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Since the COVID-19 outbreak, a major scientific effort has been made by

researchers and companies worldwide to develop a digital diagnostic tool to

screen this disease through some biomedical signals, such as cough, and

speech. Joint time–frequency feature extraction techniques and machine

learning (ML)-based models have been widely explored in respiratory

diseases such as influenza, pertussis, and COVID-19 to find biomarkers from

human respiratory system-generated acoustic sounds. In recent years, a variety

of techniques for discriminating textures and computationally efficient local

texture descriptors have been introduced, such as local binary patterns and

local ternary patterns, among others. In this work, we propose an audio texture

analysis of sounds emitted by subjects in suspicion of COVID-19 infection using

time–frequency spectrograms. This approach of the feature extraction method

has not been widely used for biomedical sounds, particularly for COVID-19 or

respiratory diseases. We hypothesize that this textural sound analysis based on

local binary patterns and local ternary patterns enables us to obtain a better

classification model by discriminating both people with COVID-19 and healthy

subjects. Cough, speech, and breath sounds from the INTERSPEECH

2021 ComParE and Cambridge KDD databases have been processed and

analyzed to evaluate our proposed feature extraction method with ML

techniques in order to distinguish between positive or negative for COVID-

19 sounds. The results have been evaluated in terms of an unweighted average

recall (UAR). The results show that the proposedmethod has performedwell for

cough, speech, and breath sound classification, with a UAR up to 100.00%,

60.67%, and 95.00%, respectively, to infer COVID-19 infection, which serves as

an effective tool to perform a preliminary screening of COVID-19.
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1 Introduction

COVID-19 (coronavirus disease 2019) is a contagious

infectious disease caused by the new SARS-CoV-2 (severe

acute respiratory syndrome coronavirus 2) virus, which was

declared a global pandemic on 11 February 2020, by the

World Health Organization (WHO) (World Health

Organization, 2020). According to information provided by

the Center for Systems Science and Engineering (CSSE) at

Johns Hopkins University (JHU), accessed on 31 July 2022,

almost 548 million people have been infected and more than

6.4 million people have died in the last two years. In Brazil, more

than 33 million cases have been reported (with more than

678,000 deaths), and in Canada, more than 4 million cases

have been reported (and almost 43,000 deaths) (Johns

Hopkins University, 2022).

Clinical manifestations of COVID-19 infection vary from

asymptomatic to symptomatic. This infection affects the

respiratory system and includes symptoms such as fever,

dry cough, dyspnea, headache, sputum production,

hemoptysis, myalgia, fatigue, nausea, vomiting, diarrhea,

abdominal pain, and loss of smell and taste (Oliveira et al.,

2020; Rai et al., 2021). About 25% of patients with mild-to-

moderate COVID-19 have been found to have dysphonia

since multiple body structures are linked to human voice

generation, such as the lungs, vocal folds, and laryngeal

muscle (Suppakitjanusant et al., 2021). Thus, respiratory

sounds such as cough, speech, and breath may be an

important biomarker for COVID-19 diagnosis.

Audio signals generated by body structures and organs

have been widely explored for diagnosis and monitoring of

diseases by clinicians and clinical researchers (Brown et al.,

2020). In Pramono et al. (2016), a pertussis identification

algorithm is proposed by using cough and whoop sounds.

They extracted several features, such as Mel-frequency

cepstral coefficients (MFCCs) and the zero crossing rate

(ZCR), and further used a logistic regression (LR)

model-based classifier. Pahar et al. (2021) utilized cough

sounds produced by patients with tuberculosis and other

lung ailments to distinguish both diseases by MFCCs and

the ZCR.

