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Developing models for identifying mild traumatic brain injury (mTBI) has often

been challenging due to large variations in data from subjects, resulting in

difficulties for themTBI-identificationmodels to generalize to data fromunseen

subjects. To tackle this problem, we present a long short-term memory-based

adversarial variational autoencoder (LSTM-AVAE) framework for subject-

invariant mTBI feature extraction. In the proposed model, first, an LSTM

variational autoencoder (LSTM-VAE) combines the representation learning

ability of the variational autoencoder (VAE) with the temporal modeling

characteristics of the LSTM to learn the latent space representations from

neural activity. Then, to detach the subject’s individuality from neural feature

representations, andmake themodel proper for cross-subject transfer learning,

an adversary network is attached to the encoder in a discriminative setting. The

model is trained using the 1 held-out approach. The trained encoder is then

used to extract the representations from the held-out subject’s data. The

extracted representations are then classified into normal and mTBI groups

using different classifiers. The proposed model is evaluated on cortical

recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium

imaging, prior to and after inducing injury. In cross-subject transfer learning

experiment, the proposed LSTM-AVAE framework achieves classification

accuracy results of 95.8% and 97.79%, without and with utilizing conditional

VAE (cVAE), respectively, demonstrating that the proposed model is capable of

learning invariant representations from mTBI data.
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1 Introduction

Mild traumatic brain injury (mTBI) is a common form of

brain injury and a growing public health problem. mTBI can

have long-lasting effects on patients’ cognitive abilities and social

functioning. The diagnosis of mTBI, specially at its early stages,

has remained challenging despite the negative effects it has on

patient’s quality of life (Iverson et al., 2000; Kou and Iraji, 2014;

Schmid et al., 2021). The main reasons for this include rapid

recovery of symptoms (e.g., loss of consciousness, confusion,

disorientation), and incapability of imaging methods (e.g.,

computerized tomography (CT) or magnetic resonance

imaging (MRI)) in detecting injury at the mild level (Ruff

et al., 2009). Hence, developing accurate mTBI diagnostic

methods is essential for an early diagnosis of mTBI and

providing proper and timely treatments to patients (Eierud

et al., 2014; Levin and Diaz-Arrastia, 2015). One major

challenge in mTBI identification is the undesirable variability

in the data obtained from subjects. Such variability poses

difficulties for accurate mTBI diagnosis by preventing mTBI-

identification models from being generalizable and transferable

to data from new subjects. Therefore, a robust feature extractor

for learning accurate subject-invariant injury-related features is

desired. In addition, limited data from mTBI subjects are often

collected or are available, posing the problem of having

inadequate data for training reliable models.

Recently, transfer learning has been utilized to extract

features by leveraging knowledge across domains, tasks, or

subjects. Cross-subject transfer learning aims at discovering

and exploiting invariant and generalizable features across

subjects. For example, transfer learning approaches such as

learning population level common spatial base dictionaries

(Morioka et al., 2015), spectral transfer using information

geometry (Waytowich et al., 2016), and regularizing classifiers

(Fazli et al., 2009) or feature extractors (Lotte and Guan, 2010),

have been proposed for brain computer interfaces (BCIs). In

(Bethge et al., 2022a), a multi-source learning framework based

on maximum mean discrepancy (MMD) alignment of

electroencephalography (EEG) data for emotion classification

was presented. In (Peterson et al., 2021), to classify arm

movements, a decoder model based on Hilbert transform was

trained using pooled electrocorticography (ECOG) data, and

tested on ECOG or EEG data from unseen subjects.

Invariant representation learning in neural networks,

suggesting the idea of using a latent space shared across

subjects, was presented in (Louppe et al., 2017; Xie et al.,

2017). In (Angjelichinoski et al., 2020) linear classifiers are

trained with multiple transfer functions to transfer data from

one subject to another. The idea of generative models, algorithms

that learn the posterior distribution of data via Bayesian rules,

has been recently proposed. Using deep generative models, the

original data are refined and converted into features that increase

the intra-class variations and minimize the inter-class variations

in the dataset. The most extensively used deep generative

learning models include the variational autoencoder (VAE)

and generative adversarial networks (GAN) (Goodfellow et al.,

2014). The advantage of VAE is the smooth latent representation

learning of data and bringing the ability to control the

distribution of the latent space, which can be combined with

feature learning methods. The principle of GAN has also been

applied to transfer learning to address the data variability

problem for domain- and subject-invariant feature learning

(Ming et al., 2019; Wu et al., 2020; Özdenizci et al., 2020;

