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Introduction: Gene regulatory networks (GRNs) are characterized by their
dynamism, meaning that the regulatory interactions which constitute these
networks evolve with time. Identifying when changes in the GRN architecture
occur can informour understanding of fundamental biological processes, such as
disease manifestation, development, and evolution. However, it is usually not
possible to know a priori when a change in the network architecture will occur.
Furthermore, an architectural shift may alter the underlying noise characteristics,
such as the process noise covariance.

Methods: We develop a fully Bayesian hierarchical model to address the
following: a) sudden changes in the network architecture; b) unknown
process noise covariance which may change along with the network
structure; and c) unknown measurement noise covariance. We exploit the use
of conjugate priors to develop an analytically tractable inference scheme using
Bayesian sequential Monte Carlo (SMC) with a local Gibbs sampler.

Results:Our Bayesian learning algorithm effectively estimates time-varying gene
expression levels and architectural model indicators under varying noise
conditions. It accurately captures sudden changes in network architecture and
accounts for time-evolving process and measurement noise characteristics. Our
algorithm performs well even under high noise conditions. By incorporating
conjugate priors, we achieve analytical tractability, enabling robust inference
despite the inherent complexities of the system. Furthermore, our method
outperforms the standard particle filter in all test scenarios.

Discussion: The results underscore our method’s efficacy in capturing
architectural changes in GRNs. Its ability to adapt to a range of time-evolving
noise conditions emphasizes its practical relevance for real-world biological data,
where noise presents a significant challenge. Overall, our method provides a
powerful tool for studying the dynamics of GRNs and has the potential to advance
our understanding of fundamental biological processes.
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1 Introduction

Gene regulatory networks (GRNs) are complex systems
consisting of genes and a toolkit of molecular elements
responsible for coordinating the spatiotemporal allocation of
gene expression in every cell of the body. They are involved in
the execution of essential biological processes, such as
development, metabolism, and responses to environmental
signals. One of their key characteristics is dynamicity. The
regulatory interactions constituting these networks are not
static; rather, they evolve, giving rise to time-dependent GRN
architectures. These temporal alterations in regulatory structures
have consequences for the biological processes which are
encoded by GRNs across both short and long time scales and
can affect all major biological processes, including development,
disease, and phenotypic evolution. GRNs also exhibit a complex
hierarchical architecture comprised of interlinked subunits called
“subcircuits.” Ranging from two to eight genes, these subcircuits
consist of specific regulatory interactions that execute specific
biological functions (Peter and Davidson, 2011). Subcircuits thus
intimately link structure and function GRNs (Hinman and
Cheatle Jarvela, 2014). Research shows that these subcircuits
are evolutionarily conserved across Metazoa, reinforcing their
critical role (Peter and Davidson, 2015). Various subcircuit types,
such as positive-feedback loops, feed-forward connections, and
reciprocal repression mechanisms, have been identified (Alon,
2019). During development, different subcircuits are involved in
different temporal stages of the developmental process, such as
pattern formation, state stabilization, and cellular differentiation
(Peter and Davidson, 2015). As development proceeds, the sets of
active genes and their associated regulatory interactions change.
In regard to disease, the rewiring of regulatory networks can
cause disruptions in essential biological functions, giving rise to
diseases such as cancer or disorders such as schizophrenia
(Potkin et al., 2010). These rewirings can manifest at the level
of subcircuits, which emphasizes their importance in
understanding disease mechanisms (Saunders and McClay,
2014). Such alterations may involve transitions from one
subcircuit type to another—for example, a shift from a

positive-feedback loop to a feed forward cascade (Saunders and
McClay, 2014). Similarly, evolutionary changes in GRN
configurations contribute to the emergence of novel
phenotypes within populations (Ha et al., 2022). Identifying
these shifts in GRN interactions, especially within subcircuits,
is thus an imperative task for understanding essential
biological processes. This is fundamentally a change point
detection problem.

To this extent, state-space models provide a mathematical
framework that captures the dynamical behavior of GRNs,
including their subcircuits, over time. GRN estimation using a
state space approach has been extensively studied (Noor et al.,
2012; Bugallo et al., 2015; Ancherbak et al., 2016; Pirgazi and
Khanteymoori, 2018; Amor et al., 2019). However, these
approaches assume that the network structure is static across all
time. To this extent, several works have considered the problem of
estimating GRNs with time-varying structures using linear models.
Specifically, the authors in (Xiong and Zhou, 2013; Pirgazi and
Khanteymoori, 2018) use Kalman filtering for inference by
assuming a linear state-space model. In (Noor et al., 2012;
Bugallo et al., 2015; Ancherbak et al., 2016), particle filtering is
used to infer the dynamic network and the process and
measurement noise are assumed to be known and constant.
This may not capture changes in the noise statistics that can
arise when a change in the regulatory network structure occurs.
In (Dondelinger et al., 2013), the network structure assumed to
change slowly across time. However, environmental stressors,
disease, or mutations may substantially alter the network
structure in a more abrupt manner. Furthermore, gene

TABLE 1 Definition of GRN state-space model parameters in Eq. 1 and Eq. 2.

Parameters Description

Xi Gene i, i = 1, . . ., N

xi,k Expression level of Gene i at time step k

Kij Michaelis-Menten constant, associates regulation of Gene i by Gene j

qij Hill coefficient

vmax
i Maximum expression rate of the ith gene

vdi Self-decay rate of protein or mRNA expressed by Gene i

hij, gij Kinetic order parameters indicating regulation type

wk Modeling error random vector

yi,k Microarray measurement relating to the ith gene at time step k

vk Measurement noise vector

TABLE 2 GRN kinetic order parameters indicating type of regulation from
Gene Xj to Gene Xi, i = j; autoregulation is indicated by gii = hii = 1.

Parameter
gij

Parameter
hij

Regulation type
From Xj to Xi

1 1 no regulation

1 0 activation

0 1 inhibition
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FIGURE 2
GRN subcircuit models in Section 3.1: (A) M1, (B) M2, (C) M3, (D) M4, (E) M5.

TABLE 3 Constant parameter values for the GRN models with N = 5 genes in Figure 2. The parameter values correspond to those in the nonlinear dynamic
GRN equation in Eq. 4.

Michaelis-Menten
Constant

Hill
Coefficient

Maximum
Expression rate

Degradation
Rate

Gene i Ki � {Ki1, . . . ,KiN} qij vmax
i vdi

X1 {1, 2, 4, 1, 1} 1 14 0.5

X2 {1, 2, 4, 3, 1} 1 3 0.4

X3 {1, 2, 4, 3, 1} 1 4 0.1

X4 {1, 2, 4, 3, 1} 1 6 0.5

X5 {1, 2, 1, 1, 3} 1 11 0.8

FIGURE 1
Simple feedback loops demonstrating different types of regulatory interactions: (A) Gene X1 activates the expression of gene X2 and gene X2
activates the expression of gene X1. (B) Gene X1 activates the expression of gene X2 and gene X2 inhibits the expression of gene X1. The arrows denote
activating regulatory interactions, whereas the line with the vertical bar denotes an inhibitory regulatory interaction.
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regulation is a nonlinear process due to the feedback loops present
in the architectures, threshold effects, and combinatorial binding
of transcription factors on DNA. Linear models may therefore
obscure these phenomena. Alternatively, nonlinear system models
based on Hill kinetics, Michaelis-Menten kinetics, or the S-system
are able to more accurately capture the molecular mechanisms of
gene regulation (Wang et al., 2007; Youseph et al., 2015; 2019;
Elahi and Hasan, 2018). Nonlinear Bayesian filtering inference
methods, such as extended Kalman filtering and particle filtering,
were used with these nonlinear models (Wang et al., 2009; Zhang

et al., 2014; Bugallo et al., 2015). In (Lee et al., 2013), a nonlinear
chemical kinetics model is considered, but the transition
probabilities for switching between various network structures
(or modes) are assumed to be known, which is usually not the
case in practice.

