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Identification and translation of different drivingmaneuver are some of the key elements to

analysis driving risky behavior. However, the major obstacles to maneuver identification

are the wide variety of styles of driving maneuver which are performed during driving.

The objective in this contribution through the paper is to automatic identification of

driver maneuver e.g., driving in roundabouts, left and right turns, breaks, etc. based

on Inertia Measurement Unit (IMU) and Global Positioning System (GPS). Here, several

machine learning (ML) algorithms i.e., Artificial Neural Network (ANN), Convolutional

Neural Network (CNN), K-nearest neighbor (k-NN), Hidden Markov Model (HMM),

Random Forest (RF), and Support Vector Machine (SVM) have been applied for automatic

feature extraction and classification on the IMU and GPS data sets collected through a

Naturalistic Driving Studies (NDS) under an H2020 project called SimuSafe1. The CNN

is further compared with HMM, RF, ANN, k-NN and SVM to observe the ability to identify

a car maneuver through roundabouts. According to the results, CNN outperforms (i.e.,

average F1-score of 0.88 both roundabout and not roundabout) among the other ML

classifiers and RF presents better correlation than CNN, i.e., MCC = −0.022.

Keywords: convolutional neural network, driving maneuver, inertial measurement unit, global positioning system,

machine learning

INTRODUCTION

Since the number of vehicles and road traffic users are increasing rapidly, the number of accidents
is also increasing. In everyday life, car drivers are involved in several driving maneuver e.g., driving
in roundabouts, left and right turns, breaks, etc. while they are driving, and risky maneuver are
also causing accidents (Gerdes, 2006). Thus, road traffic safety issues are increasingly important for
research and development for governments and vehicles manufacture. The European Commission
is aiming to reduce the number of road accidents with the vision to achieve zero road fatalities
in EU (KPMG, 2012; Fagnant and Kockelman, 2013). To meet this objective and to improve the
traffic safety and efficiency, it is necessary to understand the wide variety of styles for driving
maneuver which promotes initiatives to conduct researches to reduce the rate of road accidents

1http://simusafe.eu/
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and to improve road safety. Again, understanding the driving
maneuver can help us to build models of drivers to improve
Advanced Driver Assistance Systems (ADASs), vehicle
safety, and privacy and help to detect risky driving styles
(Zardosht et al., 2018).

“SimuSafe: Simulation of behavioral aspects for safer
transport” is a project funded by the European Union, H2020,
where one of the main objectives is to create a realistic behavioral
model such that researchers will be able to conduct research
and collect data not available in real-world circumstances
(Ahmed et al., 2017). Under the SimuSafe project, Naturalistic
Driving Studies (NDS) have been conducted to examine a real
traffic situation by observing the drivers driving maneuver
like accidents and near misses, crashes, etc. (Barnard et al.,
2016; Muronga, 2017; Feng, 2019). As NDS data are collected
along with a large time frame this makes the time-consuming,
tedious and impractical task of identifying maneuver manually
by a human. Thus, this challenge has inspired the need to
research and develop an automated system that capable of
identifying potential maneuver i.e., roundabouts reliably. Several
research studies have been found in the literature that aim
for identification of basic events, e.g., identify whether a car
is accelerated, braked, made a left/right/U-turns, or any risky
driving maneuver, e.g., sharp turning (Di Lecce and Calabrese,
2009; Johnson and Trivedi, 2011; Van Ly et al., 2013; Zheng and
Hansen, 2016; Hernández Sánchez et al., 2018; Ouyang et al.,
2018; Ma et al., 2019), however, the identification of roundabouts
is not as common (Zhao et al., 2017; Altarabichi et al., 2019).

The main challenge in this study is to determine the
best Machine Learning (ML) algorithm for identifying driving
maneuver i.e., roundabouts from the NDS based on the
sensory data from IMU and GPS by investigating several ML
algorithms. This paper presents an automatic driving maneuver
e.g., driving in roundabouts, left and right turns, breaks, etc.
identification system. Here, the study determines Convolutional
Neural Network (CNN) as a best ML algorithm to identify
driving maneuver based on Inertia Measurement Unit (IMU)
and Global Positioning System (GPS) data collected through
the NDS in SimuSafe. The proposed system is also compared
and evaluated with different ML algorithms e.g., Hidden Markov
Model (HMM), Random Forest (RF), Artificial Neural Network
(ANN), K-nearest neighbor (k-NN) and Support VectorMachine
(SVM) to observe the capability of detecting driving maneuver,
specifically the driving maneuver for navigating a roundabout.
The NDS data are collected using 16 volunteers over a period
of 3 months in two different countries through naturalistic
driving, i.e., the drivers were not controlled and restricted to
a predetermined path. Here, the test cars were equipped with
GPS and IMU, and the IMU consists of an accelerometer and a
gyroscope. Thus, the test vehicular sensors are used to capture
different aspects of driving dynamics and motion to identify
roundabout as a driving maneuver.