Salsabilian and Najafizadeh, 2021a). For example, in (Li et al.,

2019), to generalize the models for EEG emotion recognition

across subjects and sessions, the marginal distribution is adapted

in the early layers of the neural networks using adversarial

training. In another work (Özdenizci et al., 2020), using an

adversarial inference approach, subject variability for motor

imagery decoding is decreased. A subject adaptation network

inspired by GAN was proposed in (Ming et al., 2019) to align the

distribution of data from different subjects. Autoencoder-based

neural representation learning models have also recently adapted

adversarial regularization for feature disentanglement. For

example, subject-invariant representations were learned via a

conditional variational autoencoder (cVAE) and an adversarial

network from unseen users’ EEG data in motor imagery BCIs

(Özdenizci et al., 2019). In (Han et al., 2020, 2021) disentangled

adversarial autoencoder (AE) and rateless AE (RAE) feature

extractors were proposed to extract nuisance-robust universal

features from physiological signals for stress level assessment,

demonstrating improvements in cross-subject transfer analysis.

In this paper, we present an mTBI-identification model using

cross-subject transfer learning and adversarial networks. The

proposed method consists of a long short-term memory-based

variational autoencoder (LSTM-VAE) representation learning

model with an attached adversarial network. In the proposed

model, the adversary network is utilized as a constraint for latent

representations to learn representations that are invariant to

cross-subject variability. The model can therefore, learn the

common structure of the data shared among subjects, making

it suitable for cross-subject feature learning and mTBI

identification. The LSTM-VAE model combines the

representation learning abilities of the VAE with the temporal

modeling capabilities of the LSTM. The adversarial network is

attached to the encoder in an attempt to ensure the latent

representation contains minimum subject-specific information.

After training, the trained encoder is used as a feature extractor,

and a separate classifier learns to predict mTBI or normal class

labels, given the latent representation obtained from the trained

encoder. We evaluate the proposed model using cortical activity

recordings of Thy1-GCaMP6s transgenic mice that were

obtained via widefield calcium imaging, before and after

inducing injury.

The rest of the paper is organized as follows. Methods,

including the description of the dataset as well as the
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proposed framework, are presented in Section 2. Results are

discussed in Section 3, and the paper is concluded in Section 4.

2 Methods

In this section, we first describe the details of the

experimental procedure, data collection, and preprocessing

steps. Then, we present the proposed LSTM-based adversarial

variational autoencoder (AVAE) and other feature extraction

models that we used for comparison.

2.1 Experimental procedure

Cortical recordings from Thy1-GCaMP6 transgenic mice

were acquired in the Department of Cell Biology and

Neuroscience of Rutgers University using widefield optical

imaging. All procedures were approved by the Rutgers

University Institutional Animal Care and Use Committee.

Animal models of mTBI, in comparison to studying mTBI

in human patients offer the opportunity of having control over

the experimental parameters and conditions, such as

maintaining the same site of injury and similar injury

severity levels across subjects. Among the animal models,

mice have been widely used (Morganti-Kossmann et al.,

2010; Marshall and Mason, 2019). The mouse model mimics

many features of TBI seen in humans, including cell death,

neuroinflammation, and changes in behavior (Morganti-

Kossmann et al., 2010; Wiltschko et al., 2015; Ellenbroek

and Youn, 2016; Marshall and Mason, 2019). An important

similarity between mice and humans is in their genetic makeup,

suggesting that findings from mouse studies can often be

related to human (Breschi et al., 2017; Beauchamp et al.,

2022). Nevertheless, while mice and human brains exhibit

similarities, there are differences between mice and humans

that must be considered when using them as models for brain

injuries. Among them is their quick healing process from

injuries, which should be taken into consideration when

studying brain injury’s long-term effects and recovery in

mice vs. human TBI models (You et al., 2007; Cortes and

Pera, 2021). Widefield calcium imaging in animals enables

recording of the neural activity with high temporal and

spatial resolutions. This imaging technique has been used to

study the relationship between cortical activity and behavior

(Zhu et al., 2017; Salsabilian et al., 2018; 2020b; Lee et al., 2020;

Salsabilian and Najafizadeh, 2021b), as well as investigating

brain’s functional changes in response to injury (Cramer et al.,

2019; Salsabilian et al., 2020a; Koochaki et al., 2020; Salsabilian

and Najafizadeh, 2020; Salsabilian and Najafizadeh, 2021a;

Koochaki and Najafizadeh, 2021; Cramer et al., 2022).