Given the limitations of these works, we propose a fully
Bayesian hierarchical model with sequential learning to
account for the following: (a) sudden changes in the network
architecture, (b) unknown modeling error process covariance,
and (c) unknown measurement noise covariance. Using Bayesian

TABLE 4 Time-varying kinetic order parameters for M = 5 GRNmodels with N = 5 genes in Figure 2. Eachm denotes a specific GRN configuration which is
parameterized by g and h. These parameters correspond to those in Eq. 7.

Kinetic order parameters for N gene expressions in mth GRN model at time step k

g(m)
i,k � [g(m)

i1,k . . .g(m)
iN,k] and h(m)

i,k � [h(m)
i1,k . . .h(m)

iN,k]
Gene i and
parameters

m = 1 m = 2 m = 3 m = 4 m = 5

X1 g1, k
(m) [1 1 1 1 1] [1 1 1 1 1] [0 1 0 1 0] [1 1 0 1 1] [1 1 1 1 1]

h1, k
(m) [1 1 1 1 1] [1 0 1 1 1] [1 0 1 0 1] [1 0 1 1 0] [0 1 1 1 1]

X2 g2, k
(m) [0 1 1 1 1] [1 1 1 1 1] [1 0 1 0 1] [1 1 1 1 1] [1 1 1 1 1]

h2, k
(m) [1 1 1 1 1] [1 1 0 1 1] [0 1 0 1 0] [1 1 0 1 1] [1 0 1 1 1]

X3 g3, k
(m) [0 1 1 1 1] [1 1 1 1 1] [0 1 1 1 1] [1 1 1 1 1] [1 0 1 1 1]

h3, k
(m) [1 1 1 1 1] [1 1 1 0 1] [1 0 0 0 1] [1 1 0 1 1] [1 1 0 0 1]

X4 g4, k
(m) [0 1 1 1 1] [1 1 1 1 1] [1 0 1 1 1] [1 1 1 1 1] [1 0 0 1 1]

h4, k
(m) [1 1 1 1 1] [1 1 1 1 0] [1 1 1 1 1] [1 1 0 1 1] [1 1 1 0 1]

X5 g5, k
(m) [0 1 1 1 1] [1 1 1 0 1] [1 1 1 1 1] [1 0 1 1 1] [1 1 1 1 1]

h5, k
(m) [1 1 1 1 1] [0 1 1 1 1] [1 1 1 1 1] [1 1 0 1 1] [0 0 0 0 0]

TABLE 5 GRN configuration models as they vary with time in the simulation scenarios. Time segment T l,m denotes the lth time step duration during which
the mth model is used.

Scenario Time segment Subcircuit Configuration model

1 T 1,1 � 1: 65 M1, single-input module

T 2,2 � 66: 165 M2, feed forward and inhibitory

T 3,3 � 166166: 270 M3, complex, negative autoinhibitory and feed forward

2 T 1,3 � 1: 65 M3, complex, negative autoinhibitory and feed forward

T 2,2 � 66: 165 M2, feed forward and inhibitory

T 3,1 � 166: 265 M1, single-input module

T 4,4 � 266: 370 M4, complex, autoregulatory interaction

3 T 1,5 � 1: 65 M5, complex, positive feedback loops

T 2,3 � 66: 165 M3, complex, negative autoinhibitory and feed forward

T 3,1 � 166: 265 M1, single-input module

T 4,4 � 266: 360 M4, complex, autoregulatory interaction

T 5,2 � 361: 460 M2, feed forward and inhibitory
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hierarchical modeling allows for uncertainty at all levels and the
use of prior information and inference techniques. It can also be
integrated with sequential Monte Carlo (SMC) methods, offering
the ability to handle nonlinear and non-Gaussian processes,
which are often the case in biological systems. Within this
framework, we use Bayesian learning for the predictive
modeling of dynamic transitions between GRN subcircuits.
This approach not only allows us to build upon existing
domain knowledge but also to develop models with the
complexity necessary for identifying temporal changes in the
GRN interactions. In our model, the regulatory network
interactions are encoded by kinetic order parameters, which
we assume change at unknown times. Our proposed method
exploits the use of conjugate priors to enable tractable and
efficient inference and SMC with local Gibbs sampling
Gelfand et al. (1990); Gelman et al. (1995) to choose among
the network configurations and estimate the model and
trajectories of the gene expression values.

This paper is organized as follows. In Section 2.1, we review the
dynamic nonlinear state space model for GRNs and extend it to
allow for time-variations in the direction and type of gene
regulation in Section 2.2. In Section 2.3, we present our
proposed approach to learning time-variations in GRNs; and in
Section 2.4, we discuss our implementation using SMC inference
with local Gibbs sampling. Simulations are presented in Section 3
to demonstrate the efficacy of our Bayesian hierarchical learning
and tracking.

2 Materials and methods

2.1 Modeling gene regulatory networks

In (Vélez-Cruz et al., 2021), we developed a stochastic nonlinear
GRNmodel to capture the molecular mechanisms of gene regulation
and account for inherent variability in biological processes. The
model includes information on binding affinity, expression and self-
decay rates. It is based on Michaelis-Menten kinetics that describe
different types of regulation processes between a gene and multiple
other genes (Youseph et al., 2015; Youseph et al., 2019; Krishnan
et al., 2020). It also incorporates the Hill coefficient that represents
the effect of binding affinity between genes (Alon, 2019). We
represent the GRN model by a dynamics state space formulation
for N genes Xi, i = 1, . . ., N as.

xk � ϕ xk−1( ) + wk−1 (1)
yk � xk + vk (2)

Where xk � [x1,k . . .xN,k]T, xi,k, i = 1, . . ., N, is the expression level
of Gene i at time step k, yk � [y1,k . . .yN,k]T, yi,k is the microarray
measurement for Gene Xi, wk is measurement noise, and vk is a
random process used to represent modeling error uncertainty. In Eq.
1, the ith element of the N × 1 transition vector ϕ(xk−1) is given by

ϕ xk−1( )[ ]i � ρ xk−1( )[ ]i − σ xi,k−1( )

� ψ xk−1( )[ ]i ∏
N

j�1
j≠i

aij bij xk−1( ) − vdi xi,k−1 (3)

where the terms [ρ(xk−1)]i and σ(xi,k−1) denote production and
degradation, respectively, vdi is the self-decay rate of protein or
mRNA expressed by Gene Xi.

