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Robotic lower-limb prostheses, with their actively powered joints, may
significantly improve amputee users’ mobility and enable them to obtain
healthy-like gait in various modes of locomotion in daily life. However, timely
recognition of the amputee users’ locomotive mode and mode transition still
remains amajor challenge in robotic lower-limb prosthesis control. In the paper,
the authors present a new multi-dimensional dynamic time warping (mDTW)-
based intent recognizer to provide high-accuracy recognition of the locomotion
mode/mode transition sufficiently early in the swing phase, such that the
prosthesis’ joint-level motion controller can operate in the correct locomotive
mode and assist the user to complete the desired (and often power-demanding)
motion in the stance phase. To support the intent recognizer development,
the authors conducted a multi-modal gait data collection study to obtain the
related sensor signal data in various modes of locomotion. The collected data
were then segmented into individual cycles, generating the templates used in
the mDTW classifier. Considering the large number of sensor signals available,
we conducted feature selection to identify the most useful sensor signals as
the input to the mDTW classifier. We also augmented the standard mDTW
algorithm with a voting mechanism to make full use of the data generated
from the multiple subjects. To validate the proposed intent recognizer, we
characterized its performance using the data cumulated at different percentages
of progression into the gait cycle (starting from the beginning of the swing
phase). It was shown that the mDTW classifier was able to recognize three
locomotive mode/mode transitions (walking, walking to stair climbing, and
walking to stair descending) with 99.08% accuracy at 30% progression into
the gait cycle, well before the stance phase starts. With its high performance,
low computational load, and easy personalization (through individual template
generation), the proposed mDTW intent recognizer may become a highly useful
building block of a prosthesis control system to facilitate the robotic prostheses’
real-world use among lower-limb amputees.
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1 Introduction

Around the world, millions of people are living withmajor lower
limb losses due to various causes such as injury and disease (Ziegler-
Graham et al., 2008). Traditionally, passive (i.e., non-powered)
prosthetic devices were used to restore the lost limb and joint (e.g.,
knee and ankle) functions. Due to the passive prostheses’ inability
to generate active mechanical power, their users typically suffer
from multiple issues in gait, e.g., asymmetric gait, increased hip
power, and elevated metabolic energy consumption (Waters et al.,
1976; Hof et al., 2007; Winter, 2009). Further, amputees fitted with
passive prostheses experience significant difficulty in energetically
demanding locomotive activities such as stair climbing (Bae et al.,
2009), causing major inconveniences in their daily life. Motivated
by these significant issues, multiple robotic (powered) lower-
limb prostheses were developed by researchers in academia and
industry [e.g., Vanderbilt Leg (Lawson et al., 2014) and Open-
Source Leg (Azocar et al., 2020)], providing the potential to
significantly improve amputee users’ mobility and quality of life
through actively powered prosthetic joints. With two commercial
products in clinical use [Ossur Power Knee (Cutti et al., 2008)] and
Otto Bock Empower Ankle the capability of powered prostheses
in restoring healthy-like gait in walking has been demonstrated
in multiple studies (Johansson et al., 2005; Silver-Thorn and
Glaister, 2009).

With their actively powered joints, robotic prostheses can
potentially function like healthy biological limbs in locomotive
modes beyond regular level walking. For example, powered
prosthetic joints may enable amputees to climb stairs in a more
natural way (Lawson et al., 2013). However, to support such
multi-functional operation in amputee users’ daily life, reliable
identification of users’ motion intent (as represented by the desired
mode of locomotion) is indispensable, as each locomotive mode
requires a specifically designed motion control strategy to fit
its unique dynamic characteristics. Furthermore, an even greater
challenge is the timely recognition of the amputee user’s intent of
locomotive mode transition. When a prosthesis motion controller
transitions from the current mode of operation to a new mode (e.g.,
walking to stair climbing), such transition needs to occur on a timely
basis (with minimal time delay) to avoid disrupting the amputee
user’s overall gait control. Considering the weak gait and stability
control capability of lower-limb amputees as well as the increased
risk of fall during such transitional movements, the ability of
recognizing mode transitions and taking the corresponding control
actions is critical for the amputees’mobility and safety in daily living.