In the same direction, various research studies employing

respiratory sounds were conducted for COVID-19 screening

(Brown et al., 2020; Casanova et al., 2021; Schuller et al., 2021;

Verde et al., 2021; Pahar et al., 2022; Pleva et al., 2022; Sharma

et al., 2022; Villa-Parra et al., 2022). Cough and breathing

sounds from COVID-19, asthmatic, and healthy individuals

were utilized by Brown et al. (2020). A total of

733 dimensional features were extracted by several

methods, including MFCCs and the ZCR, which were

reduced afterward by principal component analysis (PCA)

and tested in classifiers such as LR, gradient boosting trees,

and support vector machines (SVMs). In Verde et al. (2021),

only voice alterations due to COVID-19 infection were

estimated by the main discriminant features used in clinical

practice to assess the voice quality and for voice classification,

such as MFCCs and spectral roll-off (SR). Experimental

research is presented by Pahar et al. (2022) to detect

COVID-19 with cough, breath, and speech sounds by using

deep transfer learning and bottleneck features, employing the

convolution neural network (CNN), long short-term memory

network (LSTM), and ResNet50 architecture for classification.

On the other hand, in Sharma et al. (2022), a model from

textural features and the k-nearest neighbor (KNN) classifier

was utilized in COVID-19 screening.

In this work, we propose a texture-based method for

COVID-19 respiratory sound classification, which captures

texture-related information from its spectrogram

representation. We hypothesize that using texture-based

features may increase class discrimination with low

computational complexity. Although texture-based

approaches are widely used in image classification, a lack of

research using them in biomedical signal processing is

observed. It is to be noted that the various aforementioned

research studies utilized acoustic (i.e., ZCR) or deep features

(i.e., deep transfer learning) (Sharma et al., 2022). Our study

utilized cough, speech, and breath sounds from three different

databases to evaluate our proposed methodology. The textural

information is captured by employing local binary patterns

and local ternary patterns.

This study is structured into four sections as follows.

Section 2 describes the dataset, followed by the proposed

system to detect the presence of SARS-CoV-2 through

cough, speech, and breath analysis. Afterward, the results

and discussions are presented in Section 3 and Section 4,

respectively, in which the performance of our approach is

analyzed. Finally, the conclusions about the proposed method

are given in Section 5.

2 Materials and methods

As shown in Figure 1, the workflow of our proposed

system to infer COVID-19 by cough, speech, and breath

sounds is presented. The following sections will detail

each step.

2.1 Dataset description

The COVID-19 sound dataset from Cambridge University

was utilized with mutual agreement for a research purpose. This

dataset is approved at Cambridge University, Department of

Computer Science and Technology, by following all requisites

from the ethics committee. In the following section, the databases

are described.
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2.1.1 ComParE 2021 CCS and CSS
In the INTERSPEECH 2021 Computational Paralinguistics

Challenge (ComParE), two out of four sub-challenges were used

in this work, which are the COVID-19 cough sub-challenge (CCS)

and the COVID-19 speech sub-challenge (CSS). For both CCS and

CSS, cough sounds and speech recordings with COVID-19 positive/

negative audios were used to predict a COVID-19 infection. The

“COVID-19 Sounds App” was used to collect audio data via

multiple platforms (a webpage, an Android app, and an iOS

app). Each participant was requested to provide one to three

forced coughs and say “I hope my data can help to manage the

virus pandemic” one to three times. Finally, each recording was

manually checked, resampled, and converted to 16 kHz and mono/

16 bit (Schuller et al., 2021). Table 1 shows a detailed sample

distribution for this dataset. It is to be noted that the number of

healthy individuals (labeled as # negative) is significantly higher than

individuals infected with COVID-19, especially for the cough

recordings (409 more healthy samples). To compare with

the ComParE sub-challenge results, the official challenge

partitions for training, validation, and testing were used in our

experiments.