ψ xk−1( )[ ]i �
vmax
i

Kqii
ii + xqii

i,k−1( )∏N

j�1
j≠i

K
qij
ij + x

qij
j,k−1( ) (4)

aij � gii gij gii hij hii gij hii hij[ ] (5)
bij xk−1( ) � xqii

i,k−1 x
qij
j,k−1 xqii

i,k−1 K
qij
ij xq12

j,k−1 K
qii
ii Kqii

ii K
qij
ij[ ]T, (6)

And vmax
i is the maximum expression rate of Gene Xi.

All model parameters are described in Table 1. We specifically
note the following parameters for GeneXi and GeneXj, i ≠ j. The Hill

TABLE 6 Scenario 1: Averaged gene expression estimation RMSE for varying
measurement noise variance varv; the modeling error variances were
varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004.

Averaged RMSE for varying varv

Gene 2 0.2 0.03 0.003 0.00003

X1 0.065 0.041 0.017 0.017 0.018

X2 0.069 0.042 0.018 0.017 0.019

X3 0.071 0.051 0.019 0.019 0.018

X4 0.07 0.037 0.019 0.018 0.019

X5 0.071 0.043 0.021 0.018 0.018

TABLE 7 Averaged RMSE for varying process noise intensities. For time steps k = 1: 65, the dynamics are described bymodel 1; for time steps k = 66: 165, the
dynamics are described bymodel 2; and for time steps k = 166: 270, the dynamics are described bymodel 3. We use 1,000 particles, 5,000Monte Carlo runs
and 10,000 Gibbs iterations were used.

Gene Segment 1: 2e−1 Segment 1: 2e−2 Segment 1: 2e−5

Segment 2: 5e−2 Segment 2: 4e−3 Segment 2: 5e−4

Segment 3: 4e−1 Segment 3: 5e−2 Segment 3: 4e−5

X1 0.073 0.054 0.017

X2 0.074 0.055 0.017

X3 0.078 0.057 0.019

X4 0.070 0.053 0.018

X5 0.075 0.059 0.018
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coefficient qij in Eq. 4 represents how the binding affinity of Xj

increases the binding affinity of Xi. The Michaelis-Menten constant
Kij accounts for the binding affinity between the product of Xj and
the binding site of a target Xi; large values of Kij indicate a low

binding affinity. The kinetic order parameters hij and gij in Eq. 5 take
values of 0 or 1. Different combinations of these parameters indicate
the type of regulation, as summarized in Table 2. Note that
parameters Kii, qii, hii and gii specify autoregulatory interactions.

FIGURE 4
Scenario 1: Comparison of true and BLT estimated labels using varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004, and varv = 0.003.

FIGURE 3
Scenario 1: Comparison of true, PF estimated and BLT estimated expression level xi,k of Gene Xi, i = 1, . . ., 5 using modeling error variances varw,1 =
0.00002, varw,2 = 0.0005, varw,3 = 0.00004 and measurement noise variance varv = 0.003.
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2.2 Formulation of time-varying GRN model

We consider a TV GRN model where both the direction and
type of regulation vary with time. This time variation is reflected in
the kinetic order parameters in Eq. 5.

aij,k � gii,k gij,k gii,k hij,k hii,k gij,k hii,k hij,k[ ], (7)

and thus in the transition function ϕk (·) in Eqs. (1) and (3). With
this TV model, we can describe interactions between any number of
genes and capture any changes in the GRN configuration with
varying degrees of complexity.

As a simple illustration, we consider the transition from time
step k − 1 to k of the simple GRN in Figure 1A to the one in
Figure 1B. In Figure 1A, Genes X1 and X2 activate each other’s

FIGURE 6
Scenario 1: Comparison of true and BLT estimated labels using varw,1 = 0.02, varw,2 = 0.004, varw,3 = 0.005 and varv = 0.003.

FIGURE 5
Scenario 1: Comparison of true and BLT estimated labels using varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004 and varv = 0.2.
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expression in a positive feedback loop at k − 1. From Table 2,
activation of Gene X1 by Gene X2 is indicated by h12 = 0 and g12 = 1
and activation of Gene X2 by Gene X1 is indicated by h21 = 0 and
g21 = 1. Thus, the kinetic order parameter vector at time step k − 1 is
given by

a12,k−1 � aX1←X2 ,k−1
� g11,k−1 g12,k−1 g11,k−1 h12,k−1 h11,k−1 g12,k−1 h11,k−1 h12,k−1[ ]
� 0 1 0 0 0 1 0 0[ ] � aX2←X1 ,k−1 � a21,k−1.

where notation X1 ← X2 denotes the interaction from Gene X2 to
Gene X1. In Figure 1B, the interaction from Gene X2 to Gene X1

switches from activation to inhibitory at time k. Whereas a21,k =
a21,k−1, since inhibition of Gene X1 by Gene X2 is indicated by h12 = 1
and g12 = 0, then

aX1←X2 ,k � g11,k g12,k g11,k h12,k h11,k g12,k h11,k h12,k[ ]
� 0 0 0 1 0 0 0 1[ ]

For a realistic scenario, we consider the transcriptional activator
Gcn4 of several amino acid biosynthesis genes in Saccharomyces
cerevisiae or yeast (Mittal et al., 2017) and the transcription factor
LexA responsible for repressing several genes involved in DNA
repair in bacteria (McKenzie et al., 2000). Under stressful conditions
such as nutrient deprivation, the network may switch from a single-

input module configuration to a state which requires the
coordination between several genes such as in a feed forward
loop. For N = 5 genes, this configuration switch is depicted as
changing from the subcircuit in Figure 2A to the subcircuit in
Figure 2B. For example, when yeast are subject to osmotic stress, the
high-osmolarity glycerol pathway is activated; this involves the
subsequent activation of several genes involved in metabolism
regulation, temporary arrest of cell cycle progression, or many
other processes that are required for cellular adaptation in a feed
forward architecture (Nadal and Posas, 2022). More complex
subcircuits are found, for example, in the hypothalamic-pituitary-
adrenal axis, which is responsible for regulating the stress response
in humans (Tsigos and Chrousos, 2002).

2.3 Bayesian learning for tracking

In this paper, we propose a new method for estimating the TV
gene expressions under the realistic conditions of sudden changes in
the GRN architecture and unknown statistics in the state space
formulation. In particular, we assume that the GRN circuit features
on developmental function can be selected from M subcircuit
models. The mth model at time step k, denoted by the indicator
sk =m,m = 1, . . .,M, is associated with themth TV kinematic order
parameter vector a(m)

ij,k � aij,k in Eq. 7. The state space formulation
for estimating xk is now given by.

xk � ϕ xk−1, sk � m( ) + w m( )
k−1 (8)

yk � xk + vk, (9)
Where the modeling error process w(m)

k−1 ~ N (0,Σ(m)
w ) for the mth

model and the measurement noise vk ~ N (0,Σv) are both assumed
zero-mean Gaussian with constant but unknown covariance
matrices Σ(m)

w and Σv, respectively.
The new method, Bayesian Learning for Tracking or BLT,

sequentially estimates the gene expressions while learning the
probability of selecting one of the M models at each time step k as
well as the unknown covariance matrices. From Eq. 8, the model
indicator is drawn from a categorical distribution with parameter vector
πk � [π(1)k . . . π(M)

k ]; specifically, sk | πk, M ~Cat(sk | πk, M), where
π(m)
k � Pr(sk � m) is the probability of selecting themth model at time

TABLE 9 Root mean-square error (RMSE) averaged across all time steps for varying process noise intensities. For time steps k = 1: 65, the dynamics are
described bymodel 3; for time steps k = 66: 165, the dynamics are described bymodel 2; for time steps k = 166: 265, the dynamics are described bymodel 1;
and for k = 265: 370, the dynamics are described by model 4. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000 Gibbs iterations were used.

