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Two vital signs including heartbeat and respiratory rate are monitored in this work under
two constraint situations; namely noise disturbance and intermittent observations. The
existing scheme for finding, measuring and monitoring vital signs was Fourier Transform
which could not deal with non-stationary process. As an alternative, theWavelet Transform
is used in this work which is equally applicable to both stationary and non-stationary
processes. Additionally, the loss of output data may result in crucial implications in
observing vital signs. Formerly, only un-interrupted data has been amalgamated in
tracing vital signs. A novel adaptive ARMA-based scheme is proposed to obtain
optimum estimated results in the presence of the above two critical scenarios.
Simulation results obtained on real (practical) data show that the ARMA-based model
produces similar vital signs as shown by clean and un-distorted data. It is shown that the
proposed ARMA-based algorithm improves the breathing rate accuracy by 0.3% and
heart rate accuracy by 2.5% as compared to the existing AR-based vital signal
reconstruction algorithm.
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1 INTRODUCTION

Formerly, the Ultra-Wide Band (UWB) standards were allowed unauthorized operation in the area
of 3.1–10.6 GHz (Fernandes and Wentzloff, 2010). Since the authorization of UWB by the Federal
Communication Commission in 2002, Ultra-Wide Band has a huge contribution in wireless
communication (Fontana, 2004; Li et al., 2010; Choliz et al., 2011) and radar sensor applications
(Oziel et al., 2017; Fear et al., 2002; Buehrer et al., 2003; Lazaro et al., 2009; Thiel et al., 2010). Ultra-
Wide Band has many advantages namely strength in harsh environments, location accuracy and high
penetration capability (Briso et al., 2019), etc.With the help of IR-UWB radar, both micro andmacro
movements can be sensed inside the human body (Staderini, 2002). For such reasons, UWB has large
applications in the medical field because it consumes less power and provides higher extensional
quality (Grewal and Andrews, 2001). The monitoring of vital signs has acquired greater attention in
case of surveillance of non-communicable patients and the search for people after natural disasters
(Khan et al., 2020; Le, 2020; Yang et al., 2020). Figure 1 shows the experimental setup for this work.
The patient is sitting in front of the radar in a range of around 1 m. The radar signal is back scattered
from the human body as well as the background environment. The background signal is considered
as clutter and removed using a moving averaging filter while the moving part of the signal contains
the displacement caused by the human lungs and heart. These periodic motions are extracted from
the signal using signal processing techniques explained in Section 2 of this work.
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The standardmodel of static UWBCramer et al., (2002) can be
expressed as

y(α) � ∑M
j�1

ρjφj α − nj( ) (1)

The extended version used in the multi-channel UWB model
(Liu et al., 2019), is developed as follows:

y(t, α) � ∑M
j�1

ρj(t)φj α − nj(t)( ) (2)

In the above equations, α is the time delay and t shows time
instance. The most scattered M-line overlap is the channel
model parameter y(t, α). The time of arrival of the path is
specified by j which can be accessed by nj(t). ρj(t) represents
the magnitude of the path and φj(α − nj(t)) shows the path
waveform. Previously, the Fourier Transform (FT) has
remained a dominant scheme for vital sign monitoring of
patients (Khan et al., 2020). Although many researchers use
FT algorithm for respiration and heart rate measurement using
band pass filtering. However, sometimes respiration signal
generates harmonics at integral multiples of the breathing
frequency and some of the harmonics overlap the heart rate
frequency region. Since the respiration movement has higher
magnitude than heart rate so it becomes difficult or impossible
to extract heart rate using simple band pass filtering. For such
reasons, FT is not a suitable choice for analyzing non-
stationary data (Khan et al., 2018). Therefore, it is still
highly desirable to introduce a method that can
simultaneously provide information about frequency
localization and time localization. In this concern, Short
Term FT (STFT) fulfills the need for synchronous frequency
and time information (Khan and Cho, 2017), Employing STFT
can lead to decision problems such as the selection of window
size and time resolution (Khan et al., 2020). Another essential
dilemma of STFT is its immutable window size. Due to this,
narrow windows provide high time resolution, but frequency
accuracy is low, while wide windows provide improved
frequency accuracy but poor time accuracy. A continuous
Wavelet Transform (WT) has been developed as an
alternative way to convert short time FT to solve the above-
mentioned problem. An important characteristic of WT is that
it provides result even with variable window size, hence

extracting information through WT is much attractive than
FT (Shen et al., 2018).

