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Time series analysis aims to understand underlying patterns and relationships in
data to inform decision-making. As time series data are becoming more widely
available across a variety of academic disciplines, time series analysis has become
a rapidly growing field. In particular, Bayesian nonparametric (BNP) methods are
gaining traction for their power and flexibility in modeling, predicting, and
extracting meaningful information from time series data. The utility of BNP
methods lies in their ability to encode prior information and represent
complex patterns in the data without imposing strong assumptions about the
underlying distribution or functional form. BNP methods for time series analysis
can be applied to a breadth of problems, including anomaly detection, noise
density estimation, and time series clustering. This work presents a
comprehensive survey of the existing literature on BNP methods for time
series analysis. Various temporal BNP models are discussed along with notable
applications and possible approaches for inference. This work also highlights
current research trends in the field and potential avenues for further development
and exploration.
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1 Introduction

Time series data collection has become increasingly prevalent in recent years across a
range of industries, including finance, healthcare, and social media. The growth of cloud
computing platforms has also facilitated the storage and processing of large and high-
dimensional time series data. Time series analysis is thus becoming a rapidly growing field.
Several challenges in this area include anomaly or change point detection, clustering
multiple time series based on similar underlying patterns, and making predictions from
time series with missing values or irregular sampling. To this extent, Bayesian
nonparametric (BNP) methods are gaining traction for their power and flexibility in
modeling, forecasting, handling missing values, and extracting meaningful information
from time series data. The utility of BNP methods lies in their ability to encode prior
information and represent complex patterns in the data without imposing strong
assumptions about the underlying distribution or functional form. This makes them
well-suited for a large range of time series problems where traditional models are too
restrictive.

Bayesian nonparmetric methods center on the construction of statistical models over
infinite-dimensional probability spaces. Unlike parametric methods, which assume a
specific form for the underlying data distribution, BNP methods allow the model to

OPEN ACCESS

EDITED BY

Yanjiao Chen,
Zhejiang University, China

REVIEWED BY

Pawel D. Domanski,
Warsaw University of Technology, Poland
Tokunbo Ogunfunmi,
Santa Clara University, United States

*CORRESPONDENCE

Nayely Vélez-Cruz,
nvelezcr@asu.edu

RECEIVED 01 September 2023
ACCEPTED 26 December 2023
PUBLISHED 16 January 2024

CITATION

Vélez-Cruz N (2024), A survey on Bayesian
nonparametric learning for time series analysis.
Front. Sig. Proc. 3:1287516.
doi: 10.3389/frsip.2023.1287516

COPYRIGHT

© 2024 Vélez-Cruz. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Signal Processing frontiersin.org01

TYPE Review
PUBLISHED 16 January 2024
DOI 10.3389/frsip.2023.1287516

https://www.frontiersin.org/articles/10.3389/frsip.2023.1287516/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1287516/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1287516/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2023.1287516&domain=pdf&date_stamp=2024-01-16
mailto:nvelezcr@asu.edu
mailto:nvelezcr@asu.edu
https://doi.org/10.3389/frsip.2023.1287516
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2023.1287516


learn from the data and adapt in complexity accordingly. BNP
models use stochastic processes as their building blocks, the main
ones being Dirichlet processes, Beta processes, and Gaussian
processes. The rest of this work is organized as follows: In
Section 2, I summarize the standard BNP models, how they are
employed for various time series analysis problems, and highlight
some important extensions. Section 3 centers on current state-of-the
art developments, which focus on integrating BNP methods with
deep learning for the analysis of high-dimensional data, as well as
scaling these methods to large datasets. Section 4 highlights three
areas for practical application: object tracking, healthcare and
biomedical data analysis, and speech signal processing. I
conclude by discussing some potential avenues for further
exploration. Refer to Table 1 for the list of acronyms used
throughout this work.

2 Standard nonparameric priors

2.1 Dirichlet processes and their extensions

At the core of BNPmethods is the Dirichlet process (DP), which
can be thought of as a probability distribution over the space of
probability distributions. More formally, given a base distribution H
over a measurable space Ω and a positive real number α, a random
distribution G is said to be a draw from a DP, G ~ DP(α, H), if for
any finite partition A1, A2, . . . , Ak of Ω, the vector
[G(A1), . . . ,G(Ak)] is Dirichlet-distributed with parameters [αH
(A1), . . ., αH (Ak)]. The most commonly-used constructive
definitions of the DP are the Chinese Restaurant Process (CRP)
and Pólya urn, which are obtained after marginalizing out the
random measure G, as well as the stick-breaking representation.
They offer intuitive ways to understand the properties of DPs and
have led to the development of straightforward inference algorithms
based on Markov Chain Monte Carlo (MCMC) and sequential
Monte Carlo (SMC) methods (Das, 2014). These representations
are discussed in Teh (2007). The main applications of Dirichlet
processes are for clustering and density estimation (Rabaoui et al.,
2011; Görür and Edward Rasmussen, 2010; Caron et al., 2012; Li
et al., 2019). The primary advantage of using DPs for clustering is
that one does not have to specify the number of clusters a priori,
whereas density estimation tasks do not require a priori specification
of a functional form.

Extensions of the standard DP have been developed for
problems in which the distribution of the observations is
assumed to change in time, leading to several constructions of
time-dependent DPs. These are well-suited for evolutionary
clustering tasks, where the number of clusters and their
associated parameters can vary with time (Caron et al., 2012;
Ahmed and Xing, 2008; Ren et al., 2008; Zhu et al., 2005;

TABLE 1 Table of acronyms.

Acronym Definition

BP Beta Process

BP-AR-HMM Beta Process-Autoregressive-Hidden Markov Model

BNP Bayesian Nonparametric

CRP Chinese Restaurant Process

DDP Dependent Dirichlet Process

DEKL Deep Ensemble Kernel Learning

DGP Deep Gaussian Process

DGPLVM Deep Gaussian Process Latent Variable Model

DGP-SSM Deep Gaussian Process-State-Space Model

DKL Deep Kernel Learning

DNB Deep Nonparametric Bayes

DP Dirichlet Process

EKF Extended Kalman Filter

GP Gaussian Process

HDP Hierarchical Dirichlet Process

HDP-
AR-HMM

Hierarchical Dirichlet Process-Autoregressive-Hidden Markov
Model

HDP-HMM Hierarchical Dirichlet Process Hidden Markov Model

HDP-HsMM Hierarchical Dirichlet Process-Hidden Semi-Markov Model

HMC Hamiltoninan Monte Carlo

iHMM Infinite Hidden Markov Model

MCMC Markov Chain Monte Carlo

mGP Multi-resolution Gaussian Process

MOGP Multi-Output Gaussian Process

MSE Mean Squared Error

MTGP Multi-Task Gaussian Process

nGP Nested Gaussian Process

PGAS Particle Gibbs with Ancestor Sampling

RBF Radial Basis Function

RPM Random Probability Measure

SGD Stochastic Gradient Descent

SGLD Stochastic Gradient Langevin Dynamics

SGHMC Stochastic Gradient Hamiltonian Monte Carlo

SGMCMC Stochastic Gradient Markov Chain Monte Carlo

SLDS Switching Linear Dynamical Systems

SMC Sequential Monte Carlo

SSM State-Space Model

SVGP Stochastic Variational Gaussian Process

SVI Stochastic Variational Inference

(Continued in next column)

TABLE 1 (Continued) Table of acronyms.

Acronym Definition

UKF Unscented Kalman Filter

VI Variational Inference
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Moraffah and Papandreou-Suppappola, 2022). The construction of
time-dependent DPs is based on the dependent Dirichlet process
(DDP), which is a stochastic process indexed by covariates such as
space or time (Griffin and Steel, 2006). This construction can be
done through Poisson processes (Campbell et al., 2013; Lin et al.,
2010), stick-breaking (Campbell et al., 2013), or through Pólya urn
and CRP (Caron et al., 2012; Ahmed and Xing, 2008). In a time-
dependent DP, dependency is introduced between successive mixing
distributions indexed by time t, {Gt}Tt�1, where t = 1, . . . , T is a
discrete-time index. Following the setup in Caron et al. (2012), let
yt � [y1,t, . . . , ynt,t] denote a vector of nt observations at time t
which are independently and identically distributed (iid) samples
from Eq. 1:

Ft ·( ) � ∫
Θ
f yt|θt( )dGt θt( ) (1)

where Ft is an unknown pdf to be estimated andΘ is the set of latent
parameters for the mixed pdf f (yt|θt). The random probability
measure (RPM) Gt is DP-distributed according to Eq. 2:

Gt ~ DP α, H( ) (2)

Note that Gt also satisfies the following stick-breaking
construction (Eq. 3):

Gt � ∑∞
k�1

Vk,tδθk,t (3)

where k denotes the cluster index, Vk,t � βk,t∏k−1
j�1(1 − βj,t),

andβk,t~
iidβ(1, α). The hierarchical model is given by Eqs 4, 5:

θk,t|Gt~
iid
Gt (4)

yk,t|θk,t~iidf yk,t|θk,t( ) (5)

Time-dependency can be introduced through a stochastic
process on the weights (Nieto-Barajas et al., 2012; Griffin and
Steel, 2006), and/or atoms (Griffin and Steel, 2009). Note that in
the construction in Eq. 3, time-dependency is introduced in both. In
Mena and Ruggiero (2016), dependency is introduced on the
weights by replacing the stick-breaking construction with a one-
dimensional Wright-Fisher diffusion. Another diffusion process
construction based on Fleming-Voit diffusion is introduced in
Ascolani et al. (2021). In Rodriguez and Ter Horst (2008),
dependency is introduced on the atoms through a dynamic linear
model. In Lucca et al. (2013), dependency is introduced on the atoms
through a simple linear autoregressive process, and an extension
based on the Ornstein-Uhlenbeck process is developed. In Campbell
et al. (2013), dependency is introduced on both the weights and
atoms through a Poisson process construction. Although these
approaches focus on discrete-time, an extension to the
continuous time domain based on geometric stick-breaking
processes is introduced in Mena et al. (2011), where dependency
is introduced on the weights. These are summarized in Table 2.