Data acquisition process, the experimental setting and the

injury procedure were described previously in (Zhu et al., 2018;

Salsabilian et al., 2019; Salsabilian and Najafizadeh, 2020). In

summary, Thy1-GCaMP6 transgenic mice were prepared with a

transparent skull and a fixation post to record cortical Ca2+

transient activity (Lee and Margolis, 2016; Salsabilian et al.,

2020b). The left hemisphere and a portion of the right

hemisphere were visualized using a custom-designed

microscope. The excitation light was filtered (479/40 nm;

Chroma) and reflected by a 50 dichroic mirror (Q470/lp,

Chroma). Through a 100 × 100 pixel sensor, filtered

fluorescence emission was captured at 100 frames per second

with a MiCam Ultima CMOS camera (Brain vision). On the day

of injury, a small craniotomy (~ 1 mm diameter) was made over

the left frontal bone motor cortex region, leaving the dura intact.

Trauma through craniotomy was caused in the motor cortex by

activating the controlled cortical impact device, with its

parameters set to cause mild trauma.

Spontaneous cortical activity from 12 animals were acquired

in two sessions, one prior to and one after inducing the injury.

Data obtained from the sessions prior to and after inducing

injury are referred here to as normal andmTBI data, respectively.

Each recording session included 8 trials of duration of 20.47 s.

2.1.1 Preprocessing
Relative GCaMP6s fluorescence calcium signal changes (ΔF/F

%) were computed in every pixel value by subtracting and then

dividing each pixel by the baseline. The baseline for each pixel was

defined as the average of the fluorescence intensities of that pixel in

the first 49 frames. We selected twenty-five 5 × 5-pixel regions of

interest (ROIs) or channels (i.e., C = 25) distributed over the cortex

based on their location according to S1 (Salsabilian et al., 2019). We

obtained timeseries from each ROI by calculating the average pixel

intensities within the ROI.

2.1.2 Dataset preparation
A sliding window with the duration of T = 400 and step size

of w = 20 time points is moved over the timeseries in each trial

(Figure 1). This duration was found to be optimal for capturing

the necessary information required for classification. The data

within each window is formed as a sampled data matrix

X ∈ RC×T. By collecting data from all the trials for subject i

(i ∈ {1, . . . , 12}), the dataset {(Xi
n, y

i
n)}Ni

n�1, where X
i
n denotes the

data from C = 25 ROIs under window n (n = 1 . . . Ni, with Ni =

1328 being the total number of windows), and yi
n ∈ {0, 1}

representing the mTBI or normal class label of data under

window n, is formed. Note that from the total number of data

samples Ni = 1328, the number of data per class label yi = 0 or

1 for each subject i is n = 664, resulting in balanced class labels.

To evaluate the subject-invariant feature learning

performance of the models in a cross-subject transfer learning

experiment, the subject attribute si is defined as the subject one-

hot encoded label, i.e., a zero vector of size 1 × 12 with 1 at the ith

index. The goal is to learn subject-invariant features and anmTBI

discriminative model that predicts class label yi
n from
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observation Xi
n, and is robust to subject variability. To achieve

this goal, we impose a requirement that latent representations of

autoencoders be independent of the subjects’ attributes si.

2.2 Feature extraction models

We now present the proposed subject-invariant feature

extraction approach and the mTBI-identification model. The

proposed model aims to achieve discriminative properties that

are robust to subject variability. The proposed method consists of

two components: an LSTM-based variational autoencoder and

an adversarial network. The autoencoder is first trained to

minimize the reconstruction error of the decoder to ensure

that the latent representation contains enough information to

allow for the reconstruction of the input. Next, the latent

representation is refined to include minimum subject-

dependent information by preventing it from predicting the

correct subject attribute using adversarial regularization. With

this approach, the model is capable of achieving latent

representations that contain discriminative properties that

correspond to the structure of the data that is common

among subjects and therefore, becomes robust to subject

variability. Finally, a separate classifier is trained to predict

mTBI or normal class labels, given the latent representation

obtained from the trained encoder as the feature extractor. In

addition, we incorporate conditional VAE (cVAE) in the decoder

architecture of the proposed model, to further explore the

benefits of removing subject-dependent information from

learned representations.

We compare the performance of the proposed model with

that of different variants of autoencoder models for feature

extraction. The considered models are a simple autoencoder

(AE), a variational autoencoder (VAE), a supervised VAE

(SVAE), and an adversarial variational autoencoder (AVAE).