An important challenge in this field is to deal with the
intermittent or anomalous data that can occur for a variety of
reasons. No doubt, the availability of output data for
processing purposes is necessary for majority of
communication systems. In this connection, it is perhaps
more crucial to consider the possible consequences of
interrupted or intermittent data in case of diagnosis of a
patient. The main cause of data loss occurs when the
patient’s position is slightly offset and does not accurately
face the radar/sensor for a period of time, so the Radar Cross
Section (RCS) with a narrow beam width in front of the
antenna is reduced, resulting in intermittent measurement.
In this case, we ignore the outliers and treat them as missing
data. This paper also aims to identify such data loss and
propose remedial measures in the form of robust
algorithms. In a related work (Gu et al., 2013), a radar
sensor system with camera aided random body movement
detection and tracking was presented. However, it is
expensive to use additional camera for tracking the body
movement. In (Cardillo et al., 2021), only one radar sensor
is used for both vital signs and motion detection, however,
the motion considered in that work is due to the radar
sensor and human body motion was not considered in
that work. In our presented work, the source of the
interrupted or intermittent data is not important. The main
contributions of this paper are best explained in schematic
shown in Figure 2, which also illustrates the strategy used in
this paper.

It is necessary to state that data loss can be recovered
through many techniques which mainly depends on the
structure or pattern available in the data. As assumed in
(Khan et al., 2019), this paper assumes that the processing
time interval is limited enough so that the signal can be seen as
being almost stationary. The main contribution of this paper is
that it proposes an algorithm based on WT and ARMA model.
A proper wavelet is carefully selected to detect the breathing
and heart rate signal in the radar back scattered signal. An
ARMA model is proposed for predicting the missing data that
may cause inaccuracy in the vital measurement process.
Another contribution is that this work is based on real
radar data which was collected in a university hospital from
a patient.

The structure of this paper is given as: Section 2 describes
the details of existing techniques for data Loss. Section 3
contains Auto-Regressive Moving Average (ARMA) based
model and Wavelet Transform. Section 4 describes the
scenario when there is no data loss in the measurement of
vital signs. Section 5 introduces the case of data loss during
vital signs measurement. Section 6 includes measurement
recovery through AR-based model. Section 7 includes loss
recovery measurement through proposed ARMA-based
model. Finally, Section 7 concludes this work and
discusses possible future work in this research area.

It is worth mentioning that all the results obtained in this
paper are based on radar technology using Xethru X4 (Novelda,

FIGURE 1 | IR-UWB radar working principle.
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Norway) sensor (Andersen et al., 2017). The central frequency
of this radar sensor is 8.7 GHz with a bandwidth of 2.9 GHz. The
output power, pulse repetition frequency and beam width
parameters are -12.6 dB m, 400 MHz and 65°, respectively.
The sensor has a very fine range resolution of 6.4 cm. It
consists of one transmitter and one receiver antenna. The
radar sensor was connected to PC through USB cable. The
radar back scattered signals were processed in the PC using
Matlab software.

2 EXISTING TECHNIQUES FOR PACKET
LOSS

Several mechanisms exist which handle data loss, such as
Open-Loop Estimation (OLE) and Compensated Closed-
loop Estimation (CCLE). In the following sub-sections,
these algorithms are briefly elaborated with associated
shortcomings.