Many constructions of time-dependent DPs are based on the
Pólya urn scheme or the CRP, which facilitate efficient inference
(Caron et al., 2012; Ahmed and Xing 2008; Zhu et al., 2005; Blei and
Frazier, 2011). It is important to note how the cluster assignment
probabilities are computed in these various methods. Time-
dependency alters the standard formulas for calculating the

probabilities of assigning new data to a cluster, as they become
dependent in some way on the number of times a cluster has been
chosen at previous time points. For example, the model may take
into account the entire history’s cluster assignments for t = 1: t − 1
(Caron et al., 2017; Caron et al., 2012), the previous time point’s (t −
1) assignments (Özkan et al., 2011; Ahmed and Xing, 2008), or be
based on some other metric (Saad andMansinghka, 2018). These are
summarized in Table 3. In Zhu et al. (2005), the authors develop a
time-sensitive DP model for time-varying topic modeling. They
introduce a decaying exponential weight function into the
probabilities of assigning data to a cluster which incorporates the
entire history of previous cluster assignments. This model is quite
flexible as it allows different clusters to have different decay rates and
can capture different types of dynamic behavior such as periodicity,
but it is not consistent under marginalization. In Ahmed and Xing
(2008), the authors introduce a time-dependent DP based on the
recurrent CRP. This approach assumes that the data arrive in T
consecutive epochs, where data in the same epoch are assumed to be
fully exchangeable and there are an infinite number of clusters in
each epoch. The cluster assignment probabilities are computed by
taking into account the previous epoch’s (t − 1) cluster assignments
and the number of points already assigned to the cluster in the
current epoch rather than the entire previous history. An advantage
of this approach is that it captures time-varying cluster popularity.
Other notable works include the distance dependent CRP, which
captures the property that data points which are closer in time are
more likely to cluster together (Blei and Frazier, 2011). The model
introduced in Ren et al. (2008) also exhibits this property while
simultaneously allowing the possibility of repetition, as temporally
distant data may share parameters. Many of these time-dependent
DPs also allow clusters to stay, re-emerge, and die out over time
(Caron et al., 2017; Lin et al., 2010). These dynamics can be
incorporated through a cluster removal step as in Caron et al.
(2017), Caron et al. (2012), which has been used for time-varying
density estimation (Jaoua et al., 2014; Rodriguez and Ter
Horst, 2008).

Of particular note are more recent works which focus on clustering
multiple time series exhibiting similar behaviors. In Lin et al. (2019), the
authors introduce the DP nonlinear State-Space Mixture (DPnSSM),
which clusters multiple time series which exhibit nonlinear dynamics.
By placing DP priors over the unknown parameters in the nonlinear
transition dynamics, the model induces clustering of the time series
based on their specific dynamics. Similar work by Nieto-Barajas and
Contreras-Cristán (2014) employs a Poisson-Dirichlet process mixture
model which can use trends, seasonality, or temporal components as a
basis for clustering. Interestingly, Saad and Mansinghka (2018)
introduce a temporally re-weighted CRP and a hierarchical
extension for forecasting, missing data imputation, and clustering
multivariate time series. Their approach identifies similar segments
within individual time series, and is then used to cluster hundreds of
time series into groups, where each group’s underlying dynamics are
modeled jointly. Several approaches for specifically clustering biological
time series have also been developed. In McDowell et al. (2018), the
authors use a DP mixture of Gaussian processes to cluster gene
expression time series. A Gaussian process prior, which will be
discussed in depth in Section 2.2, is placed over the unknown
transition dynamics while the DP allows clustering of gene
expression time series data based on these dynamics. In Yu et al.
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(2016), fetal heart rate signals are clustered using the hierarchical
Dirichlet process (HDP), which facilitated the identification of
clusters specific to diseased and healthy fetuses. Overall, these
methods have been successful in identifying shared features in
multiple time series across a variety systems and have been applied
to a diverse range problems including multiple object tracking,
evolutionary topic modeling, and video segmentation (Neiswanger
et al., 2014; Moraffah et al., 2019; Srebro and Roweis, 2005; Barker
and Davis, 2014).

2.1.1 Hidden markov models
An important extension of the Dirichlet process for the analysis

of time series data is its application to Hidden Markov Models
(HMMs). Unlike the traditional HMM, which requires the number
of hidden states to be specified a priori, incorporating a DP prior on
the state transition dynamics provides a distribution over an infinite
number of states. This allows the number of hidden states to be
learned directly from the data. The HDP-HMM and its extensions
have a range of applicability, including speech recognition,
image segmentation, and genomics (Fox et al., 2011b; Teh
and Jordan, 2010; Yau et al., 2011). A summary of these
models is given in Table 4.

2.1.1.1 Infinite hidden markov model (iHMM)
One early development is the infinite hidden Markov

Model (iHMM) (Beal et al., 2001), which uses a two-level DP to
model the state transition dynamics (the transition probabilities for
each row of the transition matrix). The iHMM is constructed via a
coupled set of Pólya urns. Specifically, the transition from state st to
st+1 is modeled as a DP with concentration β according to Eq. 6:

P st+1 � j|st � i, n, β( ) � nij∑K
l�1nil + β

(6)

where nij is the number of transitions from state i to j. Novel
transitions occur with a finite probability β∑K

l�1nil+β
. When this occurs,

the model draws a state from a second DP (Eq. 7) with concentration
parameter γ and counts no, referred to as the “oracle”

P st+1 � j|st � i, no, γ( ) �
noj∑K

l�1n
o
l + γ

If j is within the set of states 1, . . . , K{ }
γ∑K

l�1n
o
l + γ

If j is a new state

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

A prior mass α is used to control the probability of self
transitions. To complete the model, parameters θk for the
emission distribution corresponding to each state k are
drawn from a base distribution H and the likelihood is given
as F(yt|st, θst). With a DP prior, there are a small number of
states which appear few times. To incorporate power law
behavior in the model, a Pitman-Yor process prior can be
used instead (Van Gael, 2012). An important extension of
the iHMM is the input/output iHMM (Van Gael, 2012),
where the hidden states st, observations yt, or both can be
dependent on a set of inputs et. Although this can capture
the effects of exogenous inputs on the system dynamics, the
number of parameters to be learned increases to O(EK2)
compared with O(K2) for the standard iHMM.

2.1.1.2 Hierarchical Dirichlet process-hidden markovmodel
(HDP-HMM)

An alternative construction is the Hierarchical Dirichlet
Process-Hidden Markov Model (HDP-HMM) (Teh et al., 2004).
In an HDP-HMM each row in the transition probability matrix
corresponds to a draw from an HDP where an HDP prior is used
over an infinite state space. This allows outgoing states to share
transitions into the same set of states. The generative model is

TABLE 2 Summary of time-dependent Dirichlet processes based on the stick-breaking construction. Time-dependency on the weights and/or atoms, the
specific construction, and inference algorithm are listed. See reference associated with each model for more details.

Name Time-dependent weights
or atoms?

Construction Inference References

Time Series DDP Weights Stick-breaking MCMC (Collapsed Gibbs) Nieto-Barajas et al. (2012)

Dynamic DDP Atoms Stick-breaking MCMC (Gibbs) + Forward-Backward
sampling

Rodriguez and Ter Horst
(2008)

Autoregressive-DDP
(AR-DDP)

Atoms Stick-breaking MCMC (Gibbs) Lucca et al. (2013)

Diffusive DP Weights Wright-Fisher
Diffusion

MCMC (Gibbs) Mena and Ruggiero (2016)

Fleming-Viot DDP Weights Fleming-Viot
Diffusion

Monte Carlo algorithms for exact and
approximate sampling

Ascolani et al. (2021)

DDPMM Atoms and Weights Poisson Process Dynamic Means Campbell et al. (2013)

Order-Based DDP Weights Stick-breaking MCMC (Gibbs) Griffin and Steel (2006)

Dynamic HDP Weights Stick-breaking MCMC (Blocked Gibbs) Ren et al. (2008)

Geometric stick-
breaking DP

Weights Stick-breaking MCMC (Gibbs) Mena et al. (2011)

“Simple” DDP Weights Stick-breaking MCMC (Gibbs) + Slice sampling Gutiérrez et al. (2016)
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constructed via stick-breaking and the hierarchy is given by Eqs
8–12 as follows.

θk|H ~ H, for k � 1, . . . ,∞ (8)
β|γ ~ GEM γ( ) (9)

πk|α0 ~ DP α0, β( ) (10)
st|st−1, πst−1 ~ πst−1 (11)
yt|st, θst ~ Fθst

(12)

WhereH is the HDP base distribution, πst−1 is the vector of transition
probabilities going from st−1 into a new sate, α0, β, γ are the HDP
hyperparameters, and θst are the emission distribution parameters
which associate each observation yt with a state st. Teh et al. (2004)
showed that the Chinese restaurant franchise representation of the
HDP-HMM is equivalent to the iHMM. Although, in general, the
HDP-HMM encourages sparse transition matrices, an issue is that it
switches too rapidly between redundant states. This is addressed by
the “sticky” HDP-HMM.

2.1.1.3 “Sticky” HDP-HMM and extensions
Influential work by Fox et al. (2011a) extended the HDP-HMM

to capture state persistence, known as the “sticky” HDP-HMM (Eq.
13). It is given by

πj|β, α, κ ~ DP α + κ,
αβ + κδj
α + κ

( ) (13)

where the parameter κ captures state persistence by increasing the
probability of self-transition. The sticky HDP-HMM prior allows
the dynamical model to switch between an unknown number of
states while preventing the model from switching too quickly
between redundant states. Two extensions of the “sticky” HDP-
HMMwere introduced in Fox et al. (2011a) to learn switching linear
dynamical systems, where each state in the HMM is associated with
a linear dynamical model. The first is the HDP-Autoregressive-
HMM (HDP-AR-HMM), which places an HDP prior on the mode-
specific matrices {A(k)

1 , . . . , A(k)
r } and noise covariances Σ(k). The

observation dynamics are modeled by Eq. 14

TABLE 3 Summary of time-dependent Dirichlet processes based on the Pólya urn or CRP constructions. Note the differences in computing the cluster
assignment probabilities.