Gene Segment 1: 2e−1 Segment 1: 2e−2 Segment 1: 2e−5

Segment 2: 5e−2 Segment 2: 4e−3 Segment 2: 5e−4

Segment 3: 4e−1 Segment 3: 5e−2 Segment 3: 4e−5

Segment 4: 2e−2 Segment 4: 2e−3 Segment 4: 2e−4

X1 0.076 0.070 0.019

X2 0.078 0.062 0.020

X3 0.083 0.080 0.022

X4 0.084 0.070 0.019

X5 0.081 0.072 0.022

TABLE 8 Root mean-square error (RMSE) averaged across all time steps for
varying measurement noise intensities. For time steps k = 1: 65, the
dynamics are described bymodel 3; for time steps k= 66: 165, the dynamics
are described by model 2; for time steps k = 166: 265, the dynamics are
described by model 1; and for k = 265: 370, the dynamics are described by
model 4. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000 Gibbs
iterations were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.070 0.054 0.018 0.018 0.016

X2 0.066 0.053 0.019 0.019 0.018

X3 0.078 0.055 0.021 0.019 0.018

X4 0.071 0.055 0.018 0.019 0.018

X5 0.070 0.058 0.020 0.021 0.020
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k and π | α ~ Dir(α) is obtained from a Dirichlet distribution prior with
concentration hyperparameter α = [α1, . . ., αM] (Sudderth, 2016). The
prior probability that the existing model m is selected at time step k is

p sk � m |Sk−1, π
m( )
k , αm( ) � c m( )

1: k−1

∑m
l�1

c l( )
1: k−1 + αm

(10)

where Sk−1 � {s1, . . . , sk−1} and c(m)
1: k−1 is the number of times the

mth model was selected up to the previous time step k − 1. The
covariance matrix Σ(m)

w |Ψ(m)
w ~ IWD(Ψ(m)

w ) is modeled using an
inverse Wishart distribution (IWD) prior with hyperparameter
Ψ(m)

w � {Λ(m)
w , ](m)

w }. Here, Λ(m)
w is the scale matrix and ](m)

w is
the number of degrees of freedom (Gelman et al., 1995).

The overall learning model is summarized by the
following hierarchy

xk |xk−1, sk � m,Σ m( )
w ~ N · |xk−1, sk � m,Σ m( )

w( )
yk |xk,Σv ~ N · |xk,Σv( )
sk |Sk−1, π

m( )
k , αm ~ Cat πk,M( )

π m( )
k |αm ~ Dir α( )

Σ m( )
w |Ψ m( )

w ~ IWD Ψ m( )
w( )

Σv |Ψv ~ IWD Ψv( ).

Following a sequential Bayesian Monte Carlo approach, the
model first predicts xk using

p xk |xk−1, sk � m,Sk−1, π
m( )
k , αm,Σ m( )

w ,Ψ m( )
w( ) ∝

p xk |xk−1, sk � m,Σ m( )
w( ) p sk � m |Sk−1, π

m( )
k , αm( )

p π m( )
k |αm( ) p Σ m( )

w |Ψ m( )
w( ) (11)

where p(xk |xk−1, sk � m,Σ(m)
w ) is obtained from Eq. 8, p(sk � m |

Sk−1, π(m)
k , αm) is the categorical distribution in Eq. 10, p(π(m)

k |αm)
is the Dirichlet prior, and p(Σ(m)

w |Ψ(m)
w ) is the IWD prior.

Before using measurement yk to update the state xk at time step
k, the noise covariance matrix Σv ~IWD (Ψv) is learned using an
IWD prior with hyperparameter Ψv = {Λv, ]v}. This results in

p yk |xk,Σv ,Ψv( ) ∝ p yk |xk,Σv( ) p Σv |Ψv( ) (12)
where p (yk | xk, Σv) is given in Eq. 9 and p (Σv |Ψv) is the IWD prior.
Using Eqs. (11) and (12), the joint posterior distribution at each time
step k is given by

p xk, sk � m, π m( )
k ,Σ m( )

w ,Σv |yk,Sk−1, αm,Ψ m( )
w ,Ψv( ) ∝

p xk |xk−1, sk � m,Sk−1, π
m( )

k , αm,Σ m( )
w ,Ψ m( )

w( ) p yk |xk,Σv ,Ψv( )
p xk−1, sk−1, π

sk−1
k−1 ,Σ sk−1( )

w ,Σv |yk−1, αsk−1,Ψ sk−1( )
w,prev ,Ψv,prev( ).

(13)
The last distribution in Eq. 13 is the posterior from the previous

time step, obtained using model sk−1, where Ψ
(sk−1)
w,prev and Ψv,prev are

the IWD hyperparameters used at time step k − 1.
Note that the derivation of the BLT is provided in

Supplementary Appendix A.

2.4 BLT implementation using particle
filtering and local Gibbs sampling

The dynamic state space model in Eqs. (1)-(6) is highly nonlinear,
so we implement the BLT using particle filtering (Arulampalam et al.,
2002; Elvira et al., 2019). As Eq. 11 is not explicitly known, the PF also
estimates both the unknown TV model indicator sk and unknown

constant covariance matrix Σ(sk)
w . However, the PF performs poorly

when used to estimate parameters that do not change with time
(Chopin, 2002). One approach to improve the PF performance for
constant parameters,MCMC can be used together with a rejuvenation
test based on the Kullback–Leibler divergence measure (Lee and Chia,
2002; Li and Papandreou-Suppappola, 2006). For the BLT, we instead
use local Gibbs sampling (Gelfand et al., 1990; Gelman et al., 1995;
Martino et al., 2018) at each time step k in order to sample from
available multivariate conditional distributions and sequentially
update the constant IWD hyperparameters of the covariance matrix.

The BLT implementation steps are summarized in Algorithm 1.
The algorithm uses the joint prior in Eq. 11 as the PF proposal
distribution and assumes Ns state particles. At each time step and
particle, we perform L Gibbs sampling iterations. In what follows,
x(ℓ)i,k denotes the ith particle, i = 1, . . ., Ns, at the ℓth iteration, ℓ = 0,
. . .L, at time step k; similarly, s(ℓ)i,k denotes the model indicator, π(m,ℓ)

i,k

denotes the probability of the mth model, m = 1, . . ., M, c(m, ℓ)
i,1: k−1

denotes the number of times the mth model is selected up to time
step k − 1, and Σ(m, ℓ)

w,i denotes the mth modeling error covariance
matrix. At ℓ = 0, the iterations are initialized using the estimates
obtained from the previous time step, x(0)i,k � xi,k−1 and
Σ(m, 0)
w,i � Σ(si,k−1)

w,i . At the ℓth iteration, ℓ = 1, . . ., L, the algorithm.