BACKGROUND AND RELATED WORK

ML is a subset of AI focuses on developing computer programs
capable of learning from experience (Fernandes de Mello and
Antonelli Ponti, 2018). According to –TomMitchell, “a computer

program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E”
(Robert, 2014). Supervised classification problems involve an
input space (i.e., the instances of χ) and an output space (e.g., the
labeling of ϒ). An unknown target function f : χ → ϒ defines
the functional relationship between the input space and output
space. As mentioned above, a dataset D exists containing input-
output pairs (χ1,ϒ1) , . . . . . . , (χn,ϒn) drawn as an independent
and identical distribution (i.i.d) from an unknown underlying
distribution P (χ ,ϒ). The goal is to find a function g : χ → ϒ

that can approximate the solution of f with minimum errors. The
function g : χ → ϒ is called a classifier (Friedman et al., 2001).
Supervised learning is applicable when the given set of data has
a known output for the specified inputs. Several supervised ML
algorithms i.e., CNN, ANN, HMM, RF, k-NN, and SVM.

The HMM is a supervised learning algorithm, widely used
for classification and pattern recognition. It has been used in
the field of voice recognition to determine the phrase or word
and in the context of natural language processing (NLP), i.e.,
part-of-speech tagging and noun-phrase chunking (Rabiner,
1989). HMM is built on the assumption that only the results
of the actions of states are observable, states are not directly
observable, they make observations, which are weighted by their
probability. By considering all the possible order of states, and the
probability of their actions, the order of states that has the highest
probability is selected as the final one. Two models are currently
considered namely, Discrete Hidden Markov Models (DHMMs)
and Continuous Hidden Markov Models (CHMMs) (Attal et al.,
2013; Yiyan et al., 2017).

k-NN is a non-parametric simplisticML algorithm. It does not
need to fit the data, which makes it flexible in the sense that k-NN
is a memory-based algorithm which uses the observations in the
training set to find the most similar properties of the test dataset
(Breiman, 2001). In other words, k-NN classifies an unseen
instance using the observations that have closest match similarity
(k-number nearest neighbors) to it. In the statistical settings,
k-NN does not make any assumptions about the underlying
joint probability density, rather uses the data to estimate the
density. In k-NN, a distance function e.g., the Euclidean distance
function is often used to find the k most similar instances.
Then methods like majority voting is used on the k-neighbor
instaces that indicates most commonly occurring classification to
make the final classification. The bias-variance trade-off of k-NN
depends of the selection of k, i.e., the number of nearest neighbors
to be considered. As the value of k gets larger the estimation
smoothed out more. Since k-NN is based on a distance function,
it is straightforward to explain the nearest-neighbor model when
predicting a new unseen data. However, it may be difficult to
explain what inherent knowledge the model has learned.

ANN is a method that is vaguely inspired by the biological
nervous system, i.e., neurons in a brain. It is composed of
interconnected elements called neurons that work in unity to
solve specific problems (Basheer and Hajmeer, 2000; Drew
and Monson, 2000; Zhang, 2000). The neurons are connected
through links, and numerical weight is assigned to each neuron.
This weight represents the strength or importance of each neuron
input and repeated adjustment of the weights are performed
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to learn from the input. Various types of neural networks are
described in Basheer and Hajmeer (2000), and one of the most
popular network architectures is the multilayer feedforward
neural network methods using backpropagation to adapt/learn
the weights and biases of the nodes. Such networks consist of
an input layer that represents the input variables to the problem,
an output layer consisting of nodes representing the dependent
variables or the classification label, and one or more hidden
layers that contain nodes to help capturing the nonlinearity of the
data. The error is computed at the output layer and propagates
backwards from the output layer to the hidden layer, then hidden
layer to the input layer.

CNN is the most common approach that uses deep learning
that applies neural network architectures with more than one
hidden layer, i.e., if there are multiple hidden layers, it is referred
to as a Deep Neural Network (DNN). One of the most popular
types of deep neural networks is known as CNN and commonly
used for pattern recognition and image processing, such as street
sign recognition and pedestrian detection (Gerdes, 2006; Zhao
et al., 2017). Like a typical neural network, a CNN consists of an
input layer, a combination of convolutional and pooling layers,
i.e., has neurons with weights and biases. The model learns these
values during the training process, and it continually updates
them with each new training example. However, in the case of
CNNs, the weight and bias values are the same for all the hidden
neurons in a given layer. The advantages of using CNN is that
it requires less or no prepossessing (Al-luhaibi et al., 2018), a
graphical representation can be seen in Figure 1.