The schematic illustration of the proposed model and other

considered autoencoder feature extraction models are shown

in Figure 2. Except SVAE, all the autoencoder models are trained

based on the mean squared error (MSE).

2.2.1 Autoencoder (AE)
AE (Figures 2A) reconstructs the input data X as X̂, by

learning how to effectively compress and encode the data, usually

in an unsupervised manner. The AE loss, LAE, is defined as

LAE � ‖X − X̂‖2. (1)

2.2.2 Variational autoencoder (VAE)
VAE (Figure 2B) is a probabilistic variant of AE, that uses

variational lower bound of the marginal likelihood, based on

Bayesian inference, to identify multivariate patterns in data.

The latent variable z is a stochastic variable given the input

data X. The probabilistic encoder approximates the posterior

qϕ(z|X), and the generative decoder represents the likelihood

of data X generation by the conditional probability pθ(X|z). To
make the model trainable, the reparameterization approach

introduced in (Doersch, 2016) was used. The loss function of

the VAE, LVAE(θ,ϕ), known as the evidence lower bound, is

defined as

LVAE θ,ϕ( ) � −E log pθ X|z( )[ ] + DKL qϕ z|X( )‖p z( )( ), (2)

FIGURE 1
Schematic representation of the proposed model architecture for mTBI subject-invariant feature extraction. Cortical activity from C =25
channels are collected. For each subject si, a sliding window with the duration of T and step size of w time points is used, and the sampled data
matrices {(Xi

n , y
i
n)} are collected. The yin ∈ {0, 1} represents the mTBI or normal class label. The autoencoder maps the data Xi

n to the latent
representation zin . The adversarial network is trained to minimize the subject dependency in the representations.
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where ϕ, and θ are the encoder and decoder parameters,

respectively. The first term in (Eq. 2) represents the

autoencoder reconstruction loss, and the second term is the

Kullback-Leibler (KL) (Kullback and Leibler, 1951) divergence.

The KL divergence is a measure of the similarity between the

prior distribution p(z) and the posterior distribution qϕ(z|X) of

the latent variable. Minimizing the KL divergence regularizes the

latent space.

2.2.3 Supervised variational autoencoder (SVAE)
SVAE (Figure 2C) method differs from VAE only in that the

data label yi
n is also used as input to the decoder. As such, the model

FIGURE 2
Autoencoder-based data representation learning models: (A) simple autoencoder (AE), (B) variational autoencoder (VAE), (C) supervised VAE
(SVAE), (D) adversarial VAE (AVAE), (E) proposed LSTM-AVAE.
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is trained in a supervised manner instead, which improves the

learning process. The label yi
n is concatenated with the latent

variable z in, and used as input to the decoder. The decoder

estimates the probability that Xi
n is generated for a given latent

variable z in and label yi
n. In the training phase, SVAE is first trained

first as VAE. Next, the network is fine tuned with the binary cross-

entropy reconstruction loss of the training data sample (Xi
n, y

i
n).

2.2.4 Adversarial variational autoencoder (AVAE)
In order for the model to be generalizable across subjects,

representations should be invariant to the subject attribute si. To
achieve this goal, we utilize an adversary network (Makhzani et al.,

2015) parameterized by qψ(.). The adversary network is attached to

the encoder to enforce the latent representations to include

minimum subject-dependent information (Figure 2D). The

adversary network is trained to maximize the likelihood qψ(si|z),
whichmaximizes its ability to predict subject attribute si. The VAE
is simultaneously trained based on two objectives: the decoder’s

reconstruction loss is minimized to ensure that the latent

representations include sufficient information for minimizing

the input reconstruction error; and the latent representation is

enforced to include minimum subject-dependent information by

preventing the adversary network from predicting the correct

subject attribute. This leads to a model, capable of extracting

discriminative features that are common across subjects. The

AVAE network is trained simultaneously by these objectives

with the loss function, LAVAE(θ,ϕ,ψ), defined as

arg min
ϕ,θ

max
ψ

LAVAE θ, ϕ,ψ( ), (3)

LAVAE θ,ϕ,ψ( ) � −E log pθ X̂|z( )[ ] +DKL qϕ z|X( )‖p z( )( )]

+ λ E log qψ si|z( )[ ],

where λ ≥ 0 denotes the weight parameter that adjusts the impact of

the adversary network. Note that AVAE is equivalent to VAE when

λ = 0. At each iteration, first, the log-likelihood (max objective) is

maximized and the parameters of the adversary network are

updated. Then, the parameters of the autoencoder in the min

Objective are updated towards the overall loss back-propagation.