Motivated by the importance of the topic, intent recognition for
prosthesis control has been investigated by numerous investigators
in the area. Two types of sensor signals were used as the
major sources of information. The first is the muscle activation
signals acquired through surface electromyography (sEMG). For
example, Huang et al. developed phase-dependent sEMG pattern
recognition methods using linear discriminant analysis (LDA)
and artificial neural network (ANN) classification techniques to
recognize multiple modes of locomotion, including standing, level
walking, and stair ascent/descent (Huang et al., 2009; Huang et al.,
2011); recently, Zhang et al. developed a dynamic adaptive neural
network algorithm for the multi-feature fusion-based processing
of sEMG signals (Zhang et al., 2022). With the sEMG serving as

a noninvasive interface to the user’s nervous system, the acquired
sEMG signals may directly reflect his/her intent for the desired
joint motion. However, sEMG also suffers from multiple issues
such as low reliability and weak signals susceptible to noise and
motion artifacts, affecting its practical use in amputees’ daily life.
The other type of sensor signals is the signals from mechanical
sensors, most of which are embedded in the prosthesis itself
(joint angles/angular velocities, accelerations/angular velocities
measured through inertia measurement units, ground reaction
forces, etc.). For example, Varol et al. developed a Gaussian Mixture
Model (GMM)-based supervisory controller of powered lower-limb
prostheses to infer users’ intendedmotionmodes (stand, sit, orwalk)
based on the signals from the prosthesis-embedded jointmotion and
interaction force sensors (Varol et al., 2010). More recently, Su et al.
developed a convolutional neural network (CNN)-based method
to recognize human motion intent utilizing the signals from the
inertia measurement units (IMUs) mounted on the healthy legs
of lower-limb amputees (Su et al., 2019); Cheng et al. developed a
biomechanically intuitive activity recognition approach using the
signals from a thigh-mounted IMU and a force-sensing resistor as
the input (Cheng et al., 2021). Additionally, fusion of the sEMG and
mechanical sensor signals has also been investigated to improve
the intent recognition performance (Huang et al., 2011; Young et al.,
2013a; Young et al., 2013b).

Despite the large body of research work dedicated to the topic,
reliable real-time recognition of user motion intent, especially on
the desired locomotive transition, still remains a challenging issue
that affects robotic prostheses’ practical use in amputees’ daily
life, as the majority of existing approaches are only capable of
recognizing the current (on-going) locomotive mode. Further, the
heavy computation load associated with many intent recognition
approaches also hampers their implementation in prosthesis control
systems due to the limited computational power of the onboard
microcontrollers. To overcome these challenges, the authors present
a new lightweight intent recognizer to detect the user’s desired
locomotive mode transition early in the swing phase, such that
a robotic lower-limb prosthesis may assist the amputee user to
complete the power-demanding portion of the gait cycle with its
powered joint actions. Such early and timely recognition of the
locomotive transition may form an important building block for a
future versatile (multi-modal) prosthesis control system to facilitate
robotic prostheses’ use in amputees’ daily life.

As the basis of the intent recognizer development, the
authors completed a multi-modal gait data collection study,
including a variety of locomotive modes and mode transitions
(detailed in the subsequent section). To facilitate the intent
recognizer’s implementation in real-time prosthesis control, the
proposed intent recognizer only involves the signals from common
mechanical sensors, including joints angle and inertialmeasurement
data. Utilizing these sensor signals, the authors developed a
multidimensional dynamic time warping (mDTW) method to
provide timely detection of possible walking-to-stair ascent/descent
transitions in the swing phase (Section 2), such that the robotic
prosthetic joints may assist the user to complete the potentially
power-demanding actions during the subsequent stance phase
(e.g., lifting of the body center of mass during stair ascent). The
mDTWmethod also provides an additional advantage of facilitating
personalized and continuous adaptation through supplemental
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template generation, which may be especially useful for amputee
prosthesis users with highly diverse and evolving gait patterns.