2.1 Open-Loop Estimation
It is a very simpler scheme devised for data loss and has been
employed in numerous application. The basic mechanism of OLE
is discussed as follows:

For a discrete-time LTI system, with dynamics

xk+1|k � Axk|k + Buk + ωk

yk+1|k � ϑk+1 H xk+1 + θk+1( )
the standard Kalman filtering estimates xk+1|k in two steps namely
prediction-cycle and update-cycle. Contrary to the standard
Kalman filter, the OLE is summarized in Algorithm 1. OLE is
a fast algorithm for signal recovery, however, it may cause
divergence in case of adequate data loss and sudden crusts
and troughs may appear in recovered signal. Further, it may
be difficult to reach the steady state after resumption of the
original signal. Due to these limitations, series-based algorithms
are proposed in the next section to predict the missing part of the
signal.

FIGURE 2 | Graphical representation of the paper strategy.
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Algorithm 1. Open loop estimation

2.2 Series-Based Algorithms
The compensated closed-loop scheme has efficiently reconstructed
the missing data and promising estimation results have been
achieved. The recent achievements obtained through this model
can be seen in Khan et al. (2013) and Khan et al. (2010). Data loss
occurred in series which may have any trend are more expected to
be recovered through Autoregressive (AR) series. These series
include AR, MA, and ARMA to name but a few. Human vital
signal possess a periodic trend, therefore it can be recovered
through AR series. AR model employed for compensation of
measurement has the mathematical formulation as

�yk � ∑W
j�1

γjyk−j (3)

where γj are prediction coefficients, yk−j are previous samples of
observation stored in memory stack, andW is the order of linear
prediction filter. The optimum values of the prediction
coefficients can be computed as

Ar � R−1
r rr (4)

where,

Ar� γ1 γ2 . . . . . . . . . ‥ γW[ ]T (5)

is the vector containing the unknown coefficients,

ri� rr[1] . . . . . . . . . . . . . . . rr[W][ ] T (6)

is the linear prediction array and

Rr �
Rr[0] Rr[1] . . . Rr[W − 1]
Rr[1] Rr[0] . . . Rr[W − 2]
«

Rr[W − 1]
«

Rr[W − 2]
1
. . .

«
Rr[0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

is the auto-correlation matrix. The elements of linear prediction
array and auto-correlation matrix can be obtained as

E yT
k−jyk−i[ ] � Rr[0], if j � i;

Rr[|j − i|], if j≠ i.{ (8)

With the help of Equation 4, the optimal values of linear prediction
coefficients are computed which are then employed in finding the

lost samples using Eq. 3. The AR model uses only measurement
vector for linear prediction coefficient (LPC) computation, however,
in our proposed ARMA-based reconstruction of vital signal the
input as well as measurement vector are used for LPC computation
which improves the prediction accuracy.

3 PROPOSED ARMA-BASED MODEL AND
WAVELET TRANSFORM

In the subsequent section, we present the proposed model which
is based on ARMA series.

3.1 Proposed ARMA-Based Model
The data recovery scheme used in this paper is based on ARMA
based model. The mathematical description of ARMA based
model is as follows;

�yk � ∑W
j�1

γjyk−j +∑W
j�1

δjuk−j (9)

where,
In the above equations, W represent filter linear prediction

order, yk−j shows sensor readings and uk−j shows the input signal
to the plant/system. The symbols cj and δj represent weights given

FIGURE 3 | Algorithm for removing clutters.

FIGURE 4 | The Daubechies (db-2) wavelet.
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to measurements and input respectively. The error resulting by
this compensating vector would be

ek � yk − �yk (10)

where yk is the actual observation vector. In order to compute
linear prediction coefficients efficiently, the cost function consists
of mean square prediction error as;

J �defE e2k[ ] (11)

or

J � E yk −∑W
j�1

γjyk−j −∑W
j�1

δjuk−j⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ (12)

In order to find the optimal value of γj, which will result in the
minimum cost function, we proceed as

zJ

zcj
� 2E yk −∑W

j�1
γjyk−j −∑W

j�1
δjuk−j⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦yk−i � 0 (13)