2.2.5 LSTM-AVAE
In the proposed LSTM-AVAE model (Figure 2E), we

combine the timeseries feature representation learning

advantages of the VAE with the temporal modeling

performance of LSTM to extract features from data.

Bidirectional recurrent neural networks (RNN) have shown to

be advantageous over unidirectional RNN (Yu Y. et al., 2019),

and hence, here, we use a variant of VAE with its encoder and

decoder implemented by bidirectional LSTM networks.

In the proposed model, a bidirectional LSTM layer has two

sets of LSTM cells. For each input data sample Xi
n ∈ RC×T, a

sliding window with size l = 20 and step size r = 5 moves over

the data, creating the subsequent input sample points for the

bidirectional LSTM-encoder. The model is trained on the

obtained data points. The LSTM encoder iterates through

each point in both forward and backward manners. The

decoder, which has the same architecture as the encoder,

reconstructs the input sequence in reverse order (Srivastava

et al., 2015). In bidirectional LSTM, the final hidden state is

obtained as Hf � Hf
t ⊕ Hb

1, where Hf
t and Hb

1 are the final

hidden states resulting from the forward and backward

progress, respectively (Yu W. et al., 2019). In the LSTM-

VAE model, the posterior approximation function, qϕ(z|X),
is used to define the deterministic function H. Thus, the

LSTM-VAE learns the compressed information of the input

sequence as a region of the latent space. The randomly

sampled latent variable z from the posterior pθ(z|X) is fed

into the decoder’s LSTM. Similar to the AVAE, the adversary

network is attached to the encoder to detach subject variability

from the learned representations. After the LSTM-VAE model

is trained, the model parameters will be fine tuned with the

adversary network, similar to the training procedure of the

AVAE model.

The details of the architectures for the LSTM, the encoder,

the decoder, and the adversary network are summarized in

Table 1. The number of hidden layers is set to 1. As a result

of the bidirectional structure, the total number of hidden layers is

doubled. The number of LSTM hidden units is searched and the

results with the highest accuracy are reported. The learning rate

of 0.001, the batch size of 32, and the regularization drop-out

ratio of 0.2 were selected. For the encoder architecture,

20 temporal and 10 spatial convolutional units are used,

embedding the temporal and spatial filtering. The last fully

connected layer at the output of the encoder generates the dz-

dimensional latent parameter vector. Our experiments with

different activation functions in the architectures showed that,

on average, adding an activation function to the last layer and

using ReLU activation function offered slightly better results. The

classifier utilizes representation z as an input to a fully connected

layer with a softmax unit for class label discrimination. The

adversary network is realized as a fully connected layer with

8 softmax units for subject discrimination, to obtain normalized

log-probabilities that are used to calculate the losses. We used

temporal convolution kernel size of 20, and spatial convolution

kernel size of 30.

2.3 Classification

In the proposed model, after training the autoencoder

model, the trained encoder with frozen network weights is

utilized as an static feature extractor. The feature

representations are sampled from the learned encoder μx
and σx. An independent classifier is attached to the encoder

and is trained to estimate the class label yi
n given the input data

z in (Figure 3).
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The classifier is optimized to minimize the cross-entropy

loss, LC(z;γ), with the parameter γ, defined as

LC z;γ( ) � E −log pγ ŷ|z( )[ ]. (4)

After training, new input data Xi′
n passes through the trained

encoder, and the extracted feature representation z i′n is used as

input for the classification to predict the class category ŷi′
n .

We considered, multilayer perceptron (MLP) (realized as a

single layer with 15 neurons), nearest neighbors (NN), linear

discriminant analysis (LDA), linear regression (LR), and support

vector machine (SVM), as classifiers.

3 Results and discussion

7The goal of this work is to utilize subject-invariant feature

extraction to develop models for accurate mTBI identification. The

performance of themodels were evaluated in a cross-subject transfer

learning task with a 1 held-out subject training and testing approach.