RF is a popular ensemble algorithm in ML that consists of
a series of randomized decision trees, where every tree is built
using a random split selection (Breiman, 2001). Each decision
tree is trained using bootstrap data samples, where bootstrapping
is the process of creating samples with replacement. During the
bootstrapping process, not all the data are selected for training;
the selected data are referred to as out-of-bag data, and these out-
of-bag data are used to find the generalization error or the out-of-
bag error. The trees will each have a random bias, to not overfit
the data. During the tree-generation process, for the k-th tree, a
random vector υk is generated, which is drawn from the same
data distribution but independent of previous random vectors
υ1, . . . . . . , υk−1. For the given training dataset, the tree grows
using the random vectors υk and creates a predictor h (χ ,Xk, υk),

where χ is the input data, Xk is the bootstrap sample, and υk
consists of several number of independent random variables m
between 1 and K. Different generalizations can be achieved by
varying the number of variables; it is recommended to start
the search from m = [log2 K + 1] or m =

√
K (Breiman,

1996, 2001). After generating a large number of trees, the output
is the majority vote of all these decision trees. The important
aspects of a random forest are that as the forest grows by adding
more trees, it will converge to a limiting value that reduces the
risk of overfitting and does not assume feature independence.
RF is implemented using bagging, which is the process of
bootstrapping the data plus using aggregation to make a decision.
Thus, from a given input, the algorithm selects the most common
class from the collection of trees to be the best choice (Vapnik,
1992; Ho, 1995).

SVM is used for separating and classifying data into
different distinct classes by finding the hyperplane that not only
minimizes the empirical classification error but also maximizes
the geometric margin of the classification (Vapnik, 1992; Guyon
et al., 2002). SVMmaps the original data points in the input space
to a high dimensional feature space, making the classification
problem simpler. Hence, SVM is suitable for classification
problems with redundant datasets (Ertel, 2018). Consider an n-
class classification problem with a training data set {χi,ϒi}ni=1,

where χi ∈ R
d is the input vector, and ϒi is the corresponding

class label. The SVM maps the d-dimensional input vector space
to a dh-dimensional feature space and learns the separating
hyperplane 〈w,χ〉 + b = 0, b ∈ R that maximizes the margin
distance 2

‖w‖22
, where w is a weight vector, and b is the bias.

The SVM classifier obtains a new label ϒ̂ for the test vector by
evaluating Equation (1):

ϒ̂ =
N

∑

i=1

wi.K (χ ,χi) + b (1)

where N is the number of support vectors, wi are the weights,
b is the bias that is maximized during training and K is the
kernel function.

An overview of different ML approaches in driving maneuver
identification with a result analysis of the related work is
presented in Table 1. As can be seen accelerometer, gyroscope,

FIGURE 1 | A graphical representation of CNN is presented.
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TABLE 1 | Some related articles based on ML algorithms, parameters, sensors, etc.

Algorithms Device, sensors, parameters Classes Comments Articles

SVM, Topological Anomaly

Detection

Smartphone with Accelerometer,

Gyroscope, and GPS are used

for vehicle

4 classes for Driver Behavior

rank from A to D

Average results were reliable Zheng and

Hansen, 2016

Dynamic Time Warping Smartphone with Accelerometer,

Gyroscope, Magnetometer, and

GPS are used for vehicle

12 classes, Turns, Aggressive

Turns, U-Turns, Aggressive

U-turns, Aggressive acceleration,

Aggressive Braking, Swerve,

Device Removal, Excessive

Speed

Very limited training sets with

more classes, results were

average

Johnson and

Trivedi, 2011

K-means, SVM IMU sensor with Accelerometer

in lateral axis from car CANbus

10 different classes in

Acceleration, Breaking, Turns,

combinations

Results were not good; 65%

accuracy is achieved by SVM

Van Ly et al., 2013

Random forest, C-SVC, IBk,

JRip, J48, Naïve Bayes

Smartphone with Gyroscope

used for vehicle

5 classes with turns, U-turns,

lane changes

Random forest achieved 98%

accuracy on an average

Ouyang et al.,

2018

Gaussian mixture model

(GMM), Partial least squares

regression (PLS), Support

Vector Regression (SVR),

Wavelet

Smartphone with Accelerometer

and Gyroscope used for vehicle

2 classes, Aggressive and not

Aggressive behavior

With single parameters GMM

and SVR are provided better

classification than multiple

parameters with GMM and PLS

Ma et al., 2019

ANN GPS and Biaxial Accelerometer

used for vehicle

6 classes with

Acceleration/Deacceleration,

Turns/NotTurns,

Overtaking/NotOvertaking

The ANN achieved 88%

accuracy with 4 hidden layers

and 200 epochs

Di Lecce and

Calabrese, 2009

Principle Component

Analysis (PCA), CNN,

Recurrent Neural Network

(RNN)