Name Cluster assignment probabilities Variable descriptions References

Generalized Pólya Urn Existing cluster:
mt

k,t−1∑k
mt

k,t−1+α
F(yt,k|θt,k) Counts for cluster k at t − 1 which survived the removal step from

t − 1 to t: mt
k,t−1

Caron et al. (2012)

New cluster: α∑k
mt

k,t−1+α
∫P(yt,k |θ)H(θ)dθ DP base distribution: H

DP concentration parameter: α

Recurrent CRP Existing cluster:
nk,t−1+n(−i)k,t

Nt−1+Nt+α−1F(yt,i|ϕk,t) Number of customers at table k at time t − 1: nk,t−1 Ahmed and Xing (2008)

Number of customers at table k at time t: nk,t

New cluster: α
Nt−1+Nt+α−1∫F(yt,i|θ)dH(θ) Total number of customers at time t − 1: Nt−1

Total number of customers at time t: Nt

DP base distribution: H

DP concentration parameter: α

Time-Sensitive DP If k is in topic history: w(ti ,k)∑k′w(ti ,k′)+α
Weight function (influence of cluster k at time t: wt,k Zhu et al. (2005)

If k is new: α∑k′w(ti ,k′)+α
Document index: i

Concentration parameter: α

Distance-
Dependent CRP

If cnewi � j does not join two tables: f (dij) Assignment for customer i: ci Blei and Frazier (2011)

If cnewi � j joins tables j and

k: f(dij) p(yπk (c−i )|H)
p(yπk(c−i )|H)p(yπl(c−i )|H)

Time difference between customers i and j: dij

Decay function: f (·)

Partition: π(·)

Temporally-
Reweighted CRP

Existing cluster: ntkG (yt−p:t−1; Dtk, λG) Cluster label for time t: zt Saad and Mansinghka
(2018)

New cluster: αG (yt−p:t−1; λG) Number of observations for cluster k at time t: ntk

Collection of lagged values for earlier data: Dtk = {yt′−p:t′−1|zt′ = k,
1 ≤ t′ < t}

Collection of current lagged values: yt−p:t−1

Hyperparameters: λG

DP concentration parameter: α
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yt � ∑r
i�1

A st( )
i yt−i + e st( )

t (14)

where et is the noise vector and the mode dynamics are given by
st|st−1 ~ πst−1. The second extension is the HDP-Switching Linear

Dynamical Systems (SLDS), which is a linear state space model with
unknown states xt. It is given by Eqs 15, 16

xt � A st( )xt−1 + e st( )
t (15)

yt � Cxt + wt (16)

TABLE 4 Summary of Bayesian nonparametric HMMs. See reference associated with model of interest for more information.

Name Model Inference References

iHMM Transition:

P(st+1 � j|st � i, no, β) �

nij∑K
l�1nil + β

If a transition from i to j has previously occurred

β∑K
l�1nil + β

If a new transition occurs

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MCMC (Gibbs) and SMC Beal et al. (2001)

Oracle: P(st+1 � j|st � i, no, γ) �

noj∑K
l�1nol + γ

If j is within the set of states {1, . . . , K}
γ∑K

l�1nol + γ
If j is a new state

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Input/Output

iHMM
State transition probability: p(st|st−1 , et) � πet ,st |st−1 , where πe,s,. ~

iidStick(αβ) MCMC (Gibbs) Van Gael (2012)

Emission distribution: yt ~ F(θst ,et)

HDP-HMM θk|H ~ H, for k � 1, . . . ,∞ MCMC (Gibbs), SVI (see
Zhang et al. (2016))

Teh et al. (2004)

β|γ ~ GEM(γ)

πk|α0 ~ DP(α0 , β)

st|st−1 , πst−1 ~ πst−1

yt|st, θst ~ Fθst

“Sticky”
HDP-HMM

πj|β, α, κ ~ DP(α + κ,
αβ+κδj
α+κ ) MCMC (Gibbs) Fox et al. (2011a)

HDP-SLDS Mode transition: st|st−1 ~ πst−1 MCMC (Gibbs) Fox et al. (2011a)

Linear state space model: xt � A(st)xt−1 + e(st )t yt � Cxt + wt

HDP-
AR-HMM

Mode transition: st|st−1 ~ πst−1 MCMC (Gibbs) Fox et al. (2011a)

Observation model: yt � ∑r
i�1A

(st )
i yt−i + e(st )t

BP-AR-HMM B|B0 ~ BP(1, B0) Metropolis-Hastings Split
Merge

Fox et al. (2013)

Xi |B ~ BeP(B)

π(i)j |f i , γ, κ ~ Dir([γ, . . . , γ + κ, γ, . . .] ⊗ f i)

s(i)t ~ π(i)
s(i)t−1

y(i)t � ∑r
j�1

Aj,s(i)t
y(i)t−j + e(i)t (s(i)t )

HDP-HsMM β|γ ~ GEM(γ) MCMC (Blocked Gibbs) Johnson and Willsky
(2012)

πk|β, α ~ DP(α, β), for k � 1, . . . ,∞

θk|H, λ ~ H(λ)

ωk|Ω ~ Ω

zs| πk{ }∞j�1 , zs−1 ~ ~π(zs−1)

Ds|ω ~ D(ωzs)

xt(s): t(s+1)−1 � zs

yt(s): t(s+1)−1 ~
iidf(θ(zs ))
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Where wt is the observation noise and C is the measurement matrix.
Again, the mode dynamics are given by st|st−1 ~ πst−1. Recent work
by Hong et al. (2023) has applied the sticky HDP-HMM to the
problem of attack detection in cyber-physical systems, where the
attacks and their lengths are unknown. An advantage of this
approach is that it can be applied to data that is of mixed
continuous and categorical types.

2.1.1.4 Beta process-autoregressive HMM (BP-AR-HMM)
An issue with the HDP-HMM arises when applied to the analysis

of multiple time series in that it assumes that all time series sequences
share the same sets of states. To address this problem and to
increase the flexibility of these methods, another type of Bayesian
nonparametricHMMhas been developed using the Beta process (BP),
referred to as the Beta Process-Autoregressive HMM (BP-AR-HMM)
(Fox et al., 2013). Note that the Beta process is used as a
nonparametric prior over latent binary feature matrices. This
construction captures shared dynamical behaviors across multiple
time series and indicates which behaviors are exhibited by each time
series (Fox et al., 2013). The hierarchical model is given by Eqs 17–21:

B|B0 ~ BP 1, B0( ) (17)
Xi|B ~ BeP B( ) (18)

π i( )
j |f i, γ, κ ~ Dir γ, . . . , γ + κ, γ, . . .[ ] ⊗ f i( ) (19)

s i( )
t ~ π i( )

s i( )
t−1

(20)

y i( )
t � ∑r

j�1
Aj,s i( )

t
y i( )
t−j + e i( )

t s i( )
t( ) (21)

Where the global weights are provided by B, which is a draw from a
Beta Process (BP), and Xi is a realization of a Bernoulli process such
that Xi � ∑kfikδθk, fik is the binary indicator for the ith time series
and kth feature in the vector x. Note that κ is the parameter capturing
state persistence in the “sticky” HDP-HMM. Finally, 21 is the vector
autoregressive process describing the dynamics of the observations.
The main advantage of this approach is that it allows each time series
to exhibit a subsest of a larger collection of states observed over all
sequences while allowing hidden states to be shared across sequences
(Niekum 2015; Fox et al., 2013). Furthermore, jointly modeling the
time series can help supplement limited data and can improve
parameter estimates by pooling information from other time series,
similar to multi-task learning. This circumvents the need for model
selection since the number of modes is learned directly from the data.

2.1.1.5 HDP-hidden semi-markov model (HDP-HsMM)
In the standard HDP-HMM and “sticky” HDP-HMM, the state

durations are geometrically distributed and the self-transition
parameter is shared across all states. These assumptions are not
suitable for situations where we may want to capture bimodal or
multimodal state distributions. For instance, in modeling the
behavior of consumers in a shopping mall, some users might
briefly check something and leave, while others might spend a
long time browsing. An alternative to the “sticky” HDP-HMM
is the HDP-Hidden Semi-Markov Model (HDP-HsMM), which
incorporates explicit duration semi-Markovianity by placing a
distribution over the state duration (Johnson and Willsky,
2012). Once the state is reached, a duration time is drawn
from the duration distribution and the system stays in the

state until the duration period ends before transitioning to a
new state. Let (zs)Ss�1 denote S super-states, which emit segments
of observations yt(s):t(s+1)−1. As well, let (xt)Tt�1denote a label
sequence, where each xt corresponds to an observation. The
model (Eqs 22–29) is given as:

β|γ ~ GEM γ( ) (22)
πk|β, α ~ DP α, β( ), for k � 1, . . . ,∞ (23)

θk|H, λ ~ H λ( ) (24)
ωk|Ω ~ Ω (25)

zs| πk{ }∞j�1, zs−1 ~ ~π zs−1( ) (26)
Ds|ω ~ D ωzs( ) (27)
xt s( ): t s+1( )−1 � zs (28)

yt s( ): t s+1( )−1~
iidf θ zs( )( ) (29)

Where wk are duration distribution-specific parameters for each
state k = 1, . . . ∞, ~π(zs−1) are transition probabilities constructed by
removing the atom corresponding to zs−1 so that there are no self-
transitions in the superstate sequence. The HDP-HsMM was shown
to mix faster compared to the sticky HDP-HMM when applied to
the problem of speaker diarization (Johnson and Willsky, 2012).