That is, data from one subject was held out for testing. Data from the

remaining subjects were used for training. Data for training and

validation sets was formed by randomly selecting 80% and 20% of

the data from each of the remaining subjects, respectively. This

procedure was repeated for each held-out subject, and the accuracy

result averaged over all cross-subject runs was computed. The

autoencoder models were first trained using the training data

that were normalized to have zero mean. To prevent overfitting,

the validation set was used to stop the training process early. The

training process was terminated if the performance over the

validation set was decreased compared to the previous training

epoch. In our models, following the training of the autoencoder

models, the trained encoders with frozen weights were used as

feature extractors. Next, utilizing the feature representations from

the training set and their corresponding class labels y, a separate

classifier was trained as shown in Figure 3. To train the classifiers, the

binary cross-entropy loss was minimized with the class labels y. In

the last step, the held-out subject was used to assess the models’

cross-subject transfer learning performance. We repeated the

described training and testing procedures for all subjects, and

averaged the accuracy results over all cross-subject runs. The

average accuracy results for different feature extraction models

using the considered classifiers are reported in Figure 4. To be

consistent, these results are based on setting the dimension of the

latent representation feature, dz, to 10 for all models. This value was

selected based on further investigation about the effects of dz on the

models’ performance, as will be discussed in Section 3.3.

Overall, comparing the performance of all the classifiers, we

observe that on average, the MLP classifier offers the highest

accuracy with various models. The highest accuracy (= 95.8%) is

achieved by the proposed LSTM-AVAE using this classifier.

3.1 Impact of variational inference in
feature learning

To assess the impact of variational inference in learning

features for mTBI identification, we compare the results of AE

and VAE. From Figure 4, one can observe that VAE achieves

TABLE 1 Network architectures and parameters.

Encoder 20 1D Conv. (1 × 20) + ReLU

10 1D Conv. (30 × 1) + ReLU

Reshape + Fully connected layer

Decoder Fully connected layer

10 1D Conv. (30 × 1) + ReLU

2D Conv. (1 × 20) + ReLU

Adversary Fully connected layer + Softmax (dz × 12)

LSTM Encoder/Decoder 2 hidden layers, 10 units

Learning rate 0.001

Optimizer Adam

FIGURE 3
Classification model architecture.
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higher accuracy than AE for all the considered classifiers,

suggesting that variational representation learning allows for a

better feature representation extraction, ultimately resulting in a

more accurate mTBI identification model. The reason is due to

the additional tunable parameters in the VAE model, in

comparison to the AE model, that provide more control over

the latent distribution learning ability (Higgins et al., 2016b). It

has also been shown that VAE models are capable of learning

representations with disentangled factors (Higgins et al., 2016a)

due to the isotropic Gaussian priors on the latent variable, the

known power of the Bayesian models. The better performance of

VAE compared to AE models has also been shown previously in

other applications such as anomaly detection, object

identification, and BCIs (Dai et al., 2019; Tahir et al., 2021;

Zhou et al., 2021). As an additional point, comparing the results

of VAE with SVAE, suggests the added value of supervised

learning in training better models.

3.2 Impact of adversary network

The positive impact of adversarial networks in learning

generalizable representations that are domain-, task-, subjects-

and source-invariant has been shown recently in many

applications such as in drug molecular analysis (Hong et al.,

2019), decoding brain states (Du et al., 2019), brain lesion

segmentation (Kamnitsas et al., 2017), and evaluating subjects’

mental states (Bethge et al., 2022b). These methods learn

representations that are independent of some nuisance

variables such as subject-specific or task-specific variations. In

this case, there will be a trade-off between enforcing

representations that are independent of the nuisance variable

via adversary and retaining enough information for the

successful data reconstruction of the decoder. In our model

architecture, this trade-off can be balanced via the weight

parameter λ.

To investigate the impact of adversary networks on subject-

invariant feature learning in cross-subject mTBI identification,

we varied the value of the weight parameter λ, which adjusts the

impact of adversary network in feature learning, for λ ∈ {0, 0.01,

0.05, 0.1, 0.2, 0.5}. The AVAE and the proposed LSTM-AVAE

models with the MLP and LR classifiers were considered for

performance comparison. Note that for λ = 0 the models are

FIGURE 4
Average accuracy results of different models and classifiers in subject-invariant feature extraction for mTBI identification.

TABLE 2 Comparing the impact of the adversary network on the
model accuracy (MLP: multilayer perceptron, LR: linear
regression).