E γj ∑W
j�1

yk−jyk−i⎡⎢⎢⎣ ⎤⎥⎥⎦ + E δj ∑W
j�1

uk−jyk−i⎡⎢⎢⎣ ⎤⎥⎥⎦ � E ykyk−i[ ] (14)

Let

E ykyk−j[ ] � l1
E yk−jyk−i[ ] � L1

E uk−jyk−i[ ] � L2

(15)

Substituting Eq. 15 in Eq. 14 will result in

L1γj + L2δj � l1 (16)

In the similar way, the optimal value of δj are calculated as

zJ

zδj
� 2E yk −∑W

j�1
γjyk−j +∑W

j�1
δjuk−j⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦uk−i � 0 (17)

E γj ∑W
j�1

yk−juk−i⎡⎢⎢⎣ ⎤⎥⎥⎦ + E δj ∑W
j�1

uk−juk−i⎡⎢⎢⎣ ⎤⎥⎥⎦ � E ykuk−i[ ] (18)

E ykuk−j[ ] � l2
E yk−juk−i[ ] � L3

E uk−juk−i[ ] � L4

(19)

Substituting Eq. 19 in Eq. 18 will result in

L3γj + L4δj � l2 (20)

Multiply Eq. 16 by L4 and Eq. 20 by L2 and solve
simultaneously i.e.

γj � L1L4 − L2L3[ ]−1 L4l1 − L2l2[ ] (21)

Multiply Eq. 16 by L3 and Eq. 20 by L1 and solve
simultaneously i.e.

δj � L2L3 − L1L4[ ]−1 L3l1 − L1l2[ ] (22)

Using Eq. 21 and Eq. 22, the auxiliary measurement vector
can be reconstructed through a model depicted in Eq. 9.

Algorithm 2. Filter order selection

Additionally, it is fundamental to decide the optimal value
of prediction filter orderW. Various schemes can be proposed
to compute this important parameter. The importance of
this parameter can be judged from the fact that a high
value of W will take a large number of samples to
reconstruct the missing sample and hence will consume
more computational time. On the other hand, a smaller
value of W may generate degraded results at the price of
less computational time. Hence, it is a task for the designer to
devise an optimal value of W to result in optimum
achievements. In Algorithm 2, a simple and
straightforward mechanism is proposed to decide the order
of prediction filter, when samples start missing at kth
instance.

3.2 Clutter Removal and Wavelet Transform
Due to the vital limitations of FT-based scheme, this paper aims
to employ Wavelet Transform (WT) as an alternate, and hence, a
brief review of WT is considered to be beneficial. IR-UWB radar
surrounds the body under study. From the patient’s body,
constant reflected rays are received. The received signal from
the body contains data, stored in an m ×n matrix, where m is the
sample size in the slow time and n represents the occurrence of
the sample in the fast time. First, search for the column with the
highest power. For clutter cancellation, the signal must pass
through a filter, such as a notch filter (Sifuzzaman et al., 2009;
Chia et al., 2005; Grewal and Andrews, 2001. From a graphical
perspective, the clutter removal process can be seen in Figure 3.
Mathematically, the separator can be described as follows (Wang
et al., 2017.

y(t) � ay(t − 1) + (1 − a)u(t) (23)

g(t) � u(t) − y(t) (24)

where, y(t), u(t) and g(t) represent the clutter signal, original
signal and clutter free signal respectively.

The Wavelet coefficients are achieved by applying WT on the
clutter free signal. In addition, the mother Wavelet used in this
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case is Daubechies-2. The pictorial view of db-2 Wavelet is given
in Figure 4.

