accuracy (Schmickl
et al., 2022). Furthermore, high AHI during NREM vs. REM may
indicate high loop gain, as loop gain has been shown to be lower in
REM sleep (Landry et al., 2018; Joosten et al., 2021).

While, to our knowledge, no simple approaches have been
published for deriving upper airway muscle compensation, there
have been recent developments in training machine learning
models to predict OSA endotypes and responses to treatment.
These models utilize PSG variables and anthropometric measures
as inputs and use machine learning or decision trees to classify
patients for precision medicine in sleep apnea (Dutta et al., 2021,
2022).

Overall, these methods underline the fact that there is a wealth
of physiologically relevant information in routine PSG reports that
are not yet fully utilized for precision diagnoses.

Specialized CPAP manipulation in the
physiology laboratory

CPAP manipulations have been used for decades in OSA
research to investigate OSA pathophysiology (Younes, 2003, 2004;
McGinley et al., 2008; Wellman et al., 2011, 2013; Edwards et al.,
2012, 2014b; Eckert et al., 2013; Sands et al., 2014; Messineo
et al., 2018). Many permutations of these methods involved
the following concepts: (1) Patients are placed on an optimal
CPAP that resolves flow limitation and provides stable breathing.
Conceptually, at quiet, stable breathing; ventilation and ventilatory
drive are at eupneic levels and are considered to be equal to

each other. (2) Abruptly “dropping” CPAP to a subtherapeutic
level reveals a flow-limited airway with reduced capacity for
ventilation due to the maximally “passive” pharyngeal dilator
muscles. (3) Over time (e.g., with more gradual CPAP dial-downs),
ventilatory drive rises and activates the pharyngeal muscles, which
typically yields an improvement in ventilation that is considered
to reflect dilator muscle compensation. (4) The arousal threshold
is typically measured as the ventilatory drive (e.g., diaphragm
EMG via catheter) or esophageal pressure on breaths preceding
arousals during the experimental reductions in CPAP levels.
(5) Measurement of gold standard loop gain typically involves
quantifying the size of the increase in ventilatory drive that occurs
in response to a controlled reduction in ventilation.

The most widely used approach for OSA endotyping avoids the
need for invasive measurements of ventilatory drive through the
use of judicious CPAP dial-ups to optimal pressure. The underlying
basis for this method was that ventilatory drive equals ventilation
during these periods (Wellman et al., 2011, 2013). This method
allows for the derivation of the endotypes without the use of
specialized equipment that is not present in a standard PSG lab,
such as diaphragm EMG and esophageal/epiglottic manometry for
measuring respiratory effort (Eckert et al., 2011, 2013; Sands et al.,
2014; Edwards et al., 2016b). Using non-standard methodologies
or equipment requires higher levels of training and longer setup
time, and often results in a more invasive experience for the patient.
These factors all hinder large scale adoption of the methods, despite
their potential for guiding treatment selection (Terrill et al., 2015;
Sands et al., 2018b; Finnsson et al., 2021).

Nonetheless, specialized CPAP manipulation studies require
advanced training and are limited to only several laboratories
worldwide. Specialized CPAP equipment that allows pressure drops
to lower than 4 cmH2O are also not commercially available.
Further, the average success rate of the CPAP drop method for
estimating the four endotypic traits for each individual patient
has been reported to be from 69% (Eckert et al., 2013) to 76%
(Wellman et al., 2013), with difficulty initiating or maintaining
sleep throughout the study procedures being a commonly reported
issue (Edwards et al., 2012, 2014b; Eckert et al., 2013). The ratio
of analyzable CPAP-drops per patient varied from a low of 16%
(Edwards et al., 2014b) to a high of 70% (Eckert et al., 2013). These
methods are therefore most suitable for assessing patients who are
solid sleepers (higher arousal threshold) during periods of the night
with the deepest sleep (Ratnavadivel et al., 2009, 2010). As a result,
this approach is limited in its translational potential.

Gold standard signals during spontaneous
breathing without CPAP

An important step in the transition from the physiology
laboratory to non-invasive clinical measurements involves
the assessment of traits from spontaneous breathing,
measuring ventilation and ventilatory drive, without the use
of CPAP manipulation.