Smartphone with Accelerometer

used for vehicle

4 classes with Acceleration,

Breaking, Turn, and Others

Achieved 90% accuracy by PCA

based on longitudinal and lateral

component

Hernández

Sánchez et al.,

2018

SVM Sensors with powertrain,

steering, GPS, and Odometer

2 classes for stop and start SVM achieved 95% in prediction Zhao et al., 2017

HMM Smartphone with Accelerometer

and GPS are used on human

movement analysis

5 classes with Stop, Walk, Run,

Bicycle, Motorcycle (MC)

Stop, walk, MC were identified,

but overlapping with run and

bicycle

Waga et al., 2012

ANN, RF, k-NN, Logistic

Regression (LR) and SVM

IMU devices mounted in vehicle 2 classes roundabouts and

others

ANN model outperforms other

classifiers achieving 81% F1

score for roundabout

identification

Altarabichi et al.,

2019

RF, SVM and ANN 3-D accelerometer/gyroscope

sensors mounted on

motorcycles

5 classes with left turn (LT), right

turn (RT), straight line (SL),

roundabout (RA), and stop (ST),

Random Forest method

performs most consistently

through the different data sets

and scores best

Larose, 2005

magnetometer is commonly used as IMU together with
GPS. These parameters are gathered through smart phones,
car CANbus, and other specific devices. Again, commonly
used ML algorithms are ANN, RF, k-NN, LR, and SVM.
Here, all of them are supervised ML algorithms, which
includes classes between two and twelve, e.g., stop and start
maneuver, and turns, aggressive turns, U-turns, aggressive U-
turns, aggressive acceleration, aggressive braking, swerve, device
removal, excessive Speed. It was also observed that several of
the research has identified maneuver with a higher accuracy
i.e., more than 90% accuracy. For example, the authors in
Zheng and Hansen (2016) applied SVM, and Topology anomaly
detection for driver behavior based on accelerometer, gyroscope
and GPS through smart phone. Again, in our previous work
(Altarabichi et al., 2019) and (Larose, 2005), several ML
algorithms such as ANN, RF, k-NN, LR, SVM have been

applied in IMU and 3-D sensors that had been mounted
in a car and motorcycle to classify roundabouts, left turns,
right turns, straights, and stops. Unsupervised ML such as
PCA, CNN and RNN have also been applied on accelerometer
data collected from the car to classify accelerations, breakings,
and turns as presented in Hernández Sánchez et al. (2018).
Different anomaly detection algorithms were compared by Ma
et al. (2019) to detect aggressive behavior of the drivers using
motion data from an accelerometer and gyroscope data that
are collected by a smartphone mounted in a vehicle. The
algorithms have used in the report are Gaussian Mixture Model
(GMM), Partial Least Squares Regression (PLSR), Wavelet,
and SVR. SVR is a regression version of SVM. Their results
have shown that the algorithms are promising for detecting
aggressive driving when using both the accelerometer and
gyroscope, compared to when using either of the sensors
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FIGURE 2 | Example of roundabout labeled by GPS data.

independently. The GMM got a F1-score of 0.76 and SVR
got 0.73.

MATERIALS AND METHODS

The data used in this study are obtained through the SIMUSAFE
project using timestamped sensor data that corresponds to NDS
trips. There are 16 volunteers and the data are collected between
May and August 2018. The data had been collected from cars
equipped with sensors, e.g., the IMU and GPS.