The Wavelet coefficients are obtained after the Wavelet is
applied to the clutter-free signal. It needs to be noted that the
Wavelet coefficients, when plotted on Energy-Spectral Density
(ESD) graph, provide scale value. Another commending feature
of Wavelet transform is that it gives Scale-to-Frequency graphs
(for example Figure 5) Tariq et al. (2017). So, core objective of
Figure 5, is to locate the corresponding frequency of scale factor
related to heart rate or respiration rate. This strategy is adopted
for the detection of vital signs in the following four scenarios:

1. Analysis of Normal Scenario (discussed in Section 4)
2. Consequences of data loss (discussed in Section 5)
3. Analysis after Recovery of Data Loss through AR-based Model

(discussed in Section 6)
4. Analysis after Recovery of Data Loss through ARMA-based

model (discussed in Section 7)

4 ANALYSIS OF NORMAL SCENARIO

Initially, smoothly arrived data has been analyzed which will serve
as a baseline for comparison. After removing the clutter by any
convenient method (such as notch filter), the clutter-free signal
will consist of two parts (heart rate and respiration rate), and the
Wavelet coefficients are obtained by applying Wavelet transform
to the clutter-free signal. This results in the scale-frequency plot

depicted in Figure 5. From this figure, the frequency can be found
which corresponds to the density of the Wavelet coefficients.

In the same way, applying WT to the signal received without
any missing sample from the patient gives the result shown in
Figure 6, which contains two sub-results. Upper figure shows the
analysis signal in the survey. The scalogram chart in lower figure
is Daubechies (db-2) Wavelet (Tariq et al., 2017). It is important
to note that in normalized case, the heart rate is between 60–120
beats/min, which is related to the scale value of 35–75. The
appropriate measurement range is chosen for the heart rate and
the selected scale, where Wavelet coefficients have the largest low
energy, as shown in Figure 6. For heart rate, the approximate
scale has a value of 42 (continuous pink line in Figure 6), which
corresponds to a frequency of 1.801 Hz in Figure 7. The heart rate
can be calculated as 1.801 × 60 � 108.08 bpm.

In the same way, the range of respiration rate lies between
10–30 bpm, which corresponds to a scale value of 150–450 (Chia
et al., 2005; Wang et al., 2017). The respiration rate scale can be
selected by measuring the maximum spectral energy within these
ranges. The generated scale value associated with the loss-free
data is 350 as shown in Figure 8. The 350 scale value corresponds
to a frequency of 0.2161 Hz in Supplementary Figure S1.
Therefore, the heart rate can be calculated as 12.96 �
(0.2161*60) bpm. There are two readings, obtained from
uninterrupted signal, which are:

1. Respiration rate � 12.96 bpm.
2. Heart rate � 108.08 bpm.

FIGURE 5 | Frequency plot of Daubechies (db-2) Wavelet.
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FIGURE 6 | ESD of Wavelet coefficient for normal heart rate.

FIGURE 7 | Frequency plot of Wavelet coefficient for normal heart rate.
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Hence, this information would work as a benchmark for a
particular patient. In this work, we have used ECG sensor; which
is current gold standard in monitoring heart rate (Nelson and
Allen, 2019), for comparison of the results. The respiration was
monitored manually to find the actual breathing rate of
the human.

So far, we have considered the normal situation wherein
complete data is received from patients under investigation
for analysis purposes. In the unique approach used in this
article, we have generated simulation results for comparison
in this section. However, in real life, data may not be available
smoothly for a number of reasons, including Radar Cross

FIGURE 8 | ESD of Wavelet coefficients for normal respiration rate.

TABLE 1 | Respiration rate comparison.

Description Scale value for
respiration rate

Scale to frequency
correspondence for respiration

rate

Respiration
rate = 60*Frequency (bpm)

Relative percentage error

Actual 350 0.2161 12.966 ___
Lossy 345 0.2193 13.158 1.48%
AR-based model 348 0.2174 13.044 0.57%
ARMA model 349 0.2167 13.002 0.28%

TABLE 2 | Heart rate comparison.