For many years, investigators have measured the arousal
threshold without CPAP manipulation, using direct, invasive,
measurement of the ventilatory drive (typically via catheters placed
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to assess negative esophageal or epiglottic pressures) prior to a
scored arousal (Berry et al., 1996; Haba-Rubio et al., 2005; Eckert
et al., 2011; Edwards et al., 2014a; Carter et al., 2016; Sands et al.,
2018c). Extending this approach, a method was developed to assess
collapsibility and muscle compensation directly from invasive
measurement of ventilation (oronasal mask and pneumotach) and
ventilatory drive (intraesophageal diaphragm EMG) (Sands et al.,
2018b). The approach provides a ventilation-vs.-drive curve (see
example in Figure 1B) describing pharyngeal mechanics that is
conceptually similar to that measured via CPAP drops, but has the
advantage of using direct measurement of these two variables, and
captures the pathophysiology without disrupting the cyclic events
that define the disorder.

Polysomnographic method

The Endo-Phenotyping Using Polysomnography (PUP)
method was developed by Sands and colleagues to translate the
above methods to estimates that could be used clinically (Terrill
et al., 2015; Sands et al., 2018b). The approach was designed
to estimate the pathophysiological endotypes of OSA from a
standard clinical PSG without the need for invasive measurements.
Currently, this method extracts an estimate of ventilatory flow
from the nasal pressure signal. Tidal volume is calculated by
integrating the flow signal, where ventilation is derived by dividing
the tidal volume by each breath’s duration. Ventilation is presented
as a percentage of a local 7-min average, with 100% considered to
represent eupneic ventilation. Thus, ventilation at 0% represents
a complete apnea, 100% is eupneic breathing, and >100% is
hyperpnea. Rather than invasively measuring ventilatory drive,
an estimate is calculated from the ventilation signal, leveraging
the assumption that ventilation reveals the ventilatory drive when
the airway is open but not when it is obstructed. A drive estimate
is derived using a chemoreflex model which takes the ventilation
signal as input and outputs chemical drive according to the
dynamics dictated by the model parameters (gain, time constant,
delay). This chemical drive signal is best fit to the ventilation
signal using least squares; specifically, the chemoreflex model
parameters are adjusted. In addition, the presence of arousal is
also used in the model. Namely, an additional wakefulness/arousal
drive is considered during any breath that lies within the margins
of a scored arousal; a single additional parameter (ventilatory
response to arousal) (Edwards et al., 2013) is added to the chemical
drive to yield the overall ventilatory drive; when arousals are
scored, it is this ventilatory drive signal that is best fit to the
ventilation signal. Goodness of fit, for least squares minimization,
is only evaluated between scored events, i.e., when the airway is
expected to be unobstructed. These estimates of ventilation and
ventilatory drive are used in place of the gold standard signals
(Terrill et al., 2015; Sands et al., 2018c; Finnsson et al., 2021; Gell
et al., 2022). An illustration of estimated ventilation and ventilatory
drive is shown in Figure 1A. With the normalized ventilation
values and corresponding drive values, the PUP method can be
used to derive loop gain (Terrill et al., 2015), arousal threshold
(Sands et al., 2018c), upper airway collapsibility, and upper airway
compensation (Sands et al., 2018b). Typically, these traits are

derived and presented for NREM sleep. See an application of the
method to patient data in Figure 2.

Scalability
PSG endotyping has since been used in multiple research

applications (Wellman et al., 2011, 2013; Terrill et al., 2015;
Sands et al., 2018b,c; Taranto-Montemurro et al., 2019, 2020;
Finnsson et al., 2021; Alex et al., 2022), primarily in studies
seeking to identify a patient subgroup that responds preferentially
to existing and experimental interventions. However, authors
of the work have required specialized software (MATLAB)
and some training to independently generate trait data. To
demonstrate that the approach is truly scalable, our team recently
introduced “PUPpy” (Finnsson et al., 2021), a new independent
implementation in the Python programming language of the
PUP method, that was originally implemented in MATLAB.
PUPpy is a cloud-enabled solution based on the original PUP
method principles (Finnsson et al., 2021), and directly provides
the user with endotypic trait values from uploaded clinically-
collected PSG data. The trait values are congruent with the
PUP method and demonstrated that there are no major hurdles
anymore to making the analysis widely accessible to researchers
and clinicians. To maintain the alignment of the PUPpy
method with the original validation of the PUP method, it
would be helpful to validate it against gold standard methods
(e.g., CPAP drop method/gold standard ventilation and drive
signals) to provide an opportunity for ongoing enhancement
and development.