2 Methodologies

2.1 Gait data collection study

To support the development of the intent recognizer, a study
was conducted to collect the related gait data. In this multi-modal
gait data collection study, the sensors were selected primarily based
on the availability in robotic lower-limb prostheses. The majority
of sensors used in this study were those embedded in a lower-
limb exoskeleton, which are able to measure limb movement with
high accuracy and reliability (Haque et al., 2019; Haque et al., 2021).
Considering the fact that most lower-limb amputees are unilateral,
a single exoskeleton was attached to each participant to measure the
knee and ankle joint movement (using rotary magnetic encoders),
the shank and thigh 3D movement (using two inertia measurement
units (IMUs)), and the foot plantar pressure (using two force-
sensing resistors (FSRs) embedded in the shoe).These sensor signals
are expected to be available from a robotic lower-limb prosthesis.
Further, wearable sensors were attached to other parts of the human
body to provide additional gait information, including two IMUs
attached to the contralateral leg (shank and thigh), an additional
IMUattached to the chest, and twoFSRs embedded in the shoe of the
contralateral foot (on the heel and first metatarsal head to facilitate
the detection of important gait events such as heel strike and toe-off).
Details of the sensor placement are show in Figure 1. Nine subjects
with no physical and cognitive abnormalities (anthropometric data
shown in Table 1) participated in the study. Note that the study were
conducted on healthy subjects for two main reasons: 1) the target
users of the proposedmDTWmethod (individuals with amputation
fittedwith future robotic prostheses)may be able towalk like healthy
individuals, and thus the corresponding gait data would be similar
to those of healthy individuals as well; and 2) it is difficult to recruit
participants from the target user population, as the use of robotic
protheses is still very limited (note that the walking gait of amputees
fitted with traditional passive prostheses is significantly different
from that of amputees fitted with robotic prostheses). The study was
approved by the Institutional Review Board (IRB) at the University
of Alabama. After the exoskeleton and the wearable sensor were
attached, each subject was asked to walk freely for 3–5 min to get
comfortable with the setup. Subsequently, the subject performed the
following locomotives activities: a) walk on treadmill at self-selected
slow, moderate, and fast speeds (each speed for 30 s), b) perform
a total of four sequences of motion activities comprising all three
motion states, such as level ground walking, walking to stair climb
transition, and walking to stair descend transition.

The activities within the four sequences were organized in
different orders to avoid bias in the data collection.The experiments
were conducted using two staircases (one staircase with a left hand
turn and the other with right-hand turn) connected with a long
straight hallway. Activity sequence started from stair descent in one
sequence and stair ascent in the other one for each staircase selected.
As such, a total of four activity sequences were tested based on
the starting points of the sequences. Similarly, the four sequences
ended at four different stopping points. The walking speeds within

FIGURE 1
Prototype of the measurement exoskeleton.

the sequence were randomized among three self-selected speeds
(fast, normal and slow speed). The participants were free to take
rest whenever necessary.The entire experiment was videotaped with
a handheld camera. Before starting the data collection, the camera
and the exoskeleton system were time synchronized. A desktop
computer was used to send timestamps to the sensor system while
the camera used its own application to synchronize the time. The
activities to be recognized and the corresponding durations are listed
in Table 2.

On average, 40 min of data were recorded per subject. The
data contains values of the accelerometer and gyroscope for x, y,
and z-axes from five IMUs, the joint position of knee and ankle,
as well as the heel and the ball pressure from the FSRs under
the left/right feet. In addition to the signals from the sensors,
we also extracted the thigh angle (with respect to the vertical
direction) from the corresponding IMU signals, considering the
fact that the thigh movement directly reflects a person’s intended
motion (e.g., raising the thigh higher in stair climbing). Specifically,
complementary filter and Kalman filter were used to extract the
thigh movement. First, accelerometer data was used to calculate the
angles (roll and pitch). Subsequently, gyroscope data were integrated
to get pitch and roll rates. Following this, the accelerometer and
gyroscope datawere combined to obtain a filtered estimate.Next, the
Kalman Filter was initialized by defining state variables, matrices,
and initial conditions. After that gyroscope data were used to predict
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TABLE 1 Anthropometric Data of the participants.