Description Scale
value for heart-rate

Scale to frequency
corresponding to heart-rate

Heart
rate = 60*Frequency (bpm)

Relative percentage error

Actual 42 1.801 108.06 ___
Lossy 39 1.94 116.4 7.14%
AR-based model 40 1.891 113.46 4.99%
ARMA model 41 1.845 110.7 2.44%
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Section (RCS) issues or congestion of buffer which is often used
for storage purposes. In such cases, it is important to design a
remedy to cure this critical issue. This paper aims to address this
situation by proposing a data loss recovery scheme embedded
with vital signs implemented by the Wavelet transform.

5 CONSEQUENCES OF DATA LOSS

In the previous section, the importance of vital sign and its
monitoring tool (WT) has been elaborated for uninterrupted
data. In the next section, vital signs are monitored when the
received data is incomplete for any practical reason (e.g. CSR area,
channel or buffer congestion, sensor fault and/or failure, etc.). It is
necessary to deal with this, otherwise it can lead to serious
consequences, especially in terms of human casualty. The
received data is random and overall 50 samples are lost.

The data with intermittent samples has been analyzed and is
shown in Supplementary Figure S2 (upper sub-figure) where the
interruption can be viewed by a circle in the initial phase. The
Wavelet coefficients generated from the interrupted analyzing
signal can be seen in the lower sub-figure of Supplementary
Figure S2. The energy associated with heart rate (low assembled
energy line) corresponds to a scale-factor of 39 which is shown by
a pink continuous line.

From the scale to the frequency Supplementary Figure S3, the
corresponding frequency of the 39 scale-factor is 1.94 Hz. The
equivalent heart rate is 1.94 × 60 � 116.4 bpm (beats/min).
Therefore, the data loss has led to a noticeable
misunderstanding, which may offer hindrance effects,
specifically in the medical treatment of a patient. The
deviation resulted by the data-loss is 7.71%.

From the same interrupted analyzing signal, the maximum
energy for high dense coefficients correspond to 345 scale factor
which is shown by a pink continues line in Supplementary Figure
S4. Transforming these coefficients to scale-to-frequency mapping
results in a frequency of 0.2193 Hz as shown in Supplementary
Figure S5. The respiration rate computed from this would be
0.2193 × 60 � 13.158 rpm (respiration/minute). The percent
deviation of respiration rate from the normal reading is 1.48%.

Once again, the intermittent observations have caused a drift
in readings of the respiration rate. In the subsequent section, we
provide a remedy for the loss of data and its effect in vital sign
monitoring has been provided.

6 ANALYSIS AFTER RECOVERY OF DATA
LOSS THROUGH AR-BASED MODEL

In this section, the analyzing signal which was subjected to data
loss earlier has been recovered through AR-based series and then
employed in vital signs monitoring. This recovered analyzing
signal is shown in Supplementary Figure S6 (Upper sub-figure).
In the next stages, the Wavelet coefficients are achieved for
respiration and heart rates from this recovered analyzing signal.

TheWavelet coefficients show a scale of 40 for heart rate as shown
in Supplementary Figure S6. Planting these coefficients to

scale-frequency mapping results in a frequency of 1.891 Hz
which is shown in Supplementary Figure S7. The heart rate
computed from this is 1.891 × 60 � 113.46 bpm (beats/minute).
The amount of deviation by this reading from the uninterrupted
reading would be 4.99%.

Which is almost 30.11% recovery compared to the results with
lossy data. For the same recovered analyzing signal through AR
based series depicted in Supplementary Figure S8 (upper sub-
figure). The maximum energy for high dense coefficients
correspond to coefficients at 348 scale which is shown by a
pink continues line at the bottom depicted in Supplementary
Figure S8 (lower sub-figure). Transforming these coefficients to
scale to frequency mapping would produce a frequency of
0.2174 Hz shown in Supplementary Figure S9. The
respiration rate computed from this reading is 0.2174*60 �
13.04 bpm (breath/minute). The degree of deviation by this
reading from uninterrupted reading would be 0.57%, which is
almost 60% recovery compared to the results with loss.