Inertial measurement unit (IMU) is required within
SIMUSAFE DAS because such measurements available on-board
in vehicles are not standardized. Thus, myAHRS+ is used as
exact unit because of its guaranteed compatibility with ODROID
DCP. Another important advantage is the availability of a driver
(BSD license) for ROS distribution used in SIMUSAFE DCP. The
IMU requires calibration due to installation position, because
measurements in host vehicle coordinate system are required.
Similarly, a USB GPS module named “Ublox G7020-KT” is used
because of cost and being distributed over ODROID website,
thus ensuring compatibility and support of the SIMUSAFE DCP.
The GPS unit readings are handled by DCP system that uses
a gpsd service. Such system was found not to provide a PPS
signal and therefore DCP clock is synchronized over network
rather than via GPS. The roundabout entries from the smart
camera were used to label the datasets to find out whether
they are roundabout or not. The GPS is used to collect the
longitudinal and latitudinal coordinates. Since the supervised
learning requires data to be labeled, all the GPS points were
plotted on a map as presented in Figure 2. Two types of feature
extractions have been conducted, (1) window-based feature
extraction and (2) maneuver-based feature extraction. Here,
the fixed window-based feature extraction is more common,
widely used traditional approach where the sample size can
be increased and decreased based on the size of the window
and also, calculation time is very less. As the window size is
always same for all the feature, the feature value is stable. On
the other hand, the maneuver-based is a new way to test the
approach, proposed by Pilko et al. (2014) and Gonzalez et al.
(2017), here the concept of dividing the driving process in
a roundabout into three stages: entrance, driving within the
roundabout and exit maneuvers. To account for this maneuvers
sequence, each dataset instance is built using a rolling window
with three maneuvers as a window size. Thus, the sample size

TABLE 2 | IMU sensor signals with corresponding parameters.

No. Signal Description Parameters

1. RollRateExtSns Vehicle roll rate Roll

2. RollExtSns Roll angle of vehicle chassis

3. PitchRateExtSns Vehicle pitch rate Pitch

4. PitchExtSns Pitch angle of vehicle chassis

5. YawRateExtSns Vehicle yaw angle Yaw

6. LongAccelExtSns Longitudinal acceleration Acceleration

7. VertAccelExtSns Vertical acceleration

8. LatAccelExtSns Lateral acceleration

is decreased and also feature value is not stable and window
size is different for each feature as it is depending on the
combination of a sequence entrance -> in the roundabout ->
exit. Moreover, the computation time is also very high then the
other method and as the sample size it less no possibility to
used CNN.

In window-based feature extraction, the roundabout detection
model is developed to use IMU sensor data for the purpose of
classification, eight signals are utilized from IMU sensory data as
observed in Table 2. The IMU sensors collected data in the form
of acceleration in the longitude, lateral, and vertical direction,
pitch, roll values, and yaw rate. The longitude axis was aligned
with the direction of the car face, and the vertical axis was placed
perpendicular to the road (Altarabichi et al., 2019). The filtered
and labeled data set contains 76306 data points, of which 847
are labeled as roundabouts. The calculated median time to travel
through a roundabout, in the data set, is 8 s, with the average time
being slightly longer. The data are windowed, windowing gives
information before and after a given point and therefore aids the
classification of longer lasting maneuver.

In maneuver-based feature extraction, the data are resampled
with 14 to 1Hz to reduce signal noise, and a Gaussian
rolling window is applied to smoothen the resampled signals.
The YawRateExtSns is selected as a base signal to establish
the start and end time of driving maneuvers. The integral
of YawRateExtSns readings between start and end time is
calculated to measure the corresponding Yaw angle of the
performed maneuver. The time series of sensor readings
that represent driving trip is transformed accordingly into
a sequence of maneuvers performed by the vehicle. Driving
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maneuvers are presented by eight time-domain features that
correspond to the mean value of each of the eight IMU
signals throughout the maneuver. A ninth feature is added
that corresponds to the calculated Yaw angle, and a feature
that corresponds to the duration of the maneuver in seconds
is added to total of 10 features per maneuver. This approach
generated a training data set that consist of 22111 instances.
GPS signals were used to label 249 roundabouts occurrences
manually according to the map images of the driving trips
(Altarabichi et al., 2019).