Subject Gender Age (year) Weight (kg) Height (cm)

1 Male 26 84 177.8

2 Male 30 64 175.25

3 Male 26 78 172.72

4 Male 30 55 169

5 Male 26 72 1.75.25

6 Male 27 84 167.64

7 Male 32 63.5 167.64

8 Male 25 61 162.56

9 Male 25 76 170.18

TABLE 2 Activities and the corresponding durations.

Activities Time (sec)

Walking 4032.38

Walking to stair climbing 25.56

Walking to stair descending 23.19

the next state. Following the prediction, accelerometer data were
incorporated to correct the predicted state. Ultimately, angles were
extracted from the corrected state.

The recorded signals were then processed using a MATLAB
script for noise removal. A second-order low-pass Butterworth
filter with 15 Hz cutoff frequency was applied to individual sensor
signals. Afterward, the signals were normalized using MATLAB
“normalize” function.

2.2 Data labeling and augmentation

Human locomotion is cyclic in nature. In data processing, the
data sequences were segmented into gait cycles by monitoring
the shank IMU accelerometer z-axis data and the heel pressure
data. Note that, different from the traditional method of starting
each gait cycle from ground contact (i.e., stance phase first), the
segmented gait cycles in this work start from the event of toe-
off (i.e., swing phase first). Such method of segmentation enables
the proposed intent recognizer to recognize the desired mode
(or mode transition) early in the swing phase, which, in turn,
enables the prosthesis motion controller to regulate the actuator
power output to assist the amputee user to complete the often
power-demanding stance-phase motion. Subsequently, the cycles
were manually labeled using MATLAB signal labeling toolbox
using the video as the reference. Related to the intent recognition
in this work, three types of cycles were utilized, including level

walking (LW), level walking to stair climbing (LW-SC) transition,
and level walking to stair descending (LW-SD) transition. In the
data set, the number of LW cycles was significantly larger than
the transitional motion cycles. To address this imbalanced dataset
issue, all transitional motion states cycles were augmented by (a)
scaling (96%, 98%, 102%, and 104% of the original amplitude) (b)
resampling, and (c) white Gaussian noise augmentation (SNR 30 dB,
35 dB, 40 dB, and 45 dB) (Wen et al., 2021). The post-augmentation
dataset contained 30,461 LW cycles, 2392 LW-SC cycles, and 2184
LW-SD cycles.

2.3 Dynamic time warping

Leveraging the cyclic nature of human locomotion, the proposed
intent recognition algorithm was developed by comparing the
real-time sensor signals with the known patterns of locomotion
based on the progression in a gait cycle. The comparison was
conducted with the method of Dynamic Time Warping (DTW)
(Liberman, 1983), which was developed to compute the optimal
match between two given signal sequences. The DTW is very
efficient in the time-series similarity measurement even if the
two time-series are not aligned in the time axis despite being
very similar in shape. While Euclidean distance assumes the nth
point in one sequence is aligned with the nth point in the other,
DTW alignment allows a more intuitive distance measure to be
calculated, as shown in Figure 2. The DTW distance is expected
to be much smaller compared with the Euclidean distance after
optimally matching the signal sequences. The equations below
outline the core steps of Dynamic Time Warping, providing a
mathematical framework for aligning sequences (Jang et al., 2017;
Weng et al., 2023).

In the proposed DTW-based intent recognition algorithm, we
express any movement gait cycle from a continuous movement
sequence and a template cycle as two time series X and Y.

X = (x1,x2,……,xm) (1)
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FIGURE 2
Euclidean distance vs. Dynamic time warping distance.