2.2 Gaussian processes

Another set of fundamental BNP methods for analyzing time
series data is based on the Gaussian process (GP). The GP is formally
defined as a potentially infinite collection of random variables such
that the joint distribution of any finite subset is a multivariate
Gaussian. It is used as a prior over unknown functions. A draw
from a GP is denoted as f(x) ~GP(mf(x), kf(x, x′)), where x ∈ RN,
mf(x) is the mean function and kf(x, x′) is the covariance function.
Given the observations of the function f on x, the predictive
distribution of f* = f(x*) at new inputs x* is given by Eq. 30

p f*|x*, f , x( ) � N f*|μpost,Σpost( ) (30)

The posterior mean and covariance are given by Eqs 31, 32:

μpost � mx* +Kx*,x Kx,x + σ2I[ ]−1y (31)
Σpost � Kx*,x* − Kx*,x Kx,x + σ2I[ ]−1Kx,x* (32)

One of the key strengths of GPs is in their ability to incorporate
prior knowledge about a range of interesting dynamics, such as
change points, periodicity, delays, long and short-term dynamics,
smooth variation and more (Roberts et al., 2013; Saad et al., 2023).
Moreover, they are suitable for handling missing data, modeling
errors, quantifying uncertainty, and tend to be more robust to
overfitting, making them a powerful tool. Some notable uses of
GPs in the realm of time series analysis are for system identification
in state-space models (SSMs), where the GP is used as a prior over
the transition dynamics and/or measurement function. This is a
particularly challenging problem because the unknown transition
function depends on the unknown state at time t. In general, for
unknown states xt at time t, measurements yt, and unknown
transition functions f, the state space formulation is given by the
following hierarchy in Eqs 33–35:
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f x( ) ~ GP mf x( ), kf x, x′( )( ) (33)
xt � f xt−1( ) + wt−1 (34)
yt � g xt( ) + vt (35)

Where wt−1 and vt are typically additive Gaussian noise terms for the
process and measurement dynamics, respectively. Several works have
tackled the system identification issue using different strategies
(Eleftheriadis et al., 2017; Frigola et al., 2013; Frigola et al., 2014).
In Deisenroth et al. (2012), the authors introduce a novel method for
computing a Gaussian approximation to the smoothing distribution
referred to as the Rauch-Tung-Striebal (RTS) smoother, which
outperforms popular smoothing algorithms such as the extended
Kalman filter (EKF) and unscented Kalman filter (UKF). In Frigola
et al. (2013), the authors introduce a multi-step approach which
involves marginalizing out the unknown function f and drawing a
sample from the smoothing distribution using particle Gibbs with
ancestor sampling (PGAS). Thus, the unknown states can be sampled
from the smoothing distribution without knowledge of the transition
function. Follow-up work in Frigola et al. (2014) introduces a more
efficient learning approach based on variational sparse GPs, which
reduces the computational complexity to be linear in the length of the
time series, making it faster to compute predictions of future
trajectories. As well, GP approaches have been shown to effectively
predict chaotic time series (Petelin and Kocijan, 2014). In Aalto et al.
(2018); McDowell et al. (2018), GPs were used to infer underlying
dynamics which were then used as a basis for clustering gene
regulatory network time series.

Although appealing, one drawback of these methods is that they
suffer from scalability issues, making them unsuitable for large and
high-dimensional datasets. However, methods for improving
scalability will be discussed in Section 3.4. As well, GPs cannot
model multimodal or heavy-tailed marginal distributions. This can
make them less robust to outliers and results in less accurate
uncertainty estimates. Instead, a Sudent’s-t process may be more
appropriate for such situations (Tracey andWolpert, 2018), which has
an extra parameter controlling the kurtosis of the distribution. Lastly,
the expressivity of GPs is limited by the choice of kernel, making them
unsuitable to learn complex relationships or features from time series
data. An alternative to these last two issues is to use a deep learning
BNP approach, which can equip GPs with the power to learn complex
representations from data. This will be discussed in Section 4.1.

2.3 Multi-output GPs

Standard GPs, also called single-output GPs, model a single
output variable as a function of input variables. A useful extension of
GPs is the multi-output GP (MOGP), where an input or set of inputs
can have multiple correlated outputs. For example, in a healthcare
scenario, changing the drug dosage may have an affect on heart rate,
blood sugar, and cholesterol levels. In such a scenario, the MOGP
would model each output (heart rate, blood sugar, and cholesterol
levels) jointly. The joint modeling leads to better predictive
performance compared to single-output GPs. As well, sharing
information between outputs typically reduces overfitting and is
particularly useful when some outputs have limited data. To
construct an MOGP, one just needs to specify a covariance

kernel over the outputs in addition to one over the inputs. For
k = 1, . . . , K outputs, the joint prior is given by Eqs 36, 37:

f x( ) �
f1 x( )
f2 x( )

..

.

fK x( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~ GP

m1 x( )
m2 x( )

..

.

mK x( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,K x, x′( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (36)

f x( ) ~ MOGP m x( ),K x, x′( )( ) (37)

K x, x′( ) �
k x, 1( ), x′, 1( )( ) k x, 1( ), x′, 2( )( ) . . . k x, 1( ), x′, K( )( )
k x, 2( ), x′, 1( )( ) k x, 2( ), x′, 2( )( ) . . . k x, 2( ), x′, K( )( )

..

. ..
.

1 ..
.

k x, K( ), x′, 1( )( ) k x, K( ), x′, 2( )( ) . . . k x, K( ), x′, K( )( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(38)

where in general, the covariance kernel in Eq. 38 is given by the
following multiplication of two separable kernels (Eq. 39):

k x, k( ), x′, k′( )( ) � kinput x, x′( ) × koutput k, k′( ) (39)

The regression model is specified as follows

yk x( ) � fk x( ) + ϵk (40)
ϵk ~ N 0, σ2k( )

The model in Equation 40 can easily be extended to time series
through the addition of a time index as yk,t = fk (xt) + ϵk,t. Note that the
covariance function takes into account correlations between inputs x
and x′ as well as correlations between outputs k and k′. Through the
construction of the covariance kernel, it is possible to simultaneously
capture a range of underlying structures. In general construction can
be as straightforward as adding or multiplying two or more separable
kernels (e.g., multiplying a periodic kernel by a squared exponential
kernel), or can be done through coregionalization models in which
one defines a matrix B where entry (i, j) describes how outputs i and j
are correlated with each other (Liu et al., 2022a). In addition to
leveraging information from more data-rich outputs to help inform
other data-poor outputs, MOGPs can also be applied to problems
involving heterogeneous outputs (e.g., continuous, binary, and
categorical) (Moreno-Muñoz et al., 2018). As well, they have been
applied tomulti-fidelity datasets withmultiple correlated outputs (Lin
et al., 2021). Unfortunately, the computational complexity of MOGPs
is O(Q3N3) for Q outputs due to the operations on the covariance
matrices. Alternatively, using a convolution process, which results in a
non-separable kernel, can capture dependencies between outputs in a
sparse GP framework and reduces the computational complexity to
O(N3Q) (Alvarez and Lawrence, 2008). Sparse GPs are also used in
Moreno-Muñoz et al. (2018); Lin et al. (2021). MOGPs have exhibited
success particularly in the realm of biomedicine and can aid in
predicting patient health outcomes (Cheng et al., 2020).

2.3.1 Multi-task GP
A notable application of MOGPs is to multi-task learning. In

multi-task learning, the objective is to improve the performance of
multiple related learning tasks by pooling the information across the
different tasks (Bonilla et al., 2007). The underlying assumption is
that the tasks are not completely independent and can benefit from
the knowledge contained in one another. It should be distinguished
from transfer learning, which aims to use the knowledge gained
from one or more source tasks to help learn a different, but related
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target task. In contrast, multi-task learning aims to improve the
learning of multiple related tasks by learning them simultaneously,
allowing the model to leverage shared information across the tasks.
Multi-task learning therefore focuses on the identification of shared
structures, making it suitable for multivariate time series analysis.
Bayesian nonparametric methods for multi-task learning leverage
the power of Gaussian processes to extract knowledge frommultiple
related time series, resulting in the multi-task GP (MTGP).

The key concept underlying the MTGP is the construction of a
multi-task covariance kernel, which characterizes the correlation
within and between tasks. This proceeds in the same manner as in a
MOGP, except that each output k is now a task. Although better able
to capture rich structures in data compared to standard GPs, these
methods suffer from a few drawbacks. First, it is assumed that all
tasks are equally important which may not be the case in real-world
applications. Furthermore, these methods are computationally
intensive due to the large number of parameters involved, as the
covariance matrix associated each task or time series will have its
own set of hyperparameters. Lastly, the complexity associated with
the inversion of the covariance matrix makes it unsuitable for large
and high-dimensional time series data. To address these issues,
recent work has focused on developing deep learning paradigms
with sparse inference methods for BNP multi-task learning, which
will be discussed in Section 3.

2.3.2 Multi-resolution GP
Many real-world problems involve the analysis of data collected

from different sources with varying resolutions or where the
underlying phenomenon may have spatial and/or temporal
multi-scale features. For example, EEGs may exhibit long-term
patterns relating to circadian rhythms, but abrupt changes or
sharp spikes may also be present due to a seizure. A limitation of
standard GPs is that although they can capture long-range
dependencies and sudden changes, they cannot do so
simultaneously. To address this limitation, the multi-resolution
GP (mGP) was introduced Fox and Dunson (2012), which is
constructed by coupling a collection of smooth GPs in a
hierarchical manner. Each GP is defined over an element of a
nested partition A � {A0,A1, . . . ,Al−1}. A global GP is
introduced to capture long-range dependencies f0 ~GP(0, c0) and
GPs are drawn independently from Eq. 41 for each Al

i as

fl Al
i( ) ~ GP fl−1 Al

i( ), cli( ) (41)
where ci is the covariance function. Recent work in Longi et al.
(2022) applied the mGP framework to model the effects of multiple
time scales in GP-SSMs, which can capture slow and fast transitions.
mGPs have also been extended to the multi-task setting in
Hamelijnck et al. (2019).

2.4 Posterior inference

Approaches for posterior inference are based on Markov Chain
Monte Carlo (MCMC) or variational inference (VI). MCMC
methods are asymptotically exact, but can be slow and difficult to
scale, particularly in high-dimensional settings. The most
commonly-used MCMC method is Gibbs sampling, which
iteratively samples from the conditional distributions of the

variables of interest and constructs a Markov chain whose
stationary distribution is the target posterior distribution. In
contrast, VI is an optimization-based approach, which seeks the
distribution within the chosen variational family that is closest to the
true posterior, as measured by the Kullback-Leibler (KL) divergence.
VI is scalable to large datasets but can be more prone to
approximation errors as the accuracy depends on the choice of
the variational family. A stochastic extension of VI (SVI) is often
used in conjunction with sparse Gaussian processes for scalability to
large datasets. This section discusses both classes of methods. Table
5 provides references for the reader to further explore inference
methods associated with their model of interest.