With window-based features, the CNN, HMM, RF, and SVM
have been applied to classify maneuver. In our previous work
(Altarabichi et al., 2019), the class imbalance in the dataset
is addressed by performing validation assigning a weight to
roundabout class {1, 2, 4, 8, 16, 99}, however, the results were
not satisfactory. Thus, the paper focuses both on assigning a
weight to roundabout class and the stratified sampling on the
imbalance data set for the machine learning modeling. Through
CNN, to account for the unbalanced representation of classes,
roundabouts are given a class-weight of 4 : 1. The data were
windowed and split into a training and a test set using stratified
sampling. The stratified split makes sure both the sets had the
same class representation. The CNN is trained using the 10-
fold cross-validation. The model with the lowest categorical
cross-entropy validation loss is used for the evaluation of the
test data set. The implementation of the CNN algorithm is
conducted using Python Deep Learning library Keras2, here,
the parameters are presented in Tables 3, 4. For HMM, the
models are created with the 4 states and trained using the Baum-
Welsh algorithm (Li and Jain, 2009). Here, the number of the
states are determined through manual testing by evaluating the
accuracy. To avoid getting stuck in a local optimum, different
initialization is used. The models with different initialization
are compared based on the log probability of the training
data, and the best one is selected. Also, windowing is used
on the testing data with a window size of 7 and a stride
of 1. The window size is determined manually by evaluating
the accuracy. The implementation is conducted through the
hidden Markov model module simplehmm.py provided with
the Febrl system is a modified re-implementation of LogiLab’s
Python HMM module3. The evaluation is done using 10-fold
cross validation based on the IMU signals, to get an average
accuracy and to prevent the accuracy from being biased. For
RF, the hyperparameters are selected based on the directed
grid search with cross-validation. The data are windowed,
standardized, and 10-fold cross validation is used here. The
parameters are window size =9, estimators=100, criterion =
entropy, class weight = balanced, max features = sqrt, min
sample split = 25 and min samples leaf = 1 through the
python programming and using scikit-learn library4. For k-
NN, classifier k=1 is considered while using Python Scikit-
learn package library4. Here, import the KNeighborsClassifier

2https://keras.io/
3http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/

node25.html
4https://scikit-learn.org/stable/

TABLE 3 | Parameters used in CNN.

SL Parameters Values

1. Window size 9

2. Batch size 256

3. Epochs 1000

4. Class weights 4:1

5. Test size 25%

6. Early stop 80

7. Dropout rate 50%

8. Convolutional filters 1 300

9. Convolutional filters 2 100

10. Convolutional kernel size 2

11. Pooling size 2

TABLE 4 | CNN layers with their output size.

SL Layer Output values

1. Input (9, 10)

2. Convolutional 1D (8, 300)

3. Average pooling (4, 300)

4. Convolutional 1D (3, 100)

5. Flatten 300

6. Dropout 300

7. Dense 40

8. Dense 2

module is used to construct the model together with fit()
function as training and predict() function as test. For the
dataset splitting the function train_test_split() is used with 3
parameters features, target, and test_set size. For SVM, different
kernel function has been used such as Radial Basis Function
(RBF), sigmoid and polynomial. To find hyperparameters, grid
search is used on arbitrarily selected parameters with a large
range on a limited data set. Grid search could have been
used as a key tool to find suitable parameters for different
classification models.

With maneuver-based features, the generated dataset is used
to train several classifiers including the ANN, RF, k-NN, and
SVM. The Python Deep Learning library Keras2 is used for the
implementation of ANN with using two fully connected layers
with 128 neurons in each layer and a dropout=0.05. While
the other ML algorithm is applied using scikit-learn library4

in Python. Here, a hyperparameters optimization is performed
using a grid search to tune different classifier parameters. For
the k-NN classifier (k=1), while the RF (n_estimators=41,
min_samples_leaf=2, bootstrap=False, max_features=sqrt),
the SVM (kernel=rbf, class_weight=balanced) as define in
(Altarabichi et al., 2019).

Experimental Works
Themain objective of this experimental work is to observe several
ML algorithms and their classification accuracy as a performance.
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Here, the roundabout classification is considered where 10-folds
cross validation (CV) is applied.

Considering Window-Based Features
The feature sets identified using window-based approach
are used in 10-folds cross validation, where ML algorithms,
CNN, HMM, RF and SVM are used. An average value for
precision, recall and F1-score are calculated considering both the
roundabout and not/others classes and the results are presented
in Table 5.

As can be observed form Table 5, the CNN and RF both
achieved the highest F1-score which is 88%, where highest
precision is observed for RF, i.e., 92% and highest recall is
observed by CNN, i.e., 87%. In CNN, the model achieved best
training accuracy with improvements by trained the model for
first 30 epochs whereas the validation-loss reached the lowest
point in epoch 47. The comparison between the implemented
ML algorithms considering F1-score is presented in Figure 3,
where both CNN and RF shows the highest score compare to
other methods.

The confusion matrixes both for the CNN and RF are
presented in Table 6. Here, we consider the topmost F1-scores
achieved by the ML algorithms i.e., CNN and RF.

As can be observed from Table 6, the highest precision
achieved for roundabout is 83% by RF and highest recall achieved
for the roundabout is 74% by CNN. A Matthews Correlation
Coefficient (MCC) is also calculated for CNN and RF to compare
the algorithm defined in terms of True Positive (TP), True

TABLE 5 | Average classification results on both roundabout and not/others

classes using several ML algorithms.