This paper aims to improve the results obtained in this section,
by introducing ARMA based recovery as discussed earlier in
Section 3. Using this novel approach, improvement in accuracy is
expected at the cost of computational efforts.

7 ANALYSIS AFTER RECOVERY OF DATA
LOSS THROUGH ARMA-BASED MODEL

It is believed that using more information (input and measure
signal), more accurate data can be reconstructed. Hence, the
recovery made through ARMA based model where both signals
are employed should generate more efficient results than AR-
based model, where only the measurement vector is used in the
recovery.

In this section, using the concept of the ARMA-basedmodel, the
intermittent analyzing signal is first recovered, then the two critical
information is obtained. This recovered signal is shown in
Supplementary Figure S10 (upper sub-figure). In the next
phase, the Wavelet coefficients are achieved for respiration and
heart rates from this recovered analyzing signal. The Wavelet
coefficients reflect a scale of 41 for heart rate shown in
Supplementary Figure S10 (lower sub-figure). Transforming
these coefficients to scale to frequency mapping results in a
frequency of 1.845 Hz shown in Supplementary Figure S11.
The heart rate computed from this scale is 1.845 × 60 �
110.7bpm (beats/minute). The level of deviation by this reading
from the uninterrupted reading would be 2.44%, which is
approximately 66% recovery compared to the results with
lossy data. Through the same strategy, the maximum
energy-column comprising of high dense coefficients
associate a scale value of 349 which is depicted by the
continues line in Supplementary Figure S12. Substituting
these coefficients into scale-frequency mapping show a
frequency of 0.2167 Hz (Supplementary Figure S13). The
respiration rate computed from this is 0.2167*60 �
13.002bpm (breath/minute). The degree of deviation of this
reading from benchmark reading would be 0.28%, which is
80.28% recovery compared to results with data loss.
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To summarize, four compact scenarios have been compiled for
monitoring of vital signs, namely;

1. When normal data arrives (without any loss).
2. When there is random data loss.
3. When the data is recovered through AR-based model (existing

method)
4. When data is recovered through ARMA-based model

(proposed technique)

A total of 50 samples are manually lost at a particular location.
Although various scenarios may be introduced and described
through this case study. In this paper, a chunk of data, collectively
at one location is considered to be lost. Table 1 and Table 2
summarize the performance of two algorithms (existing AR-
based model and proposed ARMA-based model) for the
respiration and heart rates, respectively. As can be viewed
from the last row of the two tables, the proposed ARMA-
based model efficiently reproduced the lost information and
the vital signs (the two rates) are very much close to actual
readings. Hence it results in minimum error.

CONCLUSION

In this paper, vital signs monitoring has been considered for
practically achieved data. Due to its direct link with human
beings, the importance of vital signs is very clear. The loss of
such information needs to be efficiently handled in order to avoid
catastrophic results. Initially, the vital signs are monitored from
normal data, where there is no data loss. This provides a
benchmark to perform comparison for later stages where
measurement data is intermittent in nature after striking the
patient. This lossy data has been observed in vital sign monitoring
(heart and respiration rates) with degrading outcomes. This data
loss is then attempted to be recovered through the AR-based
model which gives much better results compared to lossy results.
However, the AR-based model entertained only the measurement
vector in the recovery process. An improved version is introduced
in this paper, which implies both measurement vector and input
data in the recovery phase. After recovery, when implanted in the
vital sign monitoring, the simulation results show that more
efficient and closer to actual data is obtained through this scheme.
In other words, the reproduced data is less affected by data-loss
which is verified by vital sign monitoring results.

It can be concluded that, if any data has a certain level of a
trend in its structure, the data can be reproduced through the AR-
based or ARMA-based model. If not, then piece-wise similarity
may be assumed in the recovery process. It is necessary to
mention that both AR and ARMA-based models are
computationally expensive. In future, non-stationary attitude
may be investigated in the same context as it could give
further insights into the problem.
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