1: Initialization at t = 1

2: for i = 1, . . ., N particles do

3: Sample x(i)
1 ~ p(x1)

4: Sample s(i)
1 ~ Cat(π1)

5: Sample {Σm,(i)
w }(m)m�1 ~ IW({Ψm,(i)

w , ]m,(i)w }(m)m�1)
6: Sample Σ(i)

v ~ IW(Ψ(i)
v , ](i)v )

7: end for

8: Sequential Updates for t ≥ 2

9: for ℓ = 1, . . ., L Gibbs iterations do

10: Sample a new model indicator s(i),l
k from15

11: Sample x(i),l
k ~ p(xk | x(i),l

k−1 ,s(i),l
k ,Σsk ,(i),l

w )
12: Sample Σsk ,(i),l

w using step (iv)

13: end for

14: Update measurement y(i)
k ~ p(yk | x(i)

k ,Σ(i)
v )

15: Update hyperparameters and

sample Σ(i)
v ~ IW(Ψ(i)

v , ](i)v )
16: Compute particle weights w(i)

k

17: Normalize weights w(i)
k � w(i)

k

∑Ns
i�1w

(i)
k

18: Resample particles x(i)
k ,s(i)

k ,Σsk ,(i)
w ,Σ(i)

v

Algorithm 1. Sequential Monte Carlo with Local Gibbs Sampling for

Subcircuit Detection.

(i) Samples probability π(m,ℓ)
i,k , m = 1, . . ., M, from

π m,ℓ( )
i,k |αm ~ Dir α1 + c 1,ℓ−1( )

i,1: k−1, . . . , αM + c M,ℓ−1( )
i,1: k−1( ) (14)

(ii) uses π(m,ℓ)
i,k and samples model indicator s(ℓ)i,k from

p s ℓ( )
i,k � m |S ℓ−1( )

i,k−1 , π
m,ℓ( )

i,k , x ℓ−1( )
i,k , yk−1, Σ m, ℓ−1( )

w,i ,Σv,prev( )
� p s ℓ( )

i,k � m |S ℓ−1( )
i,k−1 , π

m,ℓ( )
i,k ,( ) p x ℓ−1( )

i,k |xi,k−1, s ℓ( )
i,k(

� m,Σ m, ℓ−1( )
w,i ) p yk−1 |x ℓ−1( )

i,k ,Σv,prev( ) (15)

where Σv,prev is the modeling error covariance from the
previous time step.
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FIGURE 7
Comparison of true, PF estimated and BLT estimated expression level xi,k of Gene Xi, i= 1, . . ., 5 in Scenario 2. The TVmodel configuration is provided
in Table 5.

FIGURE 8
Scenario 2: Comparison of true and BLT estimated labels using varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004, varw,3 = 0.0002, and
varv = 0.003.
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(iii) samples state x(ℓ)i,k from p(x(ℓ)k,i |xi,k−1, s(ℓ)i,k � m,Σ(m, ℓ−1)
w,i )

in Eq. 8
(iv) Samples Σ(m, ℓ)

w,i from p(Σ(m, ℓ)
w,i |x(ℓ)i,k , s

(ℓ)
i,k � m,Ψ(m, ℓ)

w,i ) �
IWD(Ψ(m, ℓ)

w,i ) using incrementally.Updated IWD parameter set
Ψ(m, ℓ)

w,i � {Λ(m, ℓ)
w,i , ](m, ℓ)

w,i }, where
Λ m, ℓ( )

w,i � Λ m, ℓ−1( )
w,i + x ℓ( )

i,k( ) x ℓ( )
i,k( )T, ] m, ℓ( )

w,i � ] m, ℓ−1( )
w,i + 1. (16)

At the end of the L iterations, the predicted state particle is given
by xi,k � x(L)i,k . The corresponding weight is computed using

ωi,k ∝ ωi,k−1 p yk |xi,k,Σi,v( ) (17)
where the Gaussian likelihood, using N measurements, is given as

p yk |xi,k,Σv,i( ) � 1

2π( )N/2 |Σv,i|1/2 exp −1
2
yk − xi,k( )T Σ−1

v,i yk − xi,k( )( ).

The covariance matrix Σv,i is estimated using the IWD
hyperparameters that are updated from Ψv,prev = {Λv,prev,
]v,prev} using

FIGURE 9
Scenario 2: Comparison of true and BLT estimated labels using varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004, varw,3 = 0.0002, varv = 2.

FIGURE 10
Scenario 2: Comparison of true and BLT estimated labels using varw,1 = 0.02, varw,2 = 0.004, varw,3 = 0.05, varw,3 = 0.002, varv = 0.003.
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Σv,i |yk, xi,k ~ IWD Λv,prev + yk − xi,k( ) yk − xi,k( )T, ]v,prev + 1( ).
(18)

3 Results and discussion

3.1 Simulation settings

We demonstrate the efficacy of our proposed Bayesian learning
approach using N = 5 genes that transition between multiple GRN
configurations over time. We consider M = 5 subcircuits, of varying
degrees of complexity, as shown in Figure 2. Their configurations vary
from a simple single-input module (SIM) configuration, which
regulates several genes and is present across a range of systems, to
more complex ones; these include compositions of different canonical
subcircuits, such as feedforward andmutual repression loops. Switching
between these specific network structures highlights the versatility of
our model as it demonstrates the adaptive capacities of our Bayesian
learning approach in identifying architectural changes. The
configurations are described as follows.

M1 SIM subcircuit (Figure 2A): Gene X1 inhibits the expression
of genes X2, X3, X4, and X5.

M2 Subcircuit with feed forward loop and an inhibitory
interaction (Figure 2B): Gene X1 activates a cascade of
activating regulatory interactions proliferating throughout the
network; Gene X5 activates Gene X4, which in turn inhibits the
expression of Gene X5.

M3 Complex subcircuit with negative autoinhibitory interactions
on genes X1 and X2 and a feed forward loop (Figure 2C): X2 activates
the expression of X4, which then activates the expression ofX3 and X2;
Gene X5 activates the expression of Gene X1, which inhibits the
expression of X3; and Gene X3 inhibits the expression of X1, forming a
mutually repressive loop.

M4 Complex subcircuit (Figure 2D): Gene X1 is activated by genes
X2 and X5; when X3 is activated via an autoregulatory interaction, it
inhibits Gene X1 and activates genes X4 and X2; in turn, Gene X2

activates X1 and inhibits X5, which activates the expression of X1.
M5 Complex subcircuit characterized by positive feedback loops

(Figure 2E): each gene activates its own expression; Genes X2 and X5

form a positive feedback loop; Genes X2 and X3 inhibit X4; Genes X1

and X3 activate X5.

FIGURE 11
Comparison of true, PF estimated and BLT estimated expression level xi,k of Gene Xi, i= 1, . . ., 5 in Scenario 3. The TVmodel configuration is provided
in Table 5.
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All configurations use the same constant model parameters
provided in Table 3. The TV kinetic order parameters for each
configuration are given in Table 4.