2.1.2 Cambridge KDD
In this crowdsourced dataset, the aforementioned

“COVID-19 Sounds App” was also utilized to record, in

addition to cough and speech, breathing sounds. However,

as in the study by Brown et al. (2020), only cough and

breathing sounds were used in our study. Five different sets

of users were selected from this database: positive COVID-19

with cough as a symptom, positive COVID-19 without cough

as a symptom, healthy with cough as a symptom, healthy

without cough as a symptom, and asthma with cough as a

symptom. Unlike CCS and CSS, the Cambridge KDD database

is split between web-based and Android partitions (Brown

et al., 2020). As in the study by Sharma et al. (2022), in our

research, we utilized the subset, which is collected by the

Android application only due to the wide prevalence of

smartphone users. As for CCS and CSS datasets, the data

in Cambridge KDD are unbalanced (see Table 1), especially

for individuals who declared a clean medical history

(nonsmoking and no symptoms).

2.2 Audio image representation

In general, an audio can be represented through a two-

dimensional representation by considering the time and

amplitude variation. Figure 2A shows an example of cough,

speech, and breath sound signals in the time domain,

respectively. Audio can also be transformed into a time and

frequency representation. The time–frequency representation

(TFR) of the audio allows us to analyze its embedded data,

with spectrograms being the most commonly used (see

Figure 2B). A spectrogram represents short time periods of a

signal and the power spectrum for different frequency ranges,

and it can be visualized through an image for easy interpretation

(Sharma et al., 2022). In our study, we utilized the Mel

spectrogram to represent the COVID-19 respiratory sounds

(Zhou et al., 2021).

The Mel spectrogram is computed by extracting the

coefficients relative to the compositional frequencies with a

short-time Fourier transform (STFT). As the human ear does

not perceive frequencies on a linear scale (lower frequencies

FIGURE 1
Proposed scheme for COVID-19 screening using cough, speech, and breath sounds.

TABLE 1 Sample distribution of the databases utilized in our
experiments with respect to modality, number of COVID-19-
positive samples (#Positive), number of COVID-19-negative samples
(#Negative), and total number of samples (#Positive + #Negative, #
Total).

Database Modality #Positive #Negative #Total

CCS COVID-19 cough 158 567 725

CSS COVID-19 speech 308 585 893

KDD COVID-19 cough* 46 64 110

COVID-19 breath* 46 64 110

COVID-19 cough† 64 138 202

COVID-19 breath† 64 144 208

Asthma cough* — 104 104

Asthma breath* — 104 104

* Users who have declared cough as a symptom.

†Users who have declared to have a clean medical history, have never smoked, and have

no symptoms (no cough).
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are better to discriminate than higher frequencies), the main

idea of the Mel scale is to mimic the non-linear human ear

perception (Nanni et al., 2021; Zhou et al., 2021). Each frame

of the spectrum is passed through a Mel filter bank, and the

conversion between Hertz (f) and Mel (m) can be calculated

using Eq. 1.

m � 2595 log10 1 + 700f( ). (1)

2.3 Audio texture feature extraction

In order to use machine learning techniques for training

models to classify cough from COVID-19 and healthy

individuals, it is necessary to extract features from the Mel

spectrograms. Recently, various research studies using audio

textures have shown good results for pathological speech

screening (Sharma et al., 2020) and analysis (Sharma et al.,

2021), COVID-19 respiratory sound analysis (Sharma et al.,

2022), and lung sound classification (Sengupta et al., 2017).

Texture analysis is important in applications, such as face and

pattern recognition (Sharma et al., 2020). In the proposed

study, we extract two common texture features from the Mel

spectrogram images, local binary patterns, and local ternary

patterns, which will be described in detail in the following

subsections.

2.3.1 Local binary pattern
The local binary pattern (LBP) is widely used in image

processing for texture analysis because it is a simple and

efficient operator to measure the spatial representation of local

image texture and gray scale contrast. For instance, it has been

used in lung sound classification (Sengupta et al., 2017),

pathological speech screening (Sharma et al., 2020) and

analysis (Sharma et al., 2021), COVID-19 screening (Sharma

et al., 2022), scene classification (Abidin et al., 2018), and snore

discrimination (Demir et al., 2018). The original LBP, termed

“uniform,” compares each pixel of a neighborhood (the original

LBP considers a region of 3 × 3) to the center pixel value.