Y = (y1,y2,……,yn) (2)

where m is the length of X and n is the length of Y. A
distance matrix D in the size of (m×n) is formulated using
the single-point Euclidean distance between xi and yj of the
sequences X and Y :

D =

[[[[[[[

[

D1,1 D1,2

D2,1 D2,2

⋯

…

D1,n

D2,n

⋮ ⋮ Di,j ⋮

Dm,1 Dm,2 ⋯ Dm,n

]]]]]]]

]m×n

(3)

The cumulative distance matrix C is calculated where each
element C (i,j) represents the cumulative distance from the starting
point (1, 1) to cell (i, j) using dynamic programming:

C(i, j) = D(i, j) + min{C(i− 1, j),C(i, j− 1),C(i− 1, j− 1)} (4)

The initial conditions are C (1,1) = D (1,1), C (i,1) = D (i,1)+C
(i−1,1), and C (1,j) = D (1,j)+C (1,j−1). The optimal warping
path is calculated through the cumulative distance matrix, using
backtracking to trace the pathwith theminimum total distance.This
path represents the alignment between the two sequences. The total
distance along the optimal warping path is the sum of the distances
between the aligned elements.

As described above, the DTW algorithm calculates the warping
path which gives the lowest distance/cost measure between X
and Y. The measured cost/distance should be low if X and Y
are alike and high if they are dissimilar. The multidimensional
Dynamic Time Warping (mDTW) algorithm is an extension
of the regular DTW algorithm that takes all dimensions into
account when finding the optimal match between two series.
As multiple sensor signals are available to support the intent
recognition, the mDTW was adopted to make full use of the
rich information embedded in the sensor signals. Further, based
on the key requirement of identifying the possible locomotive
mode transition early in the swing phase, the cumulated real-
time sensor signals from the start of the gait cycle were compared
with the corresponding templates with the progression of the
gait cycle, which may generate the valuable information of
intent recognition performance and its improvement when more
sensor information becomes available with the progression in
the gait cycle.

2.4 Template generation

As described earlier, a total of three locomotive states (mode or
mode transitions) were investigated in this study, including a steady
state (level walking, LW) and two transitional state (level walking to
stair climbing, LW-SC, and level walking to stair descending, LW-
SD). Leveraging the cyclic nature of human locomotion, we also
segmented the gait data into individual cycles, starting from the
event of toe-off (exoskeleton side). Note that such definition was
applied to all gait cycles in this work, including the steady-state LW
cycle as well as the transitional (LW-SC and LW-SD) cycles.

Utilizing the collected gait data, templates were generated
to represent the characteristics of each mode (mode transition).
Specifically, the templates were generated by averaging (sample by
sample) all gait cycles for the respective mode or mode transition.
To address the slight variation of cycle length, the gait cycles were
resampled to the average length of the gait cycles using the Matlab
‘resample’ function prior to averaging.The templates were generated
for all motion modes and all sensor signals, including the thigh
angle, all axes of the gyroscopes and accelerometers in the IMUs,
joints angles, and foot pressures. As an example, the templates of the
thigh angle for the three locomotion states are shown in Figure 3.
Figure 3A shows the signal cycles from the study, while Figure 3B
shows the generated templates for the respective locomotionmodes.

2.5 Classification with multiple templates
and leave-one-out validation

With the availability of multiple templates from different test
participants (a total of 111 templates for all signals and locomotive
states from each participant), the standard mDTW method was
augmented with a voting mechanism, which exploits the individual
predictions to make the final prediction (Figure 4). The majority
voting scheme has been used in a variety of methods, and
it can be shown that majority voting improves the probability
of correct classification regardless of the type of classifier used
(Narasimhamurthy, 2005). Incorporating the voting mechanism
is expected to improve the performance of the mDTW intent
recognizer by accommodating the variation of human gait patterns
among different individuals. When multiple sets of templates were
obtained from multiple human subjects, the voting mechanism
can be combined with the standard mDTW method to make
full use of the available template sets and provide more accurate
and responsive intent recognition. To classify an unknown motion
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FIGURE 3
Thigh angle: signal gait cycles of the three locomotion modes (each shaded region represents one standard deviation) (A) and their respective
templates (B) (all normalized).

cycle, the corresponding sensor signals are compared with the
available template sets to compute the similarity scores, generate
individual predictions, and finally lead to the final prediction
through voting. Specifically, comparison with each template set
(associated with each subject) yields an individual prediction (LW,
LW-SC, or LW-SD) based on the similarity score within the
set; the final prediction is then determined by the collection of
individual predictions through voting. In the event of a tie, the
final decision will be made through the comparison of average
similarity score.