λ MLP LR

AC (%) F1 AC (%) F1

AVAE 0 80.2 ± 1.1 79.1 79.21 ± 1.5 70.1

0.01 81.6 ± 1.1 79.1 80.20 ± 1.3 78.6

0.05 82.4 ± 1.2 78.3 83.15 ± 1.0 81.4

0.1 84.1 ± 1.1 82.4 85.31 ± 1.0 82.4

0.2 85.4 ± 1.6 81.2 83.40 ± 1.1 80.1

0.5 83.1 ± 1.3 81.1 84.62 ± 1.5 77.2

LSTM-AVAE 0 85.7 ± 1.2 78.3 88.34 ± 1.1 73.3

0.01 88.3 ± 1.2 81.4 86.25 ± 1.3 77.4

0.05 91.2 ± 1.7 87.2 87.21 ± 1.4 82.1

0.1 95.8 ± 1.3 88.1 89.30 ± 1.2 83.1

0.2 92.2 ± 1.2 87.6 87.71 ± 1.1 78.4

0.5 87.3 ± 1.7 80.1 85.70 ± 1.4 78.6
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equivalent to simple VAE and LSTM-VAE models, respectively.

We computed the accuracy and F1 score of the classifiers for each

λ value, and the results are summarized in Table 2.

From Table 2, one can observe that for both methods and

considered classifiers, adding the adversary network to the

models (i.e., λ ≠ 0) increases the accuracy, further

emphasizing the positive impact of the inclusion of the

adversary networks in subject-invariant feature learning.

Moreover, it can be seen that the LSTM-AVAE and the MLP

classifier with λ = 0.1 achieves the highest classification accuracy

of 95.8%, which signifies the robustness of the proposed method

in cross-subject transfer learning for mTBI identification.

Moreover, we performed a repeated measures analysis of

variance (ANOVA) statistical test on the results of LSTM-VAE

and LSTM-AVAE, to statistically compare the performances of

the adversary and non-adversary LSTM models, i.e., LSTM-

AVAE and LSTM-VAE. We compared the accuracy results

for each held-out subject (test data) and across different

repeated runs using the MLP classifier. Results, as shown in

Figure 5, indicate a significant increase in accuracy with the

adversarial training (p = 0.02), which rejects the hypothesis that

results are equal across subjects and runs.

3.3 Impact of feature dimension

To investigate the effect of the feature dimension dz on the

models’ cross-subject classification performance and determine the

proper feature dimension dz, we considered different feature

dimensions dz ∈ {3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 18, 20}. The

VAE, AVAE, and the proposed LSTM-AVAE models were trained

with the extracted latent feature of different dimensions and their

optimized parameters, and the corresponding accuracy for the 1 held-

out subject averaged over all subjects using the MLP classifier was

computed. The results are shown in Figure 6. As can be seen, the

highest accuracy is obtained when dz = 10. Increasing the size of

features further than dz = 10, does not improve the accuracy results of

the models, suggesting that higher feature dimension does not

provide additional information for the models. Moreover, the

result illustrates that LSTM-AVAE provides higher accuracy than

VAE andAVAE for all feature dimensions, indicating the importance

of including temporal information for mTBI identification, as will be

discussed further in the next section.

3.4 Impact of temporal information for
mTBI identification

The significance of considering temporal dependency in the

analysis of brain activity has been previously noted (Linkenkaer-

Hansen et al., 2001; Cornblath et al., 2020; Gu et al., 2021). For

example, the added value of considering temporal dependencies has

been shown in applications such as emotion recognition (Alhagry

et al., 2017) or gait decoding from EEG data (Tortora et al., 2020), or

using LSTM recurrent neural networks in discriminating motor

tasks from EEG data (Shamsi et al., 2021). Recently, it has been

shown that considering the temporal dependency in the GCaMP

brain dynamics also improves the performance of the analysis. For

example, considering temporal data in studies such as (Salsabilian

and Najafizadeh, 2021b; Perich et al., 2021) has improved the

behavior decoding and modeling performance using GCaMP data.

Moreover, the improved performance of the VAE models

along with LSTM models has been shown in some studies. For

example, in (Niu et al., 2020), the added value of considering

temporal information is shown using an LSTM-based VAE-GAN

network for timeseries anomaly detection. In (Park et al., 2018),

using an LSTM-based VAE detector has improved the

performance of the robot-assistive model.

In the case of brain injury, brain functional connections may

have been disrupted, and considering temporal information may

indeed help to find these disruptions and alterations of the brain

communication flow. To investigate whether including the

temporal dependencies can lead to more precise predictions of

mTBI, we used an LSTM network to introduce the temporal

dependency to the VAE model. In the presented structure for the

LSTM-VAE, the model projects the multivariate timeseries into

the latent space representations at each time step, and the

decoder uses the latent space representations to reconstruct

the input. In this approach, the temporal dependency between

the points in each data sample (i.e. X) is processed by the LSTM

in the VAE model.