No. ML algorithms Precision Recall F1-score

1. CNN 0.90 0.87 0.88

2. HMM 0.52 0.81 0.48

3. RF 0.92 0.84 0.88

4. SVM 0.85 0.76 0.80

5. k-NN 0.78 0.80 0.77

Negative (TN), False Positive (FP) and False Negative (FN) and
the formula can be express as follows in eq2 (Boughorbel et al.,
2017), the MCC results are presented in Table 7.

MCC = TP ∗ TN − FP ∗ FN
√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(2)

Considering Maneuver-Based Features
The ML approaches are again tested with maneuver-based
features, that is the created models are validated using 10-
folds cross validation. Here, instead of CNN, ANN is applied
to compare with the rest of the ML algorithms, i.e., SVM, RF,
and k-NN. An average value for precision, recall and F1-score
are calculated considering both the roundabout and not/others
classes and the results are presented in Table 8.

As can be seen from the table, ANN algorithm achieved the
highest F1-score on an average of roundabout and not/others
classes i.e., 81% with similar precision and recall, i.e., 81% ∼=
82%. While, the k-NN algorithm achieved 2nd highest F1-score
which is 80%with 82% precision and 79% recall. The comparison
between the implemented ML algorithms considering F1-score
presented in Figure 4, where both ANN shows the highest score
compare to other methods and 2nd highest score was by k-NN.

TABLE 6 | Confusion matrixes for CNN and RF.

ML algorithms Predicted class Recall

CNN Roundabout Not/other

True class Roundabout 625 222 0.74

Not/Other 161 75298 1.00

Precision 0.80 1

RF Roundabout Other Recall

True class Roundabout 575 272 0.68

Not/Other 115 75344 1.00

Precision 0.83 1

FIGURE 3 | Comparison between the ML algorithms.
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TABLE 7 | MCC value on both roundabout and not/others classes using CNN

and RF algorithms.

CNN RF

TP 625 575

TN 222 272

FP 75298 75344

FN 161 115

TP*TN-FP*FN −11984228 −8508160

(TP+FN) 786 690

(TP+FP) 75923 75919

(TN+FP) 75520 75616

(TN+FN) 383 387
√
(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN) 41545915 39152736

MCC −0.28 −0.22

TABLE 8 | Average classification results on both roundabout and not/others

classes using several ML algorithms.

No. ML algorithms Precision Recall F1-score

1. ANN 0.85 0.88 0.85

2. RF 0.94 0.60 0.73

4. SVM 0.91 0.67 0.77

5. k-NN 0.83 0.86 0.82

FIGURE 4 | Comparison between the ML algorithms.

TABLE 9 | Confusion matrixes for ANN and k-NN.

ML algorithms Predicted Class Recall

ANN Roundabout Not/Other

True class Roundabout 193 56 0.78

Not/Other 78 21784 1

Precision 0.71 1

k-NN Roundabout Other Recall

True class Roundabout 180 69 0.72

Not/Other 90 21772 1.00

Precision 0.67 1

The confusion matrixes both for the ANN and k-NN are
presented in Table 9. Here, we consider the topmost F1-scores
achieved by the ML algorithms i.e., ANN and k-NN.

TABLE 10 | MCC value on both roundabout and not/others classes using ANN

and k-NN algorithms.

ANN k-NN

TP 193 180

TN 56 69

FP 21784 21772

FN 78 90

TP*TN-FP*FN −1688344 −1947060

(TP+FN) 271 270

(TP+FP) 21977 21952

(TN+FP) 21840 21841

(TN+FN) 134 159
√
((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 4174914 4536843

MCC −0.40 −0.43

As can be observed from Table 9, both the highest
precision and recall are i.e., 71 and 78%. achieved for
the roundabout using the ANN algorithm. Similar to the
Window-based Features, MCC is calculated and presented
in Table 10.

Comparison Between the Features
A comparison between the windows-based features and
the maneuver-based features with their classification results
are presented in Figure 5. Here, maximum F1-Score and
Maximum MCC value is considered out of several machine
learning algorithms as presented earlier. As can be seen
form the figure, both considering F1-Score and MCC
the windows-based features achieved the heights score
in classification.