Considering the large number of signals available, a forward
selection process was implemented to identify a subset of signals
with the most significant contributions to the classification. This
was an iterative process, starting from the signal with the best
performance of classification when used as the single input to the
algorithm. In each iteration, a new signal was added, which best
improved the model till an addition of a new variable did not
improve the performance of the model.

For the validation of the intent recognition algorithm, the
standard leave-one-subject-out method was adapted to this specific
application. Specifically, for the performance characterization on

each subject, the corresponding template set (i.e., generated by
his/her own data) was excluded. Such cross-validation is expected
to generate an unbiased evaluation of the intent recognizer while
making full use of the gait data available.

3 Results

As described in Section 2.5, the forward selection method was
utilized to determine the most significant set of signals, along with
the optimal number of dimensions, for implementing the mDTW
method.The list of sensors signal selected from the forward selection
method is tabulated in Table 3. Maximum accuracy was achieved
when six sensor signals were used in this method. Table 4 shows
the overall accuracy and F1-score of the proposed method by
increasing the dimension fromone to six using the forward selection
method.The table also shows that the accuracy reduces by adding an
additional sensor signal other than selected by the forward selection
method in the mDTW model; hence only six sensor signals were
considered in this model. The last column in Table 4 shows the
inference (classification) time for the algorithm executed in Matlab
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FIGURE 4
Intent recognition classification model.

TABLE 3 List of sensor signals used in mDTW.

Sensor ID Sensor description

Sig1 Hip angle (Instrumented Side)

Sig2 Hip angle (Un-instrumented Side)

Sig3 Accelerometer-Y (Un-instrumented shank)

Sig4 Gyroscope-Z (Instrumented thigh)

Sig5 Accelerometer-Y (Chest)

Sig6 Accelerometer-Z (Chest)

Sig7 (not selected) Accelerometer -X (Instrumented thigh)

2023a (DTW function from the Signal Processing Toolbox) on a
3.2 Ghz Intel Core I-9 processor.

Note that, when implementing the proposed intent recognizer
in prosthesis control, the cumulated real-time sensor signal
data from the beginning of the gait cycle will be used to
compare with templates for locomotive mode recognition, and
reliable recognition early in the swing phase is highly desirable.
As such, performance of the proposed mDTW algorithm was
investigated for the different segment sizes (percentages from
the initiation of the gait cycle). Figure 5 and Figure 6 show the
performance (accuracy and F1 score, respectively) of the mDTW
algorithm with respect to the percentage of the gait cycle. For
most subjects, both accuracy and the F1-score increase with the
progression in the gait cycle. At 30% gait cycle, the accuracy of
classification for all subjects exceeded 98%, suggesting that the
mDTW algorithm was able to recognize the potential transitions
(LW-SC and LW-SD) well before reaching the stance phase
[typically starting at ∼40% of the gait cycle if starting from toe-off
(Winter, 2009)].

To provide more quantitative performance information of the
proposed mDTW algorithm, the cumulative confusion matrix for
30% gait cycle is shown in Figure 7. As can be clearly observed in
this figure, the data obtained in the first 30% of the gait cycle enabled
the mDTW algorithm to recognize the locomotive mode and mode
transitions with high accuracy, providing sufficient time for the
lower-level prosthesis motion controller to switch to the correct
mode of operation and complete the power-demanding portion
(typical stance phase) of the gait cycle.

As the final part of the testing and validation, we investigated
the potential of personalization using a subject’s own (personalized)
templates. Specifically, half of the subject’s data were used to generate
a set of personalized templates, while the other half were used for
validation and performance characterization. The performance of
this personalizedmDTWalgorithm (with user-generated templates)
was then compared with the performance of the user-independent
mDTW described above, with the typical results shown in Figure 8.
As can be observed in this figure, the personalizedmDTWalgorithm
was able to improve the recognition performance in a certain
range of gait cycle percentage, but the magnitude of improvement
was not significant. The reason, presumably, is that the study
only involved healthy subjects with similar normal walking gaits,
which diminished the performance enhancement provided by the
personalization.