2.4.1 Markov chain Monte Carlo (MCMC)
Markov Chain Monte Carlo (MCMC) methods generate

samples from a target posterior distribution π(x) by constructing
a Markov chain whose stationary distribution is the posterior. Gibbs
sampling is widely used for BNP model inference due its ease of
implementation and theoretical accuracy. When using conjugate
priors, the conditional posteriors which are iteratively sampled from
are obtained in closed form. However, the Gibbs sampler is slow to
converge and tends to exhibit poormixing as the chainmay get stuck
in posterior modes. To make the computations more tractable, one
can set a truncation level where the infinite mixture is approximated
by a finite mixture with T components. Unfortunately, this method
may be prone to approximation errors. A solution is to introduce an
adaptive truncation method which adapts to the complexity of
the data (Griffin 2016). Another alternative is to use slice
sampling, which proceeds by sampling uniformly from
horizontal “slices” in the target posterior distribution (Neal,
2003). Although slice sampling does not require the use of
conjugate priors, can be parallelized, and is straightforward to
implement (Zhu et al., 2020), its computational efficiency and
accuracy decreases in high dimensions. Slice sampling is also
less effective when there are high correlations between
variables. An MCMC method which outperforms slice
sampling in high-dimensional settings is Hamiltonian Monte
Carlo (HMC), which updates parameters using a mechanism
derived form Hamiltonian dynamics. HMC efficiently moves
through the parameter space by exploiting the gradient of the
log-probability distribution to guide the construction of
proposals. Furthermore, due to the use of Hamiltonian
dynamics, the HMC can make large steps in the parameter
space instead of making small local moves and is well-suited to
dealing with highly correlated variables (Betancourt, 2017). It is
less likely to get stuck in posterior modes since all of the
parameters are updated simultaneously. However, the
gradient computation leads to scalability issues for large
datasets and online settings.

2.4.2 Stochastic gradient MCMC (SGMCMC)
Stochastic Gradient MCMC (SGMCMC) presents a scalable

alternative to standard MCMC methods by using noisy gradient
estimates obtained from mini-batches of the data. Two such
methods are stochastic gradient HMC (SGHMC) and stochastic
gradient Langevin dynamics (SGLD), which introduce noise to the
gradient computations of the log-posterior densities. In SGLD,
Langevin dynamics are introduced into the standard stochastic
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gradient descent (SGD) and the parameters are updated by adding a
Gaussian noise term (Nemeth and Fearnhead, 2021). The trajectory
of the parameters resembles the behavior of particles undergoing
Brownian motion as described by Langevin dynamics. As the name
suggests, SGHMC is a stochastic extension of HMC. In Chen et al.,
(2014), a friction term is added to the momentum update to ensure
that the Hamiltonian dynamics have the target distribution as the
invariant distribution as simply injecting the noise to the gradient
results in the target distribution no longer being the invariant
distribution. The addition of the friction term thus stabilizes the
Hamiltonian dynamics. An advantage of SGLD over SGHMC is that
it is typically easier to implement and requires tuning fewer
hyperparameters. However, since SGLD lacks the momentum
component present in SGHMC, SGLD may be less efficient in
exploring the parameter space in high-dimensional settings
(Chen et al., 2014).

2.4.3 Optimization-based inference
Optimization-based methods, such as VI and stochastic

variational inference (SVI), are often faster and outperform
MCMC on large datasets at the expense of precision. The main
idea underlying standard VI is to posit a family of simpler, tractable
distributions (known as the variational family) and then find the
member of this family that is closest to the target distribution (Blei
et al., 2017). Optimization is performed through coordinate ascent

or gradient descent on the entire dataset, making it computationally
intensive for large datasets, although parallel VI is discussed in
Campbell et al. (2015). In contrast, SVI operates similarly to
SGMCMC by computing noisy estimates of the gradient on mini
batches of the data, thereby making it more computationally
efficient and well-suited to online settings. As in SGMCMC, the
added stochasticity aids the model in escaping local optima.
However, compared to VI, the added noise in SVI can lead to
more errors. As well, the accuracy is influenced by the choice of
minibatch size and the specific choices of the minibatches
themselves may result in biased estimates.

2.5 Concluding remarks

Standard BNP approaches based on Dirichlet processes,
Gaussian processes, and their most widely used extensions
constitute a powerful statistical toolkit for a diverse range of time
series analysis problems, such as within- and across-time series
clustering, inferring unknown transition dynamics, and identifying
change points in switching systems. As large and high-dimensional
time series are becoming increasingly prevalent, more sophisticated
approaches are needed to extract complex features and relationships
from such data. The next section highlights some ongoing research
trends in this regard as well as potential avenues for further
exploration.

3 Current research trends

Although this work has highlighted several advantages of BNP
methods for time series analysis, significant challenges still remain
when analyzing both large and high-dimensional time series data
that coalesce around the “curse of dimensionality”. This manifests in
local kernel methods, such as the GP, as local kernels degenerate to
one-nearest-neighbor classifiers in high dimensions (Agrawal, 2020;
Bengio et al., 2005). As well, due to the lack of expressivity of the
kernels, GPs lack the power to learn complex and abstract
representations from high-dimensional datasets and instead act
as smoothers (Ober et al., 2021). Dirichlet processes also face
certain challenges in high-dimensional settings. Clusters may be
more difficult to identify in high dimensions as distances between
points become increasingly homogeneous and not all dimensions
may be informative for clustering. Density estimation in high-
dimensions also presents a challenge as large amounts of data are
required to obtain meaningful estimates. In regard to inference,
standard MCMC approaches also suffer from the “curse of
dimensionality”, as data in high-dimensional settings can be
sparse so the rate of convergence tends to decrease with an
increase in dimension (Nagler and Czado, 2016). To address
these challenges, current research trends center on the
development of BNP deep learning methods for large and high-
dimensional data. Integrating deep learning architectures and BNP
methods enables the models to learn sophisticated representations of
data which can improve predictions, provide reliable uncertainty
estimates, and reduce the overfitting which deterministic neural
networks are prone to. Sections 3.1 and 3.2 highlight two
approaches: deep kernel learning (Wilson et al., 2016a; Al-

TABLE 5 Summary of inference approaches available for the three classes of
BNP models.

Time-
dependent

DPs

HDP-HMM
and variants

Gaussian
process and

variants

Gibbs
Sampling

See Table 1 See Table 2 Titsias et al. (2008)

Slice Sampling Gutiérrez et al.
(2016)

Van Gael (2012) Elliptical slice
sampling: Murray

et al. (2010)
Specifically for

updating
covariance

hyperparameters:
Murray and Adams

(2010)

Particle
MCMC

Neiswanger et al.
(2014)

Tripuraneni et al.
(2015)

Frigola et al. (2013)

Hamiltonian
Monte

Carlo (HMC)

For general DP
models: Mak et al.

(2021)

For
hyperparameter

inference:
Linderman et al.

(2016)

Heinonen et al.
(2016)

Sequential
Monte

Carlo (SMC)

Caron et al. (2012);
Neiswanger et al.
(2014); Taddy

(2010)

Rodriguez (2011) Saad et al. (2023);
Svensson et al.

(2015)

Variational
Inference (VI)

Ahmed and Xing
(2009); Blei and
Jordan (2006)

Sudderth (2015) Sparse GPs:
Leibfried et al.

(2020)

Stochastic
Variational
Inference
(SVI)

For general DP
models: Lin (2013)

Zhang et al. (2016);
Johnson and
Willsky (2014)

Sparse GPs: Yu
et al. (2019);

Frigola et al. (2014)
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Shedivat et al., 2017) and deep Gaussian processes (Damianou and
Lawrence, 2013). However, an increase in model complexity
necessitates computationally efficient methods. To this extent,
another area of ongoing research centers on the development of
scalable inference for BNP deep learning models, which will be
discussed in Section 3.4.

3.1 Deep kernel learning

Pivotal research by Neal (1996) has demonstrated an important
theoretical connection between GPs and neural networks, which is
that infinitely wide neural networks converge to a GP. This result
also extends to deep neural networks (Lee et al., 2017). His work
provides a theoretical basis for which neural networks and GPs can
be interwoven. Deep kernel learning (DKL) is one such
manifestation. In DKL, a deep learning neural network is used as
the kernel function of a GP. The neural network transforms high-
dimensional inputs into a lower dimensional feature space
representation where these features become an input into a GP.
This confers a model with both of the advantages of GPs and neural
networks: quantifying uncertainty and learning complex abstract
representations. Equation 42 defines a deep kernel as follows:

kdeep x, x′( ) � k ϕ x;ω( ),ϕ x′;ω( )|θ,ω( ) (42)

where k: RD × RD ↦ R is any base kernel with hyperparameters θ
and ϕ: RM ↦ RD is a nonlinear mapping given by a deep neural
network with weights ω. Stochastic variational inference is typically
used to train the model, making it amenable to large datasets
(Wilson et al., 2016b). Other methods such as stochastic gradient
Langevin dynamics (SGLD) and semistochastic block gradient
descent can be used as well. DKL methods have garnered much
attention in the machine learning community (Wilson et al., 2016b;
Strohbeck et al., 2022; Botteghi et al., 2022), particularly for their
reputation for avoiding overfitting through optimization of the
marginal likelihood. However, recent work by Ober et al. (2021)
has illuminated a fascinating issue. When the number of
hyperparameters is large, the marginal likelihood becomes a poor
training objective which in turn decreases the performance of the
DKL model, resulting in overfitting. In these situations, the DKL
model performs worse than standard GP regression and
deterministic neural networks (Ober et al., 2021). Fortunately,
this issue is resolved through the use of sampling-based methods,
such as Hamiltonian Monte Carlo (which does not scale to large
datasets) and SGLD (which scales to large datasets through the use
of mini-batching). A similar approach was employed in Li et al.
(2021), who proposed a deep Bayesian Gaussian process which
combines DKL with Bayesian inference. This has the advantage of
producing more reliable uncertainty estimates and predictions
compared to standard DKL and deep Bayesian neural networks
when applied to large-scale electronic health records. These works
indicate that DKL benefits from employing a fully
Bayesian treatment.

DKL has recently been applied to the discovery of dynamical
models and latent states from high-dimensional noisy time series
data (Botteghi et al., 2022). In Botteghi et al. (2022), an encoder is
used to compress high-dimensional measurements into low-

dimensional state variables and SVI is used for learning. The
efficacy of this model was demonstrated through learning the
stochastic motion of a pendulum with external perturbations
from high-dimensional noisy images. Although not specifically
DKL, a related method from the image processing community
integrates DP clustering with deep learning neural networks. In
Wang et al. (2022), the authors develop Deep Nonparametric Bayes
(DNB) for jointly estimating the number of clusters, cluster labels,
and learning deep representations in image data. This is done by first
passing the images through a convolutional neural network, then
performing DP clustering on the features. These methods have also
been applied to the development of deep factor analysis models
(Mittal et al., 2020) and deep tracking models (Zhang and Paisley,
2018). An interesting possible application is to time series image
data, whichmay be useful in biomedical applications, for example, in
grouping heterogeneous cancer patient populations in
subpopulations based on the progression of their cancer type.