Normative values and demographic
di�erences

As endotyping is an emerging field in sleep research, thresholds
for abnormal endotypic trait values have not yet been established.
Several studies have reported the range of values of different
endotypic traits calculated using the PUPmethod. Table 1 describes
two previously published datasets where PUP has been used
for analysis: Osteoporotic Fractures in Men Study (MrOS) and
Multi-Ethnic Study of Atherosclerosis (MESA) (Blackwell et al.,
2011; Chen et al., 2015; Zhang et al., 2018; Alex et al., 2022).
Here we also include a new dataset collected in Taiwan at the
China Medical University Hospital (CMUH) that is unique for
its clinical population, which we analyzed using PUPpy (Finnsson
et al., 2021). The low, moderate, and high values for each trait
are described for each of the three datasets based on their
tertiles (Table 2). Notably, compared to the community studies,
the clinical population appears to exhibit greater collapsibility and
lower compensation, consistent with greater pharyngeal deficits,
as expected. The clinical population also exhibited a higher
average arousal threshold, perhaps a reflection of an increased
physiological “sleepiness” (Edwards et al., 2014a) that may be
expected of symptomatic individuals attending a sleep clinic. It is
also possible that differences in race/ethnicity of the populations
contribute to these differences, noting that Asian populations
often exhibit greater anatomical compromise and collapsibility
in obesity-adjusted analyses (O’Driscoll et al., 2019). Further
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FIGURE 2

The figure shows two patients with di�erent OSA expressions. Patient 1 (A, B) displays classic sleep apnea with high collapsibility and low upper airway
compensation. Patient 2 (C, D), has drive-dependent sleep apnea (Gell et al., 2022) where respiratory events correspond to reductions in chemical
drive. As the drive increases the upper airway dilators are activated and some ventilation is restored, hence the upper airway compensation is larger.

understanding of the OSA etiology of different demographics via
sleep apnea endotyping has the potential to provide insight into
optimal treatment pathways.

Future methodological developments

The non-invasive PSG method described has several
limitations with respect to accurately capturing ventilation
and ventilatory drive. A recent debate on the topic highlighted
some of the limitations of the method as well as giving

suggestions for improvements (Sands and Edwards, 2023;
Younes and Schwab, 2023). Here, we discuss areas of
current development.

Limitations of manual scoring of respiratory
obstruction

A fundamental assumption of the model-based endotype
approach is that the airway is unobstructed and not flow-limited
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TABLE 1 Descriptive statistics and endotype values in NREM sleep for di�erent cohorts.

PUP with cannula flow and
modeled drive in NREM

sleep

PUP with cannula flow and
modeled drive in NREM

sleep

PUPpy with cannula flow
and modeled drive in

NREM sleep.

N = 2,316 [MrOS] N = 1,792 [MESA] N = 765 [CMUH]

Setting Unattended in-home PSG, manually
scored

Unattended in-home PSG, manually
scored

In-lab PSG, manually scored PSG

Population Community cohort Community cohort Clinical cohort

Age 76 [72–80] 68 [61–76] 41 [34–51]

Sex (M:F) 2316:0 866:926 641:124

Race/Ethnicity 3% Black, 91%White, 2% Hispanic, 3%
Asian, 1% Other

27% Black, 24% Hispanic, 12% Chinese,
37%White

100% Southeast Asian∗∗∗

BMI 27.0 [25.0–30.0] 28.2 [25.0–32.1] 28.9 [25.8–32.4]

AHI 20.0 [12.0–33.0] 20.8 [12.2–34.9] 25.9 [13.3–52.1]

Collapsibility (V̇passive, %)† 71.5± 15.6 77.5± 14.4 62.0± 22.8

Collapsibility (V̇min, %) 50.9± 22.5 63.7± 20.4 50.5± 17.2

Compensation (V̇active-V̇passive, %) 5.7± 24.1 6.1± 18.2 −3.6± 20.3

Loop gain (LG∗

1) 0.62± 0.17 0.58± 0.18 0.55± 0.18

Loop gain (LGn∗∗) 0.50± 0.12 0.44± 0.11 0.38± 0.10

Arousal Threshold (%)† 148.2± 26.5 139.5± 23.9 159.10± 28.26

Values either presented as Median [IQR] or Mean± SD ∗LG1 , the loop gain at 1 cycle/min, is typically used for endotyping from PSG instead of the steady-state loop gain (LG0). This is because

natural respiratory events rarely reach steady state, so LG0 does not have good observability. LG1 is more accurately observed since 1 cycle/min is closer to the frequency of respiratory events.
∗∗LGn represents the loop gain at the system’s natural frequency. ∗∗∗Based on knowledge of the Taiwanese population. †The values for Collapsibility (V̇passive) and Arousal Threshold have

been square root transformed for normality (Sands et al., 2018a; Alex et al., 2022 - Identifying obstructive sleep apnoea patients responsive).