4 Discussion

Leveraging the data generated by multiple sensors in a multi-
modal gait data collection study, we developed an mDTW intent
recognizer to detect the locomotive mode or mode transition early
in the swing phase. Note that a variety of machine learning methods
(models) were developed for lower-limb prosthesis control-oriented
user intent recognition. For example, Bhakta et al. (2020) compared
the performances of three machine learning algorithms in lower-
limb prosthesis control-oriented intent recognition, including linear
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TABLE 4 Performances of the method for different dimensions.

List of sensor signals Overall accuracy (%) F1 score Inference time (msec)

Sig1 68.90 0.6527 0.92

Sig1, Sig2 85.29 0.8399 2.03

Sig1, Sig2, Sig3 90.43 0.8913 2.35

Sig1, Sig2, Sig3, Sig4 92.52 0.9414 2.53

Sig1, Sig2, Sig3, Sig4, Sig5 97.05 0.9544 2.83

Sig1, Sig2, Sig3, Sig4, Sig5, Sig6 99.08 0.9730 3.24

Sig1, Sig2, Sig3, Sig4, Sig5, Sig6, Sig7 95.06 0.9423 3.45

FIGURE 5
Accuracy vs. gait segment size for different participants.

discriminant analysis (LDA), neural networks (NN), and XGBoost.
Based on the results reported in this paper, when leave-one-out
validation was conducted, the XGBoost method outperformed the
other two methods, with the errors of 10.12% in recognizing
steady-state locomotive modes and 15.78% in recognizing mode
transitions. Note that, the intent recognition models tested in this
paper only recognize which mode (or mode transition) each step
belongs to, using the sensor signal data collected in locomotive
experiments. In comparison, the mDTW intent recognizer in this
paper is capable of detecting the ongoing mode transition during
the transitional gait cycle, and thus avoids the typical one-step
delay in mode transition recognition. Regarding the comparison of
recognition accuracy, our mDTW model was able to provide lower
error (<6.5%) than the models tested in Bhakta et al., 2020 when
only level walking to stair climbing and stair descending transitions
were considered. Finally, the proposed mDTW model features low

computational load and fast inference time (Table 4), beneficial for
its implementation in the real-time control of robotic lower-limb
prostheses.

While 36 collected sensor signals were investigated in this
study, all sensors’ signals are not equally useful in classifying the
intended motion states. Besides, as the number of signals increases,
the computational load required for robotic prosthesis control
also increases. Therefore, it is necessary to select the most useful
signals while keeping the number of signals to a minimum. The
selected signals using the forward selection algorithm are tabulated
in Table 3. Table 4 shows a clear upward trend of the accuracy and
F1-score by adding more dimensions in the mDTW model. The
results shows that the accuracy of the model has been significantly
improved (from to 68.90%–99.08%) while six dimensions were used
instead of a single dimension. However, the accuracy does not
improve beyond these six sensors signals.
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FIGURE 6
F1-score vs. gait segment size for different participants.

FIGURE 7
Confusion matrix of the testing for 30% gait segments.

Based on the results shown in Figure 6, the accuracy and F1-
score show increasing trends with respect to the percentage of
progression in the gait cycle (starting from toe-off) irrespective
of the participants. A few participants (subject-6, subject-2, and
subject-8) show low accuracy and low F1-score at 10% and 20%

segment size; however, all participants show more than 98%
accuracy and 0.97 F1-score respectively at 30% into the gait cycle.
The figure also shows that the accuracy and F1-score do not improve
significantly when the progression in the gait cycle exceeds 30%;
hence this size could be considered the optimal point of decision
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FIGURE 8
Comparison of classification accuracy between personalized model vs. user independent model.

for this method. This also suggests that this method can predict
the intended modes with high accuracy within the swing phase to
provide sufficient time for the prosthesis motion controller to switch
modes if necessary.