3.2 Composite models: Deep vs. nested

Another set of approaches centers on the construction of deep
Gaussian processes. The term “deep” is used rather inconsistently in
the literature to refer to several different nested or composite
extensions of standard Bayesian nonparametric models with deep
architectures. These research areas are fairly new, so there has not
yet been sufficient time to develop a standardized language. Based on
the analysis of the literature, it was found that there are two terms
used to refer to GPs with deep architectures: nested Gaussian
processes (nGPs) and deep Gaussian processes (DGPs). In an
nGP, or more generally any nested BNP model, the
hyperparameters of the model are drawn from another BNP
model. In the case of an nGP, for example, the mean function or
the hyperparameters of the covariance kernel of a GP are themselves
drawn from a GP prior. Similarly, the atoms of a nested Dirichlet
process (nDP) are themselves draws from a DP. The term DGP is
used more broadly. According to Damianou and Lawrence (2013), a
DGP is a multi-layer network consisting of GPs, where the input of
each GP is the output of another GP. Intriguingly, the literature on
DGPs also contains several works which use an nGP model but refer
to it as a DGP (Zhao, 2021; Zhao et al., 2021; Lu et al., 2020). Adding
to the convolution, nGP-centric papers do not reference DGP
studies and vice versa, obscuring the distinct dependencies each
model encapsulates. Per the definition in Damianou and Lawrence
(2013), the DGP model refers to a cascade of transformations on the
input in which one GP feeds its output into another GP. This
introduces a state or sequence-specific dependency in the model
structure based on direct input/output relationships. In contrast,
nGPs or other nested BNP models exhibit behavior-specific
dependency. For example, in an nGP, the behavior of the primary
predictive GP at a specific input point is influenced by the
hyperparameters at that input. Instead of the hyperparameters
being static, they are dynamically modeled by another GP. This
allows them to vary across the input space, resulting in heightened
flexibility and adaptability in comparison to standard GPs with
unchanging hyperparameters. To enhance conceptual clarity, I will
refer to DGPs defined in Damianou and Lawrence (2013) as
sequence-dependent DGPs, while nGPs and DGPs built upon the
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nGP foundation will be designated as behavior-dependent DGPs.
This choice of nomenclature retains the inherent deep architecture
of both models but underscores the unique dependencies each
encapsulates. I will continue using the term “nested” for non-GP
nested BNP models.

3.2.1 Sequence-dependent DGPs
Although there are several ways to construct a sequence-

dependent DGP (Dunlop et al., 2018), this work highlights
construction via composition since it provides the most intuitive
understanding of the architecture. A sequence-dependent DGP
consists of three types of nodes: parent latent node Z,
intermediate latent space nodes Xh−1, and leaf nodes Y (Teng
et al., 2018). The parent latent node represents the initial input
of the DGP. The intermediate latent node corresponds to h = 1, . . . ,
H − 1, where H is the number of hidden layers. The leaf node Y
represents observed output, or target variables of the model. The
graphical model in Figure 1 depicts the architecture for H
hidden layers.

The generative process is given by Eqs 43, 44:

Y � fY X1( ) + ϵ1 (43)
..
.

XH−1 � fH−1 Z( ) + ϵH−1 (44)
where the joint posterior is given in Eq. 45:

p Y, fh{ }H−1
h�1( ) � p Y|fH−1 fH−2 . . .f1 X( )( )( )( )∏H−1

h�1
p fH( ) (45)

Note that a temporal extension (Eqs 46–49) can be formulated
as follows:

Yt � fY Xt,1( ) + ϵt,1 (46)
..
.

Xt,H−1 � fH−1 Zt( ) + ϵt,H−1 (47)
Yt � f2 f1 Xt( )( ) (48)

p Y, fh{ }H−1
h�1( ) � ∏T

t−1
p Yt|fH−1 fH−2 . . .f1 Xt( )( )( )( )∏H−1

h�1
p fH( )

(49)
Where independent GP priors are placed over the functions
corresponding to each layer fh ~ GP(mh

f(X), khf(X,X′)) for h =
1, . . . ,H and fY denotes the function corresponding to the final layer
of the DGP which outputs the leaf node Y. Note that ϵt,H−1 is the
error term corresponding to H − 1 layer. Standard GP kernels, such
as the radial basis function (RBF) or squared exponential are
typically used for , khf(X,X′). For image data, the convolutional
kernel is a more suitable option (Kumar et al., 2018). Through the
nonlinear transformations which occur at each level of the sequence-
dependent DGP they are able to capture highly complex and
nonlinear mappings as well as model non-Gaussian distributions.
This is because as the data passes through the layers, they undergo a
series of transformations that gradually build up a hierarchy of
increasingly abstract representations. Early layers might capture
simple patterns or local structures, while deeper layers might

capture more complex, global relationships. Increasingly abstract
features can be learned at each layer. Furthermore, they can capture
correlations between multiple outputs making them easily
extendable to multi-task settings (Agrawal, 2020; Alaa and van
der Schaar, 2017). As with standard GPs, sequence-dependent
DGPs provide a quantification of uncertainty in predictions,
which is desirable in tasks where safety is critical, such as
healthcare or product development. Sampling- and optimization-
based approaches can be used for inference. Sequential Monte Carlo
(SMC) inference of sequence-dependent DGP state space models is
introduced in Liu et al. (2022b). Implementation of these methods
using scalable inference algorithms, such as those in Salimbeni and
Deisenroth (2017); Wang et al. (2016), makes them well-suited for
analysis of high-dimensional and large data sets.

Although there are few applications of sequence-dependent
DGPs to the analysis of time series data, recent work by Chen
et al. (2020) developed a sequence-dependent DGP approach to
predict flight trajectories. They found that the ability of the
sequence-dependent DGP to represent nonlinear features helped
improve prediction accuracy as it could better capture flight
environment stochasticity. Other work has extended sequence-
dependent DGPs to state-space models (DGP-SSM) (Eq. 50) (Liu
et al., 2022b; Taubert et al., 2022; Zhao, 2021). The formulation is
given as

Transition : x0,t � f0 x0,t−1( ) + t
Deep : xl,t � f l xl−1,t( ) + l−1,t, for l � 1 . . . L layers

Measurement : yt � g xL,t( ) + L,t

(50)

where L,t is the error term corresponding to the Lth layer at time t,
g is the possibly unknown measurement function, fl is the function
mapping xl−1,t to xl,t, and f0 is the transition function mapping
the state x0,t−1 at time t − 1 to the state x0,t at time t. In Liu et al.
(2022b), the authors consider a DGP-SSM where both the state
transition and measurement functions are assumed unknown. To
induce sparsity, a feature-based representation of the GPs is
used. An SMC algorithm is developed for inference on a
simulated dataset consisting of two hidden layers, a five-
dimensional measurement, and two-dimensional state vector.
How this type of SMC algorithm scales to high-dimensional
and large time series data remains an open question. To this
extent, Taubert et al. (2022) introduce a computationally
efficient algorithm combining sparse GPs and stochastic
expectation propagation for inference in DGP-SSMs. The
algorithm was evaluated on kinematic data with 99 degrees of
freedom and was shown to outperform the standard GP dynamical
model in terms of prediction accuracy via mean squared error

FIGURE 1
Graphical model representation for the deep Gaussian process
adapted from Salimbeni and Deisenroth (2017). The output of each
layer becomes the input into the next layer.
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(MSE). Comparison to other comparable methods such as DKL is
needed to fully evaluate the efficacy of their approach, but this is an
exciting area for future research.

3.2.2 Behavior-dependent DGPs and nested
BNP models

In a behavior-dependent DGP (Eq. 51), a GP prior is placed on
the parameters of a GP, such as the mean function or the
hyperparameters of the covariance kernel (Zhao et al., 2021).
Like the sequence-dependent DGP, this layering can continue
indefinitely. An example of such a construction is given by

ft ~ GP μt, kt( )
μt ~ GP μp, kp( ), (51)

where t and p correspond to different levels of nesting and themean of
ft, which is μt is drawn from a GP. Although sequence and behavior-
dependent DGPs can model complex relationships between data in a
hierarchical manner, they offer different advantages. In particular, the
behavior-dependent DGP construction allows for explicit modeling of
non-stationary behavior as the GP parameters are allowed to vary
across the input space. Non-stationarity is inherent in its construction.
In contrast, sequence-specific DGPs typically implicitly model non-
stationarity through the successive nonlinear transformations of the
input. However, non-stationarity can also be introduced in the kernel
construction. Incorporating behavior-dependent DGPs in a state-
space model framework enables us to capture several levels of
spatial and/or temporal granularity in the dynamics. By allowing a
GP to modulate the parameters of another GP, they can adapt very
locally to data. This makes them well-suited for modeling data with
rapid fluctuations or change points, varying scales of trends, or input
region specific patterns and have the ability to model a larger class of
functions (Zhao et al., 2021). Behavior-dependent DGPs have
exhibited success in imputing missing data in high-dimensional
settings while modeling complex spatiotemporal relationships in
healthcare settings (Imani et al., 2019).

Other related methods are based on nested partition models
(Mansinghka et al., 2016), such as nested Dirichlet processes (nDPs,
Eqs 52–55) (Rodríguez et al., 2008), which can be used to cluster
entire distributions. The hierarchical model for the nDP is given as

Gr|γ, G0 ~ DP γ, G0( ) (52)
Gj|α, Q ~ DP αDP γG0( )( ) (53)

θji|Gj ~ DP αDP γH( )( ), also denoted by distributionQ (54)
xji|θji ~ F θji( ) (55)

Which admits the stick-breaking construction in Eq. 56

Gr � ∑∞
l�1

wlrδϕlr* , ϕlr* ~ G0, wlr( )∞l�1 ~ GEM γ( ) (56)

and

Gj ~ Q ≜ ∑∞
r�1

πrδGr, πr( )∞r�1 ~ GEM α( ) (57)

≜ DP αDP γG0( )( ) (58)

Note that Q in Eq. 57 is defined as an infinite-dimensional
distribution over all possible DPs. With probability πr, a DP Gr is

selected which setsGj =Gr. This allows clustering of the distributions
themselves. A marginalized nDP based on the Pólya urn
construction is introduced in Zuanetti et al. (2018).
Unfortunately, the nDP can degenerate to the fully exchangeable
case if two populations share at least one latent variable
(Camerlenghi et al., 2019). More recently, a latent nested
partition model was introduced in Camerlenghi et al. (2019) to
overcome the degeneracy issue of the nDP. An open area of research
is the development of temporal extensions of these nested partition
models to allow for time-varying distributional cluster membership,
which may be more reflective of the dynamic nature of real-world
populations.