TABLE 2 33rd percentile and 66th percentile (i.e., trentiles) of the endotypic traits in NREM sleep for di�erent cohorts.

33.3 percentile 66.6 percentile

MrOs MESA CMUH MrOs MESA CMUH

Collapsibility (V̇passive, %)† 70.3 76.8 58.7 78.7 83.7 75.5

Collapsibility (V̇min, %) 46.1 63.2 45.7 64.9 74.8 59.4

Compensation (V̇active-V̇passive; %) 4.1 4.3 −7.4 11.1 8.2 6.2

Loop gain (LG1) 0.54 0.49 0.46 0.68 0.62 0.60

Loop gain (LGn) 0.45 0.38 0.34 0.55 0.47 0.42

Arousal threshold (%)† 134.9 127.7 142.4 156.0 144.4 165.3

†The values for Collapsibility (V̇passive) and Arousal Threshold have been square root transformed for normality (Sands et al., 2018a; Alex et al., 2022 - Identifying obstructive sleep apnoea

patients responsive).

during recovery hyperpnea as well as during periods where no
respiratory events are scored (Terrill et al., 2015; Sands et al.,
2018b; Finnsson et al., 2021). Recently our colleagues showed that
some patients consistently exhibit flow-limited recovery breaths
(Mann et al., 2021). In those patients, the ventilatory drive
will be underestimated. To mitigate this, continuous measures
of the severity of upper airway obstruction could be used to
improve the model-estimated drive signal. Flow-shape-derived
(Mann et al., 2019, 2021; Parekh et al., 2021) and RIP-derived
(Finnsson, 2017; Parekh et al., 2021) breath-level obstruction
measures have been explored with promising results. Continuous
quantification of obstruction could further enhance the precision
of drive and ventilation estimates in the presence of sustained
flow limitation and a concomitant rise in baseline drive above
eupneic levels.

Passive upper airway collapsibility

Passive upper airway collapsibility is most commonly
represented by Pcrit (Kirkness et al., 2008; Eckert et al., 2013) and
represents the x-intercept of a plot of airflow or ventilation vs.
CPAP pressure level. Pcrit can be interpreted as the theoretical
CPAP pressure level where the airway closes. Although Pcrit
has been considered a gold standard method for upper airway
collapsibility, it requires manipulation of airway pressures
(Kazemeini et al., 2022) and is inherently not observable
during spontaneous breathing. By contrast, the y-intercept of
the same ventilation-vs.-CPAP relationship, called “V̇passive,”
similarly provides a gold standard collapsibility measure in
units of ventilation (Younes, 2003). V̇passive represents the
maximum level of ventilation that can be achieved at normal

Frontiers in Sleep 07 frontiersin.org

https://doi.org/10.3389/frsle.2023.1188052
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Finnsson et al. 10.3389/frsle.2023.1188052

ventilatory drive through a passive airway at atmospheric pressure.
Importantly, patients spend their time spontaneous breathing
at atmospheric pressure (by definition), so this variable is
potentially both observable and physiologically relevant to their
OSA pathophysiology.

Estimating passive upper airway collapsibility (ventilation
at eupneic drive, “V̇passive”) from non-invasive signals during
spontaneous breathing requires an accurate assessment of the
ventilatory drive. As discussed above, any underestimation of
the ventilatory drive is expected to provide an overestimation of
V̇passive. To address this concern, Vena et al. recently examined
an alternative measure of passive collapsibility: ventilation at nadir
drive (V̇min), a measure which is independent of systematic bias
in drive levels (Vena et al., 2022). Pcrit was found to be more
strongly correlated with V̇min (r = −0.54) than it is with V̇passive

(r = −0.38). We emphasize, however, that a perfect correlation
is not necessarily expected since Pcrit and V̇min/V̇passive are
inherently different measures. Nonetheless the modest correlation
indicates that there remains room for further development. We
also emphasize that V̇passive measured from spontaneous breathing
is systematically greater than that measured following an acute
reduction in CPAP, likely because the baseline dilator muscle
activity is greater off CPAP than immediately after an abrupt CPAP
drop, even at similar drives. While the spontaneous breathing
methods capture less of a truly passive tissue mechanical behavior,
it may be advantageous to quantify the degree of collapsibility
as it contributes to the pattern of cyclic events that define each
patient’s disorder.