The BLT implementation using the PF and Gibbs sampling
follows Algorithm 1. In the simulations, the modeling error process
and measurement noise process are both assumed Gaussian with
zero-mean and uncorrelated samples; their corresponding unknown
covariance matrices are Σ(m)

w � varw,mIN and Σv = varvIN. Here,
varw,m and varv denote their respective variance values and IN is the
N × N identity matrix. At each time step k, k = 1, . . ., K, our learning
approach concurrently estimates the unknown expression levels and
the configuration model. We use the categorical distribution overM
values whose vector parameter is learned using the Dirichlet
distribution conjugate prior with hyperparameter α; in the
simulations, we use αm = 1, m = 1, . . ., M. We place IWD
conjugate priors over the unknown covariance matrices with
initial hyperparamers {Ψ0, ]0} = {0.1IN, N + 2}. We demonstrate
the robustness of our approach across different sequences of gene
regulation configurations. Unless otherwise specified, the
simulations use 1,000 particles, 50,000 Monte Carlo runs and
10,000 Gibbs iterations.

3.2 Simulation results

We consider three different simulation scenarios with a varying
number of configuration models during different time step
segments, as summarized in Table 5. In the table, T l,m denotes
the lth time segment during which the mth model is used. The
description of each model is provided in Section 3.1. We selected
similar modeling error and measurement noise variances as in

(Noor et al., 2012). We compare the performance of our
proposed BLT approach with the PF that performs tracking
without any learning. The PF assumes that the GRN dynamics
are only described by one of theMmodels in each scenario and uses
0.00003 for both the modeling error and measurement noise
variances. These low variance values ensure improved estimation
performance for the PF if the model is known, even though the
actual variances are not learned.

Scenario 1: Three-model transition.
The BLT considers an unknown number of TV transitions between

M = 3 models: M1 in Figure 2A during T 1,1 � 1: 65, M2 in Figure 2B
during T 2,2 � 66 : 165, and M3 in Figure 2C during T 3,3 � 66 : 165.
The PF assumes the M1 GRN configuration over all time steps. We
simulate five differentmeasurement noise variance values, varv = {2, 0.2,
0.03, 0.003, 0.00003}, and we use varw,1 = 0.00002, varw,2 = 0.0005 and
varw,3 = 0.00004 for the actual values of the modeling error variances.
The resulting root mean-square error (RMSE), averaged over all time
steps, for estimating the gene expression levels using the BLT is
provided in Table 6. The averaged RMSE for varying process noise
intensities is shown in Table 7. As expected, the RMSE decreases as varv
increases. Using varv = 0.003, Figure 3 and Figure 4 further demonstrate
the performance of the proposed BLT approach. Figure 3 compares the
true expression levels of each of the 5 genes to those estimated by the
BLT and PF methods. As demonstrated, the PF performed well during
the first time segment as it assumed the correct modelM1. However, the
estimation performance deteriorated when the network architecture
changed. In contrast, the BLT accurately estimated the gene expressions
by learning the model transition probabilities and unknown noise
variances. Figure 4 compares the actual model labels with those
learned by the BLT. Note that after only two initial incorrect
estimates, the BLT learned the correct model at each change in

FIGURE 12
Comparison of true and BLT estimated labels of the configuration models in Scenario 3.
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model transition. For the same modeling error variances, Figure 5
compares the true and estimated model labels when the measurement
noise variance is varv = 0.2. As it can be seen, as the noise in the
measurements increases, the number of incorrect labels also increases.
In Figure 6, we increased the modeling error variances to varw,1 = 0.002,
varw,2 = 0.004 and varw,3 = 0.005 and kept the measurement noise
variance to varv = 0.003. We observed that the model estimation
accuracy is more sensitive to increased modeling error variances.
Note that changing the time segments of the different models
produced similar RMSE results, thus demonstrating the robustness
of our Bayesian learning algorithm for the three-model case.

Scenario 2: Four-model transition.
In this scenario, the BLT considers transitions between M = 4

models:M3 in Figure 2C during T 1,3 � 1: 65,M2 in Figure 2B during
T 2,2 � 66 : 165, M1 in Figure 2C during T 3,1 � 166 : 265, and M4 in
Figure 2D during T 4,4 � 266 : 370. The PF assumes that modelM3 is
used for all time steps. We simulate five different measurement noise
variance values, varv = {2, 0.2, 0.03, 0.003, 0.00003}, and we use
varw,1 = 0.00002, varw,2 = 0.0005, varw,3 = 0.00004 and varw,4 = 0.0002
for the actual values of the modeling error variances. The gene
expression averaged RMSE using the BLT are provided in Table 8
and Table 9. As expected, the RMSE increases as varv increases.

A comparison of our learning algorithm to the standard PF (no
learning) is shown in Figure 7 for varv = 0.003. The standard PF (no
learning method) assumes that the dynamics are only described by
M3. As in scenario 1, the standard particle filter (no learning) can only
provide estimates of the gene expressions whose trajectories are
described by M3. Until the network architecture switches. Then it
is no longer able to estimate the trajectory. In contrast, the BLT is able
to estimate the trajectory at each of the change points. The true versus
estimated model for different noise values are shown in Figure 8,
Figure 9, Figure 10, which demonstrates that the BLT effectively
estimates the correct model. The RMSE across different measurement
noise intensity values is shown in Table 8. We also vary the modeling
error variance and the RMSE values are shown in Table 9. Figure 9
further demonstrates the performance of the proposed BLT approach
under high measurement noise conditions. Figure 10 demonstrates
the BLT performance under increased modeling error variance.

Scenario 3: Transitions Among Five Models.
In this scenario, the BLT considers transitions between M = 5

models:M3 in Figure 2C during T 1,5 � 1: 65,M2 in Figure 2B during
T 2,3 � 66 : 165, M1 in Figure 2C during T 3,1 � 166 : 265, M4 in
Figure 2D during T 4,4 � 266 : 360. And M5 in Figure 2E during
T 5,2 � 361: 460. The time series consists of K = 460 time steps. We
simulate five different measurement noise variance values, varv = {2,
0.2, 0.03, 0.003, 0.00003}, For each simulation where the
measurement noise is varied, the true values of varw,1 = 0.00002,
varw,2 = 0.0005, varw,3 = 0.00004, varw,4 = 0.0002, varw,5 = 0.003.

Using varv = 0.02, Figure 11 and Figure 12 further demonstrate
the performance of the proposed BLT approach. Figure 11 compares
the true expression levels of each of the 5 genes to those estimated by
the BLT and PF methods. As in the previous scenarios, the standard
particle filter (no learning) is only able to estimate the trajectory
during the third segment where model M1 is assumed. Then it is no
longer able to estimate the trajectory. In contrast, the BLT method is
able to estimate the trajectory at each of the change points. Figure 12
compares the actual model labels with those learned by the BLT. The
averaged RMSE for varying measurement and process noise
intensities are shown in Tables 10 and 11, respectively. Note that

TABLE 10 Rootmean-square error (RMSE) averaged across all time steps for
varying measurement noise intensities. For time steps k = 1: 65, the
dynamics are described bymodel 5; for time steps k= 66: 165, the dynamics
are described by model 3; for time steps k = 166: 265, the dynamics are
described by model 1; for k = 265: 360, the dynamics are described by
model 4; and for k = 360: 460 the dynamics are described by model 5. We
use 1,000 particles, 5,000 Monte Carlo runs and 10,000 Gibbs iterations
were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.078 0.053 0.018 0.019 0.017

X2 0.074 0.046 0.019 0.018 0.018

X3 0.075 0.050 0.020 0.018 0.018

X4 0.078 0.046 0.018 0.017 0.016

X5 0.080 0.049 0.018 0.018 0.018

TABLE 11 Root mean-square error (RMSE) averaged across all time steps for varying process noise intensities. For time steps k = 1: 65, the dynamics are
described bymodel 5; for time steps k = 66: 165, the dynamics are described bymodel 3; for time steps k = 166: 265, the dynamics are described bymodel 1;
for k = 265: 370, the dynamics are described by model 4; and for k = 371: 460, the dynamics are described by model 2. We use 1,000 particles, 5,000 Monte
Carlo runs and 10,000 Gibbs iterations were used.