Negative results are encoded with 0 and the other with 1, and

its decimal correspondent number is used (Ojala et al., 2002).

Figure 3 shows an example of LBP. After extracting the Mel

spectrogram, the image representation was converted from RGB

to the gray scale. Thereafter, the LBP features were extracted

from the gray scale image. We selected a radius of 3 units and

eight sampling points as proposed by Sharma et al. (2022) and

FIGURE 2
Cough, speech, and breath signal representation. (A) shows the signals in the time domain; (B) shows the time–frequency Mel spectrogram
representation.
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normalized it by the L2 norm to make features invariant to

rotations, resulting in 59 dimensional LBP features.

2.3.2 Local ternary pattern
The local ternary pattern is an extension of the LBP local

texture descriptor, which is more discriminant and less

sensitive to noise in uniform regions. It has been used for,

e.g., speech emotion recognition (Sönmez and Varol, 2020),

fall detection (Adnan et al., 2018), and heart sound

classification (Er, 2021). Instead of representing values

through thresholds such as 0 and 1 as in the case of LBP,

LTP uses a constant threshold to represent (or convert) pixels

into three values: − 1, 0, and 1. In order to reduce the feature

vector dimension and computational time, each ternary

pattern is split into two parts, the upper pattern and the

lower pattern, as shown in Figure 3. The first one is the

positive part, whereas the second is negative (Tan and

Triggs, 2010). Similar to LBP, the LTP features were

computed over Mel spectrogram gray-scale images, with a

radius of 3 units; eight sampling points were selected, and

512 dimensional LTP features were utilized.

2.4 Experimental tests

Based on the aforementioned databases, our study focused on

different classification tasks to infer COVID-19 contamination,

which is described as follows.

2.4.1 CCS and CSS classification tasks
• C1: distinguish through cough sounds, users who have

declared they tested positive for COVID-19 from users

who have not declared a positive test for COVID-19.

• C2: distinguish through speech sounds, users who have

declared they tested positive for COVID-19 from

users who have not declared a positive test for

COVID-19.

• C3: distinguish through cough and speech sounds, users

who have declared they tested positive for COVID-19

from users who have not declared a positive test for

COVID-19.

2.4.2 Cambridge KDD classification tasks
• K1: distinguish by employing cough sounds, users who

have declared they tested positive for COVID-19 (COVID-

positive) from users who have not declared a positive test

for COVID-19 (non-COVID) and have a clean medical

history (nonsmoking and no symptoms.)

• K2: distinguish by employing cough sounds, users who

have declared they tested positive for COVID-19 and also

have declared cough as a symptom (COVID-positive with

cough) from users who have declared not to have tested

positive for COVID-19 and further have cough as a

symptom (non-COVID with cough).

• K3: distinguish by employing breath sounds, COVID-

positive users from non-COVID users.

• K4: distinguish by employing breath sounds, COVID-

positive users with cough from non-COVID users with

cough.

• K5: distinguish by employing cough and breath sounds,

COVID-positive users with cough from non-COVID users

with cough.

• K6: distinguish by employing cough sounds, COVID-

positive users with cough from users who have declared

not to have tested positive for COVID-19, have reported

asthma and cough as a symptom.

FIGURE 3
Example of LBP and LTP encoding from the Mel spectrogram.
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2.5 Classification and evaluation

After applying the feature extraction methods to cough,

speech, and breath data, the final feature vector is utilized as

input for a classifier. For both CCS and CSS databases, the

original partitions were maintained: 286 samples for training,

231 for validation, and 208 for testing. On the other side, the

Cambridge KDD dataset was split into 80% for training and 20%

for testing. In both databases, a 10-fold cross-trial validation was

utilized to avoid overfitting and underfitting. For both datasets,

the support vector machine (SVM) was explored to perform

binary classification. As the datasets are highly unbalanced, we

utilized the unweighted average recall (UAR) for comparison.