3.3 Deep Gaussian process multi-
task learning

Extending DGPs to multi-task settings results in powerful
models equipped with the advantages of MTGPs and the ability
to learn complex relationships and patterns in data. An advantage of
incorporating a deep architecture in an MTGPmodel is that it is less
sensitive to the specific form of the covariance kernel, which is not
the case in standard GP or MTGP analysis. The deep architecture
helps mitigate this sensitivity, making the model more robust and
adaptable to various types of data. Deep architectures also provide
increased expressivity. This is especially advantageous when
handling tasks characterized by intricate and nonlinear
dependencies. Such complexities may pose challenges for
shallower models (Boustati et al., 2020; Boustati and Savage,
2019). Deep MTGP models not only maintain the ability to
provide informative uncertainty quantifications but also uphold
robustness against overfitting. Moreover, the hierarchical
representation and feature learning capabilities of DGPs
contribute to better generalization across tasks. The model can
leverage shared features and representations to make predictions
on new or unseen tasks, promoting more effective transfer of
knowledge between related tasks.

3.4 Posterior inference scaling to
large datasets

Many of the approaches just discussed are computationally
intensive and require methods to scale to large datasets.
Although it is important to note that GP inference in general
admits parallelization and distributed inference (Agrawal, 2020),
one should exercise caution when dealing with time series data
which exhibit strong dependencies or high correlations so that the
integrity of the temporal dependencies is maintained. Stochastic
variational inference algorithms for GPs have been successfully
applied to large datasets (Hensman et al., 2013) and provide a
path for scaling deep learning BNP methods to large and high-
dimensional datasets (Hoffman et al., 2013). One recent approach is
the use of sparse variational Gaussian processes (SVGPs). SVGPs
reduce the computational complexity of a standard Gaussian
process from O(n3) to O(nm2) by fitting a GP using a set of
m ≪ n inducing points, thereby providing an approximation to the
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exact GP. This approach has been extended to sequence-dependent
DGPs in Salimbeni and Deisenroth (2017), who introduce a doubly
stochastic variational inference method which does not impose
independence between layers, as there are typically high
correlations between layers. It was also shown to scale to billions
of data points and can be applied to inference problems using non-
conjugate priors. In Adam et al. (2021), the authors introduce a dual
parameterization for the SVGP which resulted in faster
hyperparameter learning and inference. However, an issue with
SVGPs is that for large M, the computational complexity scales to
O(m3 + nm2). This issue is addressed in Cunningham et al. (2023),
who use an inter-domain approach to project the GP onto a basis of
B-splines, facilitating computationally efficient linear algebra. An
alternative method is deep ensemble kernel learning (DEKL)
(Agrawal, 2020). DEKL partitions the feature network
architecture into several learners, which facilitates model
parallelism. As well, the kernel hyperparameters admit
optimization in closed form and the model does not rely on
inducing point approximations. Stochastic gradient Langevin
dynamics (SGLD) can also be used. Dubey et al. (2016)
introduced a method to reduce the variance in the noisy
gradients, and an algorithm for distributed inference was
introduced in Das et al. (2016). In Havasi et al. (2018), stochastic
gradient HamiltonianMonte Carlo (SGHMC) was shown to provide
more accurate inference in sequence-dependent DGPs than
variational inference methods when applied to medium-large
datastets. Methods scalable to large datastets are introduced in
Gürbüzbalaban et al. (2021).

4 Practical applications

Bayesian nonparametric (BNP) methods showcase versatility in
numerous domains. This section highlights their diverse
applications in three areas, specifically focusing on object
tracking, healthcare and biomedical data analysis, and speech
signal processing.

4.1 Object tracking

Object tracking aims to locate and follow the movement of
objects captured by a sensor, such as radar, GPS, or a camera over
time. Unlike traditional methods that assume a fixed number of
objects or rely on predefined detection models, Bayesian
nonparametric methods allow for flexibility in handling varying
object counts and diverse types of objects, as well as adapting to
varying environments (Moraffah et al., 2020). In Fox et al. (2006),
the authors consider the problem of multiple-object tracking when
the number of objects is unknown. This involves assigning
measurements collected by a sensor to their underlying targets.
Using a linear state-space model to model the dynamics of each
target and measurement, a Dirichlet process (DP) prior is placed on
the number of targets. Gibbs sampling is used to infer the target-
measurement associations and identify 10 targets based on their
measurement trajectories. In Caron et al. (2012); Neiswanger et al.
(2014), a time-dependent DP construction based on the generalized
Pólya urn scheme is introduced to track multiple objects in videos.

Each object is modeled as a multiplication of a multivariate Gaussian
and multinomial distribution to capture its location and RGB color
distribution. A dependent Dirichlet process (DDP) prior is placed
on the set of parameters corresponding to these distributions, which
allows the model to capture a range of object shapes and orientations
(Neiswanger et al., 2014). Using a variety of inference algorithms
including particle Gibbs and sequential Monte Carlo (SMC) with a
local Gibbs step, the authors apply their method to three scenarios.
The first is a video containing six ants exhibiting erratic behaviors
where the video background is a similar color scheme to the ants.
The second is human motion tracking, and the third aims to track a
population of T cells, where there is a large number of T cells per
frame. Their method exhibited high performance accuracy in each of
these scenarios. In, Moraffah et al. (2020), the authors consider the
problem of tracking a moving object in a highly-cluttered
environment. As the goal is to identify whether the measurement
corresponds to the object of interest or whether it is “clutter”, this is
ultimately a clustering problem. As such, the authors use two
conditionally independent DPs as priors on the labels
corresponding to the target and clutter measurement labels. Their
approach was shown to outperform comparable methods including
traditional Bayesian filtering and nearest-neighbor filters,
demonstrating the utility of taking into account clutters.
Approaches based on Hierarchical Dirichlet Processes (HDPs) for
identifying human motions have also been introduced (Tu et al.,
2019; Dhir et al., 2016). In Tu et al. (2019), the authors introduce the
Multi-label Hierarchical Dirichlet Process (ML-HDP) for multi-
action recognition. Interestingly, their three-tier model employs a
similar construction to those used in topic modeling, as the model
consists of high-level actions at one level which are combinations of
atomic actions at the second level (similar to latent topics in a topic
model), which themselves are combinations of local features at the
lowest level. Such a construction has the ability to capture a wide
range of human behaviors and is well-suited for weakly-supervised
settings (Tu et al., 2019).

On the other hand, object tracking methods based on deep BNP
models are limited and the full potential of these models to the object
tracking problem has yet to be realized. To this extent, although not
specific to time series, Sun et al. (2021) developed a deep kernel
learning (DKL) method for recognizing targets in remote sensing
images which relies on deep saliency kernel learning analysis. The
problems posed by remote sensing include the effects of varyingweather
conditions on the images as well as the presence of clutter-induced
noise. Furthermore, remote sensing images can exhibit diverse patterns
and features, but subtle differences may be present. A poorly designed
kernel mapping function may struggle to differentiate between similar
features. The flexibility of DKL architectures allow for the design of
network architectures that are better suited to handle the specific
challenges posed by the structure of kernel mapping functions in
remote sensing applications. The approach introduced in Sun et al.
(2021) was shown to outperform methods such as support vector
machines, dynamic Bayesian networks, and convolutional neural
networks on a range of real-world and synthetic datasets.

The field of object tracking has witnessed significant
advancements through the application of Bayesian nonparametric
methods, particularly in scenarios with unknown object counts and
diverse types of objects. While deep Bayesian nonparametric models
are yet to be fully explored in this context, recent developments, such
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as the work in Sun et al. (2021), showcase the potential for
addressing complex challenges in object tracking applications,
such as those encountered in remote sensing. As research
continues to evolve, these methodologies hold promise for
enhancing the robustness and adaptability of object tracking
systems across diverse real-world scenarios.

4.2 Healthcare and biomedical data analysis

Analyzing healthcare and biomedical data poses several
challenges, such as missing data and irregularly spaced samples,
high dimensional and large datasets, diverse time series originating
from different patients and different systems, and the
amalgamation of mixed data types. In tackling these
complexities, GPs have shown to be exceptionally valuable for
healthcare data analysis. GPs and their variants offer distinctive
advantages in this domain, excelling in tasks like missing data
imputation (Imani et al., 2019), predictive modeling (Colopy et al.,
2016), multi-task learning (Dürichen et al., 2014), and early
warning detection (Zhang et al., 2022). In Rinta-Koski et al.
(2018), a standard GP was employed to predict in-hospital
mortality among premature infants. The study examined data
from 598 NICU patients for which seven variables were
considered, including gestational age at birth, birth weight,
systolic, and mean and diastolic arterial blood pressure. A
three-part covariance kernel consisting of a sum of squared
exponential, linear, and constant kernels was used to capture
the bias and linear trend, as well as nonlinear effects.
Comparison to other classifiers such as the support vector
machine and the linear probit model demonstrated the utility of
GPs in predicting in-hospital death. Particularly noteworthy was
the model’s efficacy when combining features from time series
data, such as ECG heart rate and arterial blood pressure, with
clinical scores calculated upon admission. A similar study in
Colopy et al. (2016) aimed to identify which patients in the
step-down unit (SDU) are at risk of readmission to the ICU by
forecasting patient heart rate time series. Using SDU time series
data consisting of 333 patients and measurements for heart and
respiratory rates, blood-oxygen saturation, and systolic and
diastolic blood pressure, the study employed a change-point
detection approach to identify the transition from a normal
heart rate state to an abnormal state. This was done by
considering the deviation of the observed measurements from
the forecast. If such a deviation was sufficient, then this
indicated a deteriorating patient condition, which provided
6–8 h of advanced warning detection.

Employing multi-task Gaussian processes (MTGPs) further
enhances the benefits derived from the analysis of healthcare and
biomedical data compared to standard GPs. MTGPs can leverage
information from different patients and different types of time series
types, offering solutions to the aforementioned challenges and
improving modeling accuracy by taking into account the
correlation between different types of physiological time series. In
Dürichen et al. (2014), an MTGP is applied to real-world and
synthetic datasets consisting of different physiological time series.