Gene Segment 1: 2e−1 Segment 1: 2e−2 Segment 1: 2e−5

Segment 2: 5e−2 Segment 2: 4e−3 Segment 2: 5e−4

Segment 3: 4e−1 Segment 3: 5e−2 Segment 3: 4e−5

Segment 4: 2e−2 Segment 4: 2e−3 Segment 4: 2e−4

Segment 5: 3e−1 Segment 5: 3e−2 Segment 5: 3e−3

X1 0.071 0.063 0.019

X2 0.074 0.063 0.018

X3 0.081 0.073 0.018

X4 0.085 0.061 0.017

X5 0.080 0.064 0.018
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the BLT algorithm exhibits similar performance to the previous
scenarios despite increasing the number of models to M = 5.

4 Conclusion and future directions

In this work, we introduced a fully Bayesian hierarchical model for
learning nonlinear gene regulatory networks with dynamically
switching subcircuit architectures. We showed that our algorithm,
which employs sequential Monte Carlo (SMC) with a local Gibbs
step, effectively estimates the correct model corresponding to the
subcircuit architecture as well as the unknown state under varying
measurement and process noise conditions with a high degree of
accuracy, though with greater sensitivity to variations in the process
noise. Through the use of conjugate priors, we have formulated an
analytically tractable inference scheme which effectively addresses the
challenges posed by the inherent complexities of the system. By learning
the unknown transition probabilities, which describe changes between
different network configurations and by learning the unknown
measurement and process noise covariances using Bayesian updating
of the Inverse-Wishart distribution, we were able to account for
uncertainty at all levels of the hierarchy. Our approach has
demonstrated robustness and versatility in identifying changes in
subcircuit architectures of varying degrees of complexity, ranging
from a simple single-input-module (SIM) to subcircuits consisting of
a composition of different types. To showcase this robustness, we
applied our algorithm to different scenarios where the architecture
switches between three, four, and five types.

It is worth noting that the methodology developed in this work
is not confined to the analysis of gene regulatory networks but can
also be generalized to other domains which involve switching
dynamics in nonlinear systems. For example, our methodology
can be applied to change point detection problems in financial
markets, where a sudden shift in the market dynamics could be
caused by changes in nonlinear interactions between different
economic factors. While our Bayesian hierarchical model offers an
effective and robust framework for learning switching dynamics
in nonlinear gene regulatory networks, the complexity of the SMC
algorithm with a local Gibbs step poses computational challenges.
The drawbacks of incorporating Gibbs within SMC include
potential inefficiencies, particularly in large-scale systems,
where the iterative Gibbs sampling step at each stage of the
sequential updating process may lead to increased
computational burden. This challenge is accentuated when
dealing with multi-omics data. As such, future research aims to
extend our methodology to large-scale systems through the use of
stochastic gradient Markov Chain Monte Carlo (SGMCMC),
leveraging its efficiency in handling high-dimensional data and

providing a computationally scalable approach for the analysis of
switching gene regulatory networks.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author/s.

Author contributions

NV-C: Conceptualization, Formal Analysis, Investigation,
Methodology, Writing–original draft, Writing–review and editing.
AP-S: Conceptualization, Supervision, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was partially funded by AFOSR grant FA9550-23-1-0328.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frsip.2024.1323538/
full#supplementary-material

References

Alon, U. (2019) An introduction to systems biology: design principles of biological
circuits. United States: CRC Press.

Amor, N., Meddeb, A., Marrouchi, S., and Chebbi, S. (2019). A comparative
study of nonlinear bayesian filtering algorithms for estimation of gene expression
time series data. Turkish J. Electr. Eng. Comput. Sci. 27, 2648–2665. doi:10.3906/
elk-1809-187

Ancherbak, S., Kuruoglu, E. E., and Vingron, M. (2016). Time-dependent gene
network modelling by sequential Monte Carlo. IEEE/ACM Trans. Comput. Biol.
Bioinforma. 13, 1183–1193. doi:10.1109/TCBB.2015.2496301

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal
Process. 50, 174–188. doi:10.1109/78.978374

Frontiers in Signal Processing frontiersin.org15

Vélez-Cruz and Papandreou-Suppappola 10.3389/frsip.2024.1323538

https://www.frontiersin.org/articles/10.3389/frsip.2024.1323538/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsip.2024.1323538/full#supplementary-material
https://doi.org/10.3906/elk-1809-187
https://doi.org/10.3906/elk-1809-187
https://doi.org/10.1109/TCBB.2015.2496301
https://doi.org/10.1109/78.978374
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1323538


Bugallo, M. F., Taşdemir, c., and Djurić, P. M. (2015). “Estimation of gene expression
by a bank of particle filters,” in 2015 23rd European Signal Processing Conference
(EUSIPCO), Nice, France, 31 August - 4 September 2015, 494–498.

Chopin, N. (2002). A sequential particle filter method for static models. Biometrika
89, 539–552. doi:10.1093/biomet/89.3.539

Dondelinger, F., Lebre, S., and Husmeier, D. (2013). Non-homogeneous dynamic bayesian
networks with bayesian regularization for inferring gene regulatory networks with gradually
time-varying structure. Mach. Learn. 90, 191–230. doi:10.1007/s10994-012-5311-x

Elahi, F., and Hasan, A. (2018). A method for estimating hill function-based dynamic
models of gene regulatory networks. R. Soc. Open Sci. 5, 171226. doi:10.1098/rsos.171226

Elvira, V., Martino, L., Bugallo, M. F., and Djuric, P. M. (2019). Elucidating the
auxiliary particle filter via multiple importance sampling [lecture notes]. IEEE Signal
Process. Mag. 36, 145–152. doi:10.1109/MSP.2019.2938026

Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of
Bayesian inference in normal data models using Gibbs sampling. J. Am. Stat. Assoc. 85,
972–985. doi:10.1080/01621459.1990.10474968

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995) Bayesian data analysis.
United States: Chapman and Hall/CRC.

Ha, D., Kim, D., Kim, I., Oh, Y., Kong, J., Han, S., et al. (2022). Evolutionary
rewiring of regulatory networks contributes to phenotypic differences between
human and mouse orthologous genes. Nucleic Acids Res. 50, 1849–1863. doi:10.
1093/nar/gkac050

Hinman, V. F., and Cheatle Jarvela, A. M. (2014). Developmental gene regulatory
network evolution: insights from comparative studies in echinoderms. genesis 52,
193–207. doi:10.1002/dvg.22757

Krishnan, M., Small, M., Bosco, A., and Stemler, T. (2020). Network using Michaelis-
Menten kinetics: constructing an algorithm to find target genes from expression data.
J. Complex Netw. 8. doi:10.1093/comnet/cnz016

Lee, D. S., and Chia, N. K. (2002). A particle algorithm for sequential Bayesian
parameter estimation and model selection. IEEE Transaction Signal Process. 50,
326–336. doi:10.1109/78.978387

Lee, T. H., Lakshmanan, S., Park, J. H., and Balasubramaniam, P. (2013). State
estimation for genetic regulatory networks with mode-dependent leakage delays, time-
varying delays, and markovian jumping parameters. IEEE Trans. NanoBioscience 12,
363–375. doi:10.1109/TNB.2013.2294478

Li, Y., Papandreou-Suppappola, A., and Morrell, D. (2006). “Instantaneous frequency
estimation using sequential Bayesian techniques,” in Asilomar Conference on Signals,
Systems, and Computers, Oct. 27th - Oct. 30th, 2024, 569–573.