Oral breathing

A key limitation of nasal pressure is that it captures nasal rather
than combined oronasal airflow. Unfortunately, oral breathing
is both prevalent and significant in OSA (Gleeson et al., 1986;
Nascimento et al., 2019) and can be invoked by obstructive
respiratory events (Suzuki et al., 2015; Lebret et al., 2018). Errors
in trait estimates are expected for those with the most pervasive
mouth opening during sleep (Redline et al., 2007).

Several auxiliary flow sensors have been proposed to mitigate
the effects of oral breathing. An oronasal thermistor is frequently
invoked (Redline et al., 2007), yet this sensor technology does
not provide a linear flow measurement for quantitative use (Farré
et al., 1998; Redline et al., 2007). When properly calibrated and
processed, respiratory inductance plethysmography (RIP) can be
used to assess ventilation (Montazeri et al., 2021). With careful
calibration, RIP could provide a flow signal to generate traits
similar to those derived from oronasal flow and may provide a
more reliable alternative to nasal pressure in circumstances with
considerable mouth breathing.

Repeatability and physiological variability

It is established that some traits vary within a night. Given
both physiological variability and measurement noise, there may
be concerns about repeatability of estimated trait values generated

from PSG methods. Most notably, collapsibility is greater in supine
position than in lateral position (Ong et al., 2011) but often
appears unaffected by sleep stage (Ong et al., 2011; Joosten et al.,
2021; Messineo et al., 2022). Loop gain, however, is lower during
REM sleep than during NREM (Joosten et al., 2021). Interestingly,
upper airway muscle compensation is largely unaffected by state
(Messineo et al., 2022). As with prior physiology studies, trait
values reported by the PUP method for these traits are the medians
during NREM for the night of study, and physiological variations
are incorporated into the 95 percentile confidence intervals of the
estimated values.

The traits derived from PUP have been shown to have
a moderate-to-good within-night repeatability, with correlations
(Pearson correlation) ranging from 0.69 to 0.83 (Alex et al.,
2022) for two independent measures taken from the same night.
Night-to-night repeatability is similar, with correlations (intra-
class correlation) ranging from 0.72 to 0.83 (Strassberger et al.,
2023) in one study, and 0.67–0.91 in another (Tolbert et al.,
2023). In general, intraclass correlations for collapsibility, loop
gain, and arousal threshold have been >0.8 but lower for
compensation. Of note, compensation is calculated as the difference
in two collapsibility measures (V̇active minus V̇passive) such that
measurement error is augmented. Overall, however, night-to-night
repeatability is similar to that observed for apnea-hypopnea index
(Alex et al., 2022). Long term repeatability (6–7 years between
studies), at least in an elderly male population, has been shown to
be more modest with r= 0.36–0.61.

With the goal of increasing repeatability, incorporating the
effects of sleep state, position, arousal intensity (Azarbarzin et al.,
2014; Amatoury et al., 2016), or other covariates may be beneficial,
but the optimal means to do so remains an area for future research.