SUMMARY AND DISCUSSION

To achieve the goal of the project that is to create a realistic
behavioral model the Naturalistic Driving Studies (NDS) has
been performed to examine a real traffic situation by observing
the drivers driving maneuver like roundabout. A total 16
volunteers are selected randomly and participated between May
and August 2018. However, in window-based, labeled data
set contains 76306 instances, of which 847 are labeled as
roundabouts, and in maneuver-based it was 22111 instances
with 249 roundabouts. As the study focuses on the roundabout
identification not any individual’s performance, thus the total
sample size out of these 16 volunteers are enough for investigate
several ML algorithms. To reduce the impractical task of
identifying the maneuver manually by a human, this paper
proposed a CNN to identify driving maneuver. Here, the
collected IMU sensory data sets are used for the feature
extraction, and both window-based andmaneuver-based features
are considered. And the GPS sensory data is used to label the
data sets as the roundabout and not/others classes. Several ML
algorithms including the CNN is investigated, and the other
algorithms are: HMM, RF, ANN, k-NN, and SVM. A 10-fold
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FIGURE 5 | Comparison between the extracted features with Maximum F1-Score and MCC.

cross validation is conducted and precision, recall and F1-Score
are calculated both for the roundabout and not/others classes and
using window-based andmaneuver-based feature sets. According
to the results, CNN and RF achieved the best average F1-
Score i.e., 88% as an overall classification accuracy. However,
while considering MCC, it shows RF shows the best correlation,
i.e., −0.22, the reason of the imbalanced samples may affect
the results where the study is about Very high TN to very
low TP.

CNNmethods seem to be the best option for the classification;
however, it requires huge amount of data, thus using window-
based features 76306 instances are used for generating the
model. This also valid for ANN where only two connected
hidden layers is used with 22111 instances. A manual inspection
is also conducted on one driver data set, that is by plotting
GPS data to observe the accuracy by the CNN model. It was
observed that the CNN model classified nearly all roundabouts
and major false positives false negatives are occurred because
of they are either at start or end of the roundabout. The
model also classifies some of the S-shaped road curves as
roundabouts as observed. It was also found that there are
some instances those can be said as “rare instance” of false
positive, here, the geometry of the road is similar to a
roundabout, e.g., entrance and exit to the highway. Again,
some of the roundabout are so small that the driver just
drives their car straight without any turning or a standard
right turn are also identified as false negative. While labeling
the data set, poor GPS data are also affected and make
hard for manual task of labeling all the roundabout without
any error. More narrow experiments could be conducted to
explore the miss-classification at the starting point and the exit
of roundabouts.

As a conclusion CNN could be used as a suitable method to
classify roundabout, and RF could be the next suitable choice as
it has higher precision than CNN. Also, the 88% F1-Score shows
satisfactory performance with an unbalance data set, but, the
MCC value recommend to use RF. However, the observation
shows better performance while using the window-based
feature set extracted through CNN than the manuover-based

features extracted in a sequence entrance -> in the
roundabout -> exit.

CNN is considered to be the best classifier as the Recall of
the algorithm is 87% i.e., the sensitivity of the roundabout is
the fraction of the total amount of relevant instances that were
actually retrieved. As the number of the roundabout classes are
very less compare to other classes it may increase with CNN
if the number of the sample increased and the dataset become
balanced. Again, in maneuver-based features extraction ANN
outperforms with 88% recall whereas RF was only 60%. Note,
that ANN is a part of CNN with less network layer can used
while there are not enough data samples. Also, However, none
of other ML algorithms such as HMM, SVM, k-NN and ANN
are unable to achieve satisfactory performance while identifying
the driving manuover. Again, as the data set is collected through
a Naturalistic Driving Studies (NDS) under a project called
SimuSafe, around 20% data were affected due to sensor changes
its positions. That is either or both the IMU and the GPS sensors
are not faulty but while using it on the car the position of the
sensor was change which was not notice until the data collection
period is over. Thus, several of the instances are found with
irregularities in either IMU or GPS or both as the mounted
sensors are misplaced, which should be validate in future study
with providing information to the user to correctly mounted
sensors. More control and simulated studies are ongoing, e.g.,
in cycle 2, the test will be conducted in simulator environment
and also in the truck. Thus, the data set can be more uniformly
labeled and finally, a more balanced data set can be achieved.
Then the study could be replicated using the more extensive
data sets with the more uniform positioning of the IMU-sensor
in the vehicle to minimize discrepancies. Three models i.e.,
CNN, RF, and ANN are implemented into a car’s CAN for
real manuover identification both in practical life-data collection
and in simulators. Again, these will be tested in cycle 2 in
SimuSafe, which is now suspended due to Corona predicament.
SimuSafe aims to have bigger study using 400+ participants
throughout of Europe (Sweden, Spain, Italy, France and UK)
considering both controlled and simulated environment which
is ongoing.
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