To assess the impact of capturing the spatio-temporal

features of the data for mTBI identification, we compare the

results of VAE to LSTM-VAE and the results of AVAE to

LSTM-AVAE in Figure 4. It can be observed that although

we considered temporal and spatial convolution layers in

the structure of the autoencoders (see Table 2), all classifiers

achieve higher accuracy results with the LSTM-based

models (LSTM-VAE and LSTM-AVAE) compared to

FIGURE 5
Statistical analysis using ANOVA test comparing adversary
(LSTM-AVAE) and non-adversary (LSTM-VAE) models (p =0.02).
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their non-LSTM counterparts (VAE and AVAE). This result

demonstrates that the LSTM-based models are effective in

extracting and learning the temporal dependencies in the

neural data that are informative for mTBI identification.

The highest accuracy of 95.8% is achieved by the proposed

LSTM-AVAE using the MLP classifier.

3.5 Subject-specific performance

The accuracy result of the LSTM-AVAEmodel with the MLP

classifier, dz = 10, and λ = 0.1 obtained for each subject is reported

in Table 3. We observe that the proposed model is capable of

achieving high accuracy among all subjects with a minimum and

maximum mean accuracy of 91.96% and 98.79%, respectively.

3.6 Impact of conditional decoder

Inspired by recent studies that suggest the experimental results

benefit from utilizing conditional VAE (cVAE) (Sohn et al., 2015) in

removing the impact of a nuisance variable from the learning

representations (e.g., (Özdenizci et al., 2019)), here, we adapt

cVAE in the proposed architecture to explore its impact in

further removing subject-dependency from mTBI latent

representations during training of the encoder. In cVAE, the

decoder is conditioned on a nuisance variable as an additional

input besides the latent representations. In this way, as the nuisance

variable is already given to the decoder, the encoder is expected to

only learn representations that are invariant of the nuisance variable.

The loss function of the cVAE, LcVAE(θ,ϕ), is given by

LcVAE θ,ϕ( ) � −E log pθ X|z, s( )[ ] + DKL qϕ z|X( )‖p z( )( ). (5)

Considering that only the encoder is used for

classification, conditioning the decoder on subject variable

s, will not affect the rest of the modeling and classification

chain. Here, we consider the LSTM-A-cVAE model, by

conditioning the decoder in the LSTM-AVAE model on the

subject label si. We compare the performance of LSTM-A-

cVAE with LSTM-AVAE considering the LR and MLP

classifiers with λ = {0.1, 0.2}. The training and testing

procedures were kept similar to as described earlier. Results

are presented in Table 4. We observe that conditioning the

VAE on the subject variable has increased the accuracy by 2%

FIGURE 6
Classification accuracy results of the LSTM-AVAE and the VAE models (λ =0.1) for different dimensions of the latent feature, dz, using MLP
classifier.

TABLE 3 Subject-specific classification accuracy results of LSTM-
AVAE with MLP classifier.

Ac (%) Ac (%)

Subject 1 94.58 ± 3.75 Subject 7 98.79 ± 3.52

Subject 2 93.76 ± 5.01 Subject 8 95.85 ± 5.63

Subject 3 92.79 ± 4.51 Subject 9 91.96 ± 3.51

Subject 4 97.86 ± 5.82 Subject 10 97.82 ± 3.11

Subject 5 98.68 ± 3.71 Subject 11 92.77 ± 4.17

Subject 6 95.79 ± 2.84 Subject 12 96.87 ± 3.09

TABLE 4 Impact of conditional decoder on accuracy.

λ MLP LR

AC (%) AC (%)

LSTM-AVAE 0.1 95.80 89.30

0.2 92.2 87.71

LSTM-A-cVAE 0.1 97.79 91.12

0.2 94.33 90.31
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on average in cross-subject transfer learning, suggesting the

added value of cVAE in removing subject-dependent

information from representations for cross-subject mTBI

identification.

4 Conclusion

In this paper, by taking advantage of adversary networks and

proposing an LSTM-AVAE model, we addressed the problem of

subject variability, which imposes challenges in extracting injury-

related features for accurate mTBI diagnosis. The proposed

model considers the temporal dependency of neural data and

learns representations from neural data, while the attached

adversary network disentangles the subject-related information

from learned representations, making the model proper for

cross-subject feature extraction. The experimental results

demonstrated the benefits of the proposed LSTM-AVAE

model for accurate mTBI identification, proving the ability of

the model in extracting robust subject-invariant features. The

proposed approach can be generalized to other domains to learn

subject-invariant features.
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