Future clinical utility

Over the last decade, the field of sleep medicine has actively
investigated novel clinically-applicable measurements that capture
differences in underlying disease pathophysiology to aid clinicians
in selecting the most appropriate treatments for their patients
(Wellman et al., 2011; Carberry et al., 2018; Schmickl et al., 2018;
Sutherland et al., 2018; Edwards et al., 2019; Light et al., 2019;
Martinez-Garcia et al., 2019; Lyons et al., 2020; Siriwardhana et al.,
2020). Until now, clinical interventions for the treatment of OSA
have primarily followed a one-dimensional treatment pathway: A
single diagnostic parameter, the AHI, or one of its analogs (Epstein
et al., 2009; LCD, 2022; NCA- CPAP, 2022) was used to determine
the need for a single intervention, CPAP. This pathway from
diagnosis to treatment involves minimal mechanistic information
which may lead to simplistic decision-making, which in turn
may deter new physicians from entering the field (Watson et al.,
2017). On the other hand, OSA is a highly complex disorder
that manifests as the downstream product of interacting deficits
in multiple pathophysiological traits, and involves aspects of
upper airway anatomy, pulmonary mechanics, ventilatory control,
pharyngeal muscle control, and sleep neurobiology. Unfortunately,
many of these academically challenging aspects are not currently
considered in daily clinical sleepmedicine to benefit patients. Novel
clinically available tools to capture these underlying mechanisms
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could potentially change the nature of clinical sleep medicine.
Once available–and supported by data on their clinical utility–
we consider that clinicians will have the means available to better
understand the etiology of an individual’s disorder and use this
information to select the optimal treatment for their patient.

The pathway to widespread use of endotypic traits is expected
to involve several research and clinical challenges. Greater accuracy
of the estimates of traits through improved processing and
estimation of ventilation and ventilatory drive will be needed. Such
studies will need to be guided by gold standard signals obtained
from physiology laboratory settings with simultaneous clinical
signals. The field will further benefit from a shift toward improved
respiratory signal fidelity (perhaps in the opposite direction to
the current approach of determining how few signals can be used
to obtain a diagnostic AHI value). Currently, some in-laboratory
clinical sleep recording systems over-filter airflow signals well
beyond AASM criteria: High pass filters (baseline drift filter)
should be set to “off” (per AASM recommended filter settings);
while the AASM recommended filter setting criteria allows up
to 0.03Hz, even this level compromises advanced flow waveform
analysis. Low pass filters, often used by technicians to remove
snoring vibrations to assess score flow reductions for hypopneas,
should be no lower than 12.5Hz to evaluate flow limitation (Mann
et al., 2019, 2021), but AASM recommends no lower than 100Hz
(equivalent to “off” for sampling rates 25–200Hz). The field is
also lacking a standardized system for signals storage (e.g., signal
labels vary widely) and annotations tabulations (e.g., event and
epoch names vary widely, often durations are not available) to
facilitate automated analyses. Manual sleep and event scoring will
presumably be replaced with automatic scoring, that for many
years may require manual quality control review. The software
for analyzing traits needs to be at the fingertips of clinical sleep
laboratories through data uploading or built as an add-on to
commercially available sleep systems so that summary data can
make their way into the “future PSG report.” The feasibility
of this has been demonstrated through the PUPpy cloud-based
implementation of the method (Finnsson et al., 2021). Clinicians
will need guidance on how to interpret trait data with respect to
the reliability and the likely responses to different therapies. For
this to be evidence-based, substantially larger datasets containing
raw PSG data before and after different therapies are needed
to better define the expected treatment responses for different
endotypic subgroups, ultimately allowing a clinician to see the
expected treatment effects (and 95% confidence) for a host of
therapies based on their values of collapsibility, loop gain, etc.
Such data is also needed to better define “high” and “low” values
for a given trait. In the meantime, the current use of endotypic
traits in recent clinical trials is encouraging. Subsequently, larger
studies will be needed to show that knowing the endotypic traits
provides better patient outcomes and is more cost-effective than
not knowing them (and using trial-and-error to select therapeutic
interventions). Potentially, these studies could extend to whether
endotypes should serve as an aid in deciding if a patient’s OSA
is severe enough to warrant treatment or not, although novel
phenotypic traits such as hypoxic burden (Azarbarzin et al., 2019),
heart rate response to events (Azarbarzin et al., 2021), or baseline
levels of sleepiness/hypertension (Randerath W. J. et al., 2021)

could be better suited for that purpose. There is a substantial
amount of challenging work to do for investigators, clinicians, and
engineers to make precision sleep medicine a reality.

In summary, it is now attainable to estimate individual
differences in the key traits contributing to sleep apnea–
collapsibility, compensation, arousal threshold, and loop gain–
through analysis of ventilation and ventilatory drive in a routine
clinical sleep study, i.e., without invasive measurements or
specialized operators. Multiple challenges are being overcome for
the translation of these endotypic traits into clinical practice. We
consider that such mechanistic information will facilitate precision
medicine for OSA, and in doing so, make clinical sleep medicine a
more enriched and rewarding field.
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