The data are sparse, noisy and contained unevenly-spaced samples.
The study found that taking into account correlation between the
different vital sign time series yields improved predictive
performance in comparison to standard GPs, particularly in
regions of incomplete data. In Chen et al. (2023), an MTGP
model was introduced to estimate treatment effects in panel data.
Their model accounts for temporal correlations within and across
treatment and control groups. Furthermore, like MOGPs, MTGPs
can also handle data of mixed types. In Zhang and Shen (2012),
MTGPs were applied to the problem of Alzheimer’s disease
diagnosis using multi-modal data, where the clinical variables of
interest were of mixed continuous and categorical types. However,
the high computational cost O(m3n3) presents an obstacle. To this
extent, sparse multi-output GP methods can be employed which
involve placing sparsity-inducing priors on the weight matrix for the
multi-output covariance kernel (Cheng et al., 2020). This facilitates
scalability to large datasets. In summary, these studies underscore
the diverse applications of MTGPs in addressing the intricacies of
multi-faceted healthcare and biomedicine datasets, showcasing their
potential to improve predictive accuracy and handle data of varying
types and complexities.

Extending BNP deep learning approaches to multi-task
settings results in powerful models equipped with the
advantages of MTGPs and the ability to learn complex
relationships and patterns in data. This is demonstrated in
work by Zhang et al. (2022), who developed a real-time early-
warning model to predict COVID-19 patients at risk of being
placed on a ventilator. In their work, an MTGP was used for
missing data imputation and for transferring irregularly sampled
data to a regularly spaced grid. The data was then fed into a neural
network for prediction of the risk score trajectory. Their approach
allowed the model to predict the outcome prior to the patient
needing to be placed on a ventilator. A different but related model
was developed in Alaa and van der Schaar (2017), who employed a
multi-task DGP to assess a patient’s risk of multiple adverse
outcomes. The dataset consists of variables corresponding to
covariates associated with each subject, the time until an event
(e.g., cardiovascular or cancer) occurred, and an indicator
denoting the type of event that occurred. The event times are
modeled as a multi-output function of the patients’ covariates
using a multi-task DGP. This allows for non-Gaussian outputs as
survival times may exhibit asymmetric distributions. The model
consists of a two-layer sequence-dependent DGP, where the latent
variables are the outputs of a multivariate GP which in turn become the
inputs to the GPmodeling the survival times. Furthermore, the use of a
multi-task DGP facilitates the joint modeling of complex survival
distributions and complex interactions between the different
covariates with minimal assumptions (Alaa and van der Schaar,
2017). The efficacy of the multi-task DGP was evaluated on both
real-world and synthetic datasets. In particular, the synthetic dataset was
constructed with high heterogeneity between patient cohorts. In this
case, the multi-task DGP model was shown to outperform the MTGP
due to the highly nonlinear relationships between the covariates and
survival times, as well as the complex form of the survival time
distributions. Similar results were obtained for a real-world breast
cancer survivor dataset consisting of 61,050 subjects. These findings
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highlight the potential of BNP deep learning approaches in multi-task
settings to enhance predictive modeling in healthcare, offering valuable
insights for personalized patient care and medical decision-making.

4.3 Speech signal processing

Speech signal processing is a multifaceted area encompassing
various objectives such as speech signal representation, feature
extraction (e.g., formant analysis and pitch extraction), speech
recognition, speaker diarization, noise reduction, and emotion
recognition. Techniques such as infinite Hidden Markov Models
(iHMMs), GPs, and HDP-HMMs enable a data-driven analysis of
speech signals, facilitating the discovery of underlying structures,
improving speech synthesis methods, and enhancing the overall
efficiency and accuracy of speech-related tasks. This section
highlights the application of BNP methods to two problems:
speaker diarization and speech synthesis.

Speaker diarization is the task of partitioning an audio recording
of a conversation into segments corresponding to individual
speakers (Fox et al., 2011b). This is a challenging problem since
the number of speakers as well and their individual speech patterns
are often unknown a priori. The flexible nature of the nonparametric
paradigm places no assumptions in this regard. The class of BNP
approaches largely suited for this challenge consists of HDP-HMMs
and iHMMs. Fox et al. (2011b) introduced the “sticky” HDP-HMM
(see Section 2.1.1), which extends the HDP-HMM to capture state
persistence and prevents the model from switching too quickly
between states. The inclusion of a state persistence parameter
reflects the natural tendency of speakers to exhibit persistence in
their speech patterns. Both the transition and emission distributions
receive a nonparametric treatment, as speaker specific emissions are
better approximated by a multimodal distribution (Fox et al.,
2011b). The sticky HDP-HMM was shown to exhibit improved
performance on real-world and synthetic datasets. However, the
geometrically distributed state durations places restrictions on the
duration structure. This led to the development of the Hierarchical
Dirichlet Process Hidden semi-Markov Model (HDP-HsMM),
allowing for a more versatile selection of state duration
distributions. In Johnson and Willsky (2012), the Poisson
distribution is used as the state duration distribution. It is
frequently employed to model the count of events within fixed
intervals. Unlike the geometric distribution, the Poisson distribution
accommodates variations in the rate of event occurrences, which is
advantageous in scenarios where speakers may exhibit varying
speech patterns or engage in dynamic conversational behaviors,
such as in a debate.

Speech synthesis is the artificial production of human speech by
a computer or other device. It involves extracting dependencies
between acoustic and linguistic features to produce speech patterns.
To produce more natural sounding speech patterns, DGP-based
models have recently been introduced (Koriyama and Kobayashi,
2019b; Koriyama and Kobayashi, 2019a; Mitsui et al., 2021). This
hierarchical nature enables the model to capture dependencies at
different levels of abstraction, from low-level acoustic features to
high-level linguistic and semantic information. DGPs are shown to
be more effective than deep neural networks (DNNs), as DGPs are
less vulnerable to overfitting since the training objective is based on

the maximization of the marginal likelihood (Koriyama and
Kobayashi, 2019b). DGP latent variable models have also been
introduced for semi-supervised prosody modeling (Koriyama and
Kobayashi, 2019a). By treating missing prosody labels as latent
variables, the model is able to learn and generate expressive and
natural-sounding synthetic speech, even when some prosody
information is not explicitly provided during training. The
application of DGPs to speech synthesis has been extended to
multi-speaker speech synthesis (Mitsui et al., 2021). Instead of
using one model per speaker, one model is used for multiple
speakers, in a similar vein to multi-task learning. Two methods
are introduced for multi-speaker speech synthesis. In the first
method, simple one-hot speaker codes are combined with a DGP
model for training, similar to a single-speaker model. The second
method incorporates a more complex model, the Deep Gaussian
Process Latent Variable Model (DGPLVM), into a DGP-based
acoustic model and considers both acoustic features and speaker
representations as observed and latent variables, respectively. This
trains the system to generate speech while accounting for speaker
similarity and other factors like speaking rates. The research
demonstrates the ability to generate speech for non-existent
speakers by sampling from the latent space learned by DGPLVM,
offering potential applications in synthesizing diverse voices while
safeguarding speaker privacy. This capability can be utilized for
creative purposes, such as generating multiple characters for
entertainment purposes or providing users with their preferred
voices in multi-speaker speech synthesis.

5 Conclusion and future directions

This work has presented a comprehensive survey on existing
Bayesian nonparametric methods for time series analysis. These
methods provide potential solutions for several challenges which
arise when analyzing time series data, including those associated
with high-dimensional and large datasets (Hoffman et al., 2013; Al-
Shedivat et al., 2017), irregularly spaced or missing samples (Imani
et al., 2019), unknown underlying mechanisms (Frigola et al., 2014),
and mixed data types (Hong et al., 2023). The use of deep BNP
methods presents an exciting area of research which increases the
expressivity of standard BNP methods and captures state-or
behavior-specific dependencies while generally remaining robust
to overfitting and quantifying uncertainty. However, there are
several areas for improvement and future research.

To begin with, the increased expressivity of deep BNP models
comes at the expense of interpretability. Due to the many
transformations of the input, models with deeper architectures
can obscure the relationships between inputs and output
predictions. How do we balance this tradeoff? One strategy
involves approximating the DGP as a GP, where the moments of
the DGP are used to construct effective GP kernels with analytic
forms (Lu et al., 2020). This simplifies the modeling process and
paves the way for enhanced interpretability, although it may
introduce approximation errors.

Second, the application of deep BNPmethods to time series data
is limited. Thus, the application and evaluation of deep BNP models
on different types of time series and domains is needed. Does the
efficacy of DKL over DGP, or vise versa, depend on the specific
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dataset? What are the features of such datasets where this may be the
case? Do certain datasets require deeper architectures than others for
extracting meaningful information? One particular domain that has
been left largely unexplored by deep BNP models is climate data.
Climate change is one of the most pressing problems that our society
faces. Predicting future climate change trajectories and developing
adequate intervention is necessary for ensuring the health of our
planet. However, climate data are complex, nonlinear, and noisy,
and it is notoriously difficult to make predictions in climate systems.
As well, climate extremes exhibit non-stationary behavior which are
caused by temporal variation in the statistical properties in climatic
factors (Abrahamczyk and Uzair, 2023). Climate systems also
connect local short-term weather patterns with long-term global
climate change, which necessitates the use of methods that can
capture long and short-range dependencies. Given the myriad
benefits that deep BNP models have to offer in these areas, their
application to climate data could yield significant insights
concerning future climate change trajectories. Moreover, the
ability to provide robust uncertainty estimates is essential to
inform policy-making.

Another avenue for future research is applying deep BNPmethods
to cluster multiple time series data from different dynamical systems
with unknown transition dynamics. DKL can be used as a prior on the
state transition dynamics, and a DP prior on the DKL can induce
clustering based on similar dynamics. This can be advantageous in
scenarios where there are multiple time series from various systems or
processes and there is little domain expertise to inform the
construction of the covariance kernel. Furthermore, an extension to
a state-space setting can be done in a straightforward manner, where
the transition and/or measurement functions are unknown. Such an
approach will likely result in an increase in computational complexity
and necessitate the development of more sophisticated inference
algorithms. However, the inference methods discussed in Section
3.4 are promising in this regard.

Lastly, future research could focus on the development of
algorithms which can determine the optimal number of layers in
deep BNP models. This can aid in reducing computational

complexity, mitigate biases by alleviating the need for manual
tuning, and potentially bolster interpretability by employing no
more than the requisite number of layers. Furthermore, the
optimal model depth might vary depending on the specific
characteristics of the dataset. Developing an algorithm which
optimizes the number of layers can increase the longevity of
these types of deep learning BNP methods as the time series data
landscape continues to evolve.
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