3 Results

As mentioned previously, two feature extraction methods

were evaluated. Figure 4 shows the results of all nine experiments

for both CCS and CSS and the Cambridge KDD database for

cough, speech, and breath classification with the SVM as a

classifier for COVID-19 screening.

In the case of CCS and CSS databases, the main objective of

both C1 and C2 experiments is to perform a binary classification

between COVID-19 positive and negative patients by using

cough and breath signals, respectively. Although LBP and

LTP-based features performed the same result for the

validation set (UAR = 80.00%), employing cough sounds

(C1), LTP-based features achieved better results for the test

set (UAR = 74.16%). Regarding C2, where speech samples

were evaluated, LBP-based features achieved better results

than LTP in both validation (UAR = 74.24%) and test

(UAR = 58.52%) sets. In addition to the original challenges,

one more experiment with CCS and CSS datasets was also carried

out to investigate if the combination of cough and speech sounds

could improve the distinction between COVID-19 and healthy

individuals. In this experiment (C3), the results obtained in the

test set for both LBP and LTP-based features are close. However,

they have a significant difference in the validation set for both the

UAR and F1-score.

For the Cambridge KDD dataset, six experiments were

conducted (K1 to K6) with cough and/or breath sounds. As

previously mentioned, the Cambridge KDD dataset has cough

and breath audio samples from individuals who reported cough

as a symptom or not. For almost all experiments (except K2 and

K6), the LBP-based features achieved better or equal results to

LTP in both validation and test sets. Also, to perform a binary

classification, we conducted experiments (K1–K4) to investigate

the impact of COVID-19 screening in patients with cough as a

symptom from those with a clean medical history (nonsmoking

and no COVID-19 symptoms). Experiment K1 demonstrated

good classification by using our approach in COVID-positive

and non-COVID individuals (UAR = 88.69%). As expected, in

experiment K2, a UAR of 100.00%was achieved using LTP-based

features in COVID-positive patients with cough and non-

COVID individuals with cough. On the other hand,

experiments K3 and K4 demonstrated that cough as a

symptom is not a major factor in inferring COVID-19, with a

FIGURE 4
Respiratory sound classification performance for various modalities (cough, speech, and breath) in terms of the UAR and F1-score. For each
experiment (C1–C3 and K1–K6), two feature extraction methods [the local binary pattern (LBP) and local ternary pattern (LTP)] were evaluated.
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UAR of 94.11% for COVID-positive patients and non-COVID

individuals, and 95.00% for COVID-positive patients with cough

and non-COVID patients with cough since they obtained good

performance using breath sounds.

As explained by Sharma et al. (2022), in experiment K5, we

also conducted an experiment using cough and breath audios

combined to perform a binary classification between COVID-

positive patients with cough and non-COVID individuals with

cough. A UAR of 97.37% and F1-score of 0.97 were achieved

using our LBP-based feature approach. On the other hand, these

results suggest that combining cough and breath sounds can

distinguish better between COVID-19-positive and -negative

patients than cough and speech sounds together.

Asthma is one of the most prevalent chronic diseases in the

United States, and respiratory infections are frequently thought

to be asthma triggers (Esmaeilzadeh et al., 2022). Patients with

acute asthma attacks frequently describe upper respiratory

symptoms, including cough, in the days before the

exacerbation starts (Pattemore et al., 1992). Then, we

conducted experiment K6 to evaluate if a cough sound from

an individual with a respiratory disease (asthma) can be

distinguished from a COVID-positive individual with cough.

In this experiment, LTP-based features achieved a UAR of

100.00% and F1-score of 1.00 for both validation and test sets.

4 Discussion

Since the COVID-19 outbreak, several research studies have

been conducted to infer infection by COVID-19 (Brown et al.,

2020; Schuller et al., 2021; Zhou et al., 2021; Pahar et al., 2022;

Pleva et al., 2022; Sharma et al., 2022; Villa-Parra et al., 2022).