Martino, L., Elvira, V., and Camps-Valls, G. (2018). The recycling gibbs sampler for
efficient learning. Digit. Signal Process. 74, 1–13. doi:10.1016/j.dsp.2017.11.012

McKenzie, G. J., Harris, R. S., Lee, P. L., and Rosenberg, S. M. (2000). The sos response
regulates adaptive mutation. Proc. Natl. Acad. Sci. U. S. A. 97, 6646–6651. doi:10.1073/
pnas.120161797

Mittal, N., Guimaraes, J., Gross, T., Schmidt, A., Vina, A., Nedialkova, D., et al. (2017).
The gcn4 transcription factor reduces protein synthesis capacity and extends yeast
lifespan. Nat. Commun. 8, 457. doi:10.1038/s41467-017-00539-y

Nadal, E., and Posas, F. (2022). The hog pathway and the regulation of osmoadaptive
responses in yeast. FEMS Yeast Res. 22, foac013. doi:10.1093/femsyr/foac013

Noor, A., Serpedin, E., Nounou, M., and Nounou, H. (2012). Inferring gene regulatory
networks via nonlinear state-space models and exploiting sparsity. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 9, 1203–1211. doi:10.1109/TCBB.2012.32

Peter, I. S., and Davidson, E. H. (2011). Evolution of gene regulatory networks
controlling body plan development. Cell 144, 970–985. doi:10.1016/j.cell.2011.02.017

Peter, I. S., and Davidson, E. H. (2015) Genomic control process: development and
evolution. Massachusetts, United States: Academic Press.

Pirgazi, J., and Khanteymoori, A. R. (2018). A robust gene regulatory network
inference method base on kalman filter and linear regression. PLOS ONE 13,
02000944–e200117. doi:10.1371/journal.pone.0200094

Potkin, S. G., Macciardi, F., Guffanti, G., Fallon, J. H., Wang, Q., Turner, J. A., et al.
(2010). Identifying gene regulatory networks in schizophrenia. NeuroImage 53,
839–847. doi:10.1016/j.neuroimage.2010.06.036

Saunders, L., and McClay, D. (2014). Sub-circuits of a gene regulatory network
control a developmental epithelial-mesenchymal transition. Dev. Camb. Engl. 141,
1503–1513. doi:10.1242/dev.101436

Sudderth, E. (2016). Conjugate priors and Bayesian learning. Lect. Notes.

Tsigos, C., and Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis,
neuroendocrine factors and stress. J. Psychosomatic Res. 53, 865–871. doi:10.1016/
S0022-3999(02)00429-4

Vélez-Cruz, N., Moraffah, B., and Papandreou-Suppappola, A. (2021). “Sequential
Bayesian inference using stochastic models of gene regulatory networks,” in Asilomar
Conference on Signals, Systems, and Computers, Oct. 27th - Oct. 30th, 2024,
568–572.

Wang, H., Qian, L., and Dougherty, E. (2007). “Inference of gene regulatory networks
using s-system: a unified approach,” in 2007 IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology, Hawaii, USA, April 1-5,
2007, 82–89.

Wang, Z., Liu, X., Liu, Y., Liang, J., and Vinciotti, V. (2009). An extended kalman
filtering approach to modeling nonlinear dynamic gene regulatory networks via short
gene expression time series. IEEE/ACM Trans. Comput. Biol. Bioinforma. 6, 410–419.
doi:10.1109/TCBB.2009.5

Xiong, J., and Zhou, T. (2013). A kalman-filter based approach to identification of
time-varying gene regulatory networks. PLOS ONE 8, e74571–e74578. doi:10.1371/
journal.pone.0074571

Youseph, A. S. K., Chetty, M., and Karmakar, G. (2015). “Gene regulatory network
inference using michaelis-menten kinetics,” in 2015 IEEE Congress on Evolutionary
Computation (CEC), Sendai, Japan, 25-28 May 2015, 2392–2397.

Youseph, A. S. K., Chetty, M., and Karmakar, G. (2019). Reverse engineering genetic
networks using nonlinear saturation kinetics. Biosystems 182, 30–41. doi:10.1016/j.
biosystems.2019.103977

Zhang, Y., Pu, Y., Zhang, H., Cong, Y., and Zhou, J. (2014). An extended fractional
kalman filter for inferring gene regulatory networks using time-series data. Chemom.
Intelligent Laboratory Syst. 138, 57–63. doi:10.1016/j.chemolab.2014.07.007

Frontiers in Signal Processing frontiersin.org16

Vélez-Cruz and Papandreou-Suppappola 10.3389/frsip.2024.1323538

https://doi.org/10.1093/biomet/89.3.539
https://doi.org/10.1007/s10994-012-5311-x
https://doi.org/10.1098/rsos.171226
https://doi.org/10.1109/MSP.2019.2938026
https://doi.org/10.1080/01621459.1990.10474968
https://doi.org/10.1093/nar/gkac050
https://doi.org/10.1093/nar/gkac050
https://doi.org/10.1002/dvg.22757
https://doi.org/10.1093/comnet/cnz016
https://doi.org/10.1109/78.978387
https://doi.org/10.1109/TNB.2013.2294478
https://doi.org/10.1016/j.dsp.2017.11.012
https://doi.org/10.1073/pnas.120161797
https://doi.org/10.1073/pnas.120161797
https://doi.org/10.1038/s41467-017-00539-y
https://doi.org/10.1093/femsyr/foac013
https://doi.org/10.1109/TCBB.2012.32
https://doi.org/10.1016/j.cell.2011.02.017
https://doi.org/10.1371/journal.pone.0200094
https://doi.org/10.1016/j.neuroimage.2010.06.036
https://doi.org/10.1242/dev.101436
https://doi.org/10.1016/S0022-3999(02)00429-4
https://doi.org/10.1016/S0022-3999(02)00429-4
https://doi.org/10.1109/TCBB.2009.5
https://doi.org/10.1371/journal.pone.0074571
https://doi.org/10.1371/journal.pone.0074571
https://doi.org/10.1016/j.biosystems.2019.103977
https://doi.org/10.1016/j.biosystems.2019.103977
https://doi.org/10.1016/j.chemolab.2014.07.007
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1323538

	Bayesian learning of nonlinear gene regulatory networks with switching architectures
	1 Introduction
	2 Materials and methods
	2.1 Modeling gene regulatory networks
	2.2 Formulation of time-varying GRN model
	2.3 Bayesian learning for tracking
	2.4 BLT implementation using particle filtering and local Gibbs sampling

	3 Results and discussion
	3.1 Simulation settings
	3.2 Simulation results

	4 Conclusion and future directions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