One of the major advantages of this classification model is
that it can operate in a user-independent manner. As described in
Section 2.5, this method did not use any templates generated from
the participant’s own gait data during the validation process. The
user-independent classification allows an intent recognition system
to be used in an “off-the-shelf ” fashion where a single, generic
intent recognition system for a robotic lower limb prosthesis reduces
personalized training times, which would otherwise be burdensome
to the user and the clinician.

However, the model facilitates the use of personalized templates
to further improve the performance. Figure 8 shows the how
the classification accuracy changes after introducing personalized
templates in the model. The results did not show significant
improvement of the overall accuracy by introducing personalized
templates for the able-bodied participant. However, considering
the diverse and time-varying gait patterns of lower-limb amputees,
template personalization may become a useful way to improve the
intent recognition performance in the real-world application in the
robotic lower-limb prosthesis control. In fact the lack of available
templates may be a significant challenge when implementing the
mDTW intent recognizer in robotic lower-limb prostheses, as the
amputee users of such robotic prostheses may display substantially
different gait patterns from healthy individuals. A possible solution,
presumably, is to incorporate a data collection session when tuning

prosthesis controllers for individual users, such that the mDTW
intent recognizer can be personalized through the generation of
individual templates.

For the future work, the proposed mDTW intent recognizer
is expected to be implemented as the upper-level controller in the
real-time control system of future robotic lower-limb prostheses.
The algorithm will be executed in cycles, with each cycle initiated
at toe-off (i.e., start of the stance phase). With the progression
of the gait cycle, template comparison will start at approximately
10% of the gait cycle to allow enough data to be accumulated.
Subsequently, template comparison will be continuously conducted
to recognize possible gait mode transition. Note that, the proposed
mDTW intent recognizer can be easily integrated with the finite-
state impedance controller (FSIC), the most widely used lower-
limb prosthesis motion control approach, as the FSIC’s controller
behavior (mimicking the combination of a virtual spring and a
virtual damper) is also gait phase-specific (i.e., controller behavior
change triggered by a certain gait event such as toe-off and heel
strike) (Sup et al., 2008). Such compatibility is expected to facilitate
the mDTW intent recognizer’s future application in the prosthesis
control and generate a greater impact in the field. Considering
the importance of intent recognition in prosthesis control, a fault
detection module (similar to that described in Zhang and Huang,
2015) may be incorporated to detect signal anomaly and improve
the algorithm’s reliability through the use of possible recovery
mechanisms. Finally, the proposed mDTW method’s functionality
may be expanded to recognize other locomotive modes and mode
transitions (e.g., stair climbing/descending to walking), and its
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application may also be expanded to the control of other types of
devices assisting the user’s lower-limb motion (e.g., robotic knee
exoskeletons).

5 Conclusion

In this paper, we developed a new mDTW intent recognition
method to recognize the locomotive mode and mode transition
in the swing phase of the gait cycle, with the purpose of enabling
a robotic prosthesis to assist its user to complete the potentially
power-demanding actions during the subsequent stance phase.
Through a multi-modal gait data collection study, we obtained
the necessary data from multiple mechanical sensors to support
the subsequent classifier development. When developing the
mDTW algorithm, feature selection was conducted to identify
the six most useful sensor signals as the input, and a voting
mechanism was used to augment the standard mDTW algorithm to
make full use of the gait data obtained on the multiple subjects
(through the corresponding templates). Through validation, it
was shown that the proposed mDTW algorithm can recognize
the locomotive mode or mode transition within 30% progression
of a gait cycle with 99.08% accuracy and 0.9730 F1-score. As
such, when used in a hierarchical prosthesis control system,
such early-swing-phase detection is expected to provide sufficient
time for the lower-level motion controller to switch operation
mode if necessary before the initiation of the stance phase.
Finally, with the algorithm’s low computational load and easiness
of personalization through individual template generation, the
proposed mDTW intent recognizer may become a basic building
block of future prosthesis control systems to facilitate the robotic
prostheses’ real-world application among the large amputee
population.
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