From the experiments, we can find that the proposed audio

texture feature extraction can achieve a good performance in

COVID-19 screening. Coppock et al. (2022) presented a

summary of the INTERSPEECH 2021 ComParE. A cough and

speech UAR of 75.9% (Casanova et al., 2021) and 72.1% (Schuller

et al., 2021) was achieved, respectively. Although we reached a

slightly lower UAR for cough (UAR = 75.54%), it is worth noting

that we did not use any data augmentation and deep learning

methods. On the other hand, Solera-Ureña et al. (2021) achieved

a UAR of 69.3% without data augmentation using SVM as a

classifier. Unlike for cough, we did not achieve a good

performance for speech tasks compared to the baseline shown

by Schuller et al. (2021) (UAR = 72.1%). Casanova et al. (2021),

when exploring the same approach utilized for cough, had

achieved a UAR of 70.3%. Klumpp et al. (2021) explored Mel

spectrograms and various classifiers, such as LSTM, CNN, SVM,

and LR, with data augmentation, and a UAR of 64.2% was

reached. Brown et al. (2020) explored acoustic features in

their research, and AUC-ROC up to 0.82 was achieved for

binary classification. It is worth mentioning that various

research studies utilized the accuracy (ACC) and area under

the curve of receiver operating characteristic (AUC-ROC) as

metrics. Sharma et al. (2022) analyzed cough, speech, and breath

sounds collected from smartphones by using spectrograms and

textural features (LBP and Haralick’s), and an ACC of 98.9% and

72.2% for 2- and 5-class classification tasks were reached,

respectively. The authors utilized 120-dimensional features for

LBP and 14-dimensional Haralick’s features. In contrast, our

research utilized 59-dimensional features only. A study

conducted by Pahar et al. (2022) explored deep architecture

for COVID-19 detection, and they achieved an AUC-ROC of

0.98, 0.94, and 0.92, respectively, for all three sound classes

(cough, breath, and speech). Respiratory audio data are also

explored for chronic obstructive pulmonary disease (COPD)

detection. Srivastava et al. (2021) explored MFCC features and

achieved an AUC-ROC of 0.89. In addition to research using

respiratory audio in COVID-19 screening, various research

studies employing chest X-ray images are being conducted,

such as the one by Bhatt et al. (2021). In this work,

progressive resizing and transfer learning techniques are

explored in normal and COVID-19-infected X-ray images,

and an accuracy of up to 100.00% was achieved.

It is to be noted that various research studies explored

acoustic features (Brown et al., 2020; Pahar et al., 2022),

although textural features are still not much explored in audio

analysis, particularly for COVID-19 screening, thus opening

avenues in respiratory sound analysis. In general, our results

show that LBP achieved better performance than LTP. It is worth

mentioning that the main advantage of using LBP textural

features is the low computational complexity, thus facilitating

a mobile implementation of the proposed system to infer

COVID-19 using a smartphone.

5 Conclusion

In this work, we presented a framework to infer COVID-19

by using cough, speech, and breath audios using textural features.

For each respiratory sound, the Mel spectrogram was computed,

and two different methods for feature extraction were performed

over the Mel spectrogram gray-scale image: local binary patterns

and local ternary patterns. We have evaluated the features with

an SVM classifier for three different databases. Our study with

different feature extraction methods reveals that the LBP-based

feature is superior to LTP inmost of the experiments. In addition,

we have noticed that in a binary classification, cough sounds are

better to distinguish between COVID-19-positive and -negative

individuals.

As a limitation to our study, we performed the analysis using

a small sample size. Although good performance was obtained

with our proposal, it may not be a good alternative to detect

COVID-19. However, it creates new opportunities to develop

COVID-19 screening tools for telemedicine and remote

monitoring (Sharma et al. 2022; Villa-Parra et al. 2022). In
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future works, we will explore data augmentation techniques

(Saldanha et al., 2022), transfer learning (Bhatt et al., 2021),

and interpretable deep learning models (Joshi et al., 2021) to

improve the interpretability and usability of our framework to

help COVID-19 diagnosis.
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