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Observation vs. interaction in the
recognition of human-like
movements

Giovanni Mignone*, Antonio Parziale*, Enrico Ferrentino*,
Angelo Marcelli and Pasquale Chiacchio

Department of Information Engineering, Electrical Engineering, and Applied Mathematics, University of
Salerno, Fisciano, Italy

A crucial aspect in human-robot collaboration is the robot acceptance by human
co-workers. Based on previous experiences of interaction with their fellow
beings, humans are able to recognize natural movements of their companions
and associate them with the concepts of trust and acceptance. Throughout this
process, the judgment is influenced by several percepts, first of all the visual
similarity to the companion, which triggers a process of self-identification. When
the companion is a robot, the lack of these percepts challenges such a self-
identification process, unavoidably lowering the level of acceptance. Hence,
while, on the one hand, the robotics industry moves towards manufacturing
robots that visually resemble humans, on the other hand, a question is still
open on whether the acceptance of robots can be increased by virtue of
the movements they exhibit, regardless of their exterior aspect. In order to
contribute to answering this question, this paper presents two experimental
setups for Turing tests, where an artificial agent performs human-recorded and
artificial movements, and a human subject is to judge the human likeness of
the movement in two different circumstances: by observing the movement
replicated on a screen and by physically interacting with a robot executing the
movements. The results reveal that humans are more likely to recognize human
movements through interaction than observation, and that, under the interaction
condition, artificial movements can be designed to resemble human ones for
future robots to be more easily accepted by human co-workers.

KEYWORDS

collaborative robots, human-robot collaboration, human-robot interaction, robot
acceptance, turing test

1 Introduction

The human acceptance of robots’ behavior is key to designing suitable human-robot
interaction schemes and related control algorithms (Kim et al., 2012). From the human
standpoint, robots should mimic human motor functions. Possible strategies are to design
robots with anthropomorphic aspects (Averta et al., 2020) and/or to assign them a specific
behavior, concerning movement, speech and visual/facial gestures, shaping their interaction
with humans (Kelley et al., 2010).

Focusing on the latter, one of the main differences between human and classical
robotic arm movements is observed in their velocity features. The Kinematic Theory
of rapid human movements (Plamondon, 1995), and its consequent sigma-lognormal
model (O’Reilly and Plamondon, 2009), suggest that complex human movements are the
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result of the time superimposition of elementary movements,
each of which is commanded by the central nervous system
and exhibits a lognormal velocity profile. Throughout the
years, the sigma-lognormal model has proved to be effective at
reproducing human-like movements in 2D (Ferrer et al., 2020;
Parziale et al., 2020; Laurent et al., 2022) and 3D conditions
(Fischer et al., 2020). On the other side, typical robotic/artificial
velocity profiles are constant or trapezoidal (Kavraki and LaValle,
2016).

Given this difference, questions arise on whether humans are
able to discriminate between human and artificial movements and
whether the modalities by which humans perceive the movement
can affect the judgment about its human likeness. Chamberlain et al.
(2022) designed experiments consisting in the observation of videos
and claimed that human-like drawing movements with bell-shaped
velocity profiles are perceived as more natural and pleasant than
movements with a uniform profile. On the contrary, Quintana et al.
(2022) showed how humans do not have a clear preference between
movements at constant and lognormal speed, both when watching
videos of a robotic arm executing some trajectories in space and
when interacting with the robot by tracking its tip with their finger.

Some works focused on the design of new control strategies
able to provide a robot with more comfortable movements
during human-robot interaction tasks. Tamantini et al. (2022)
presented a patient-tailored control architecture for upper-limb
robot-aided orthopedic rehabilitation. They designed a learning-
by-demonstration-based approach using Dynamic Movement
Primitives (DMP). The proposed controller is capable of adapting
the rehabilitation workspace and the assistance forces according to
the patient’s performance. Similarly, Lauretti et al. (2019) proposed
a new formulation of DMP that endows anthropomorphic robots
with the capability of performing movements similar to the human
demonstrator both in the joint and Cartesian space and avoiding
obstacles. The proposed approach was compared with a literature
method based on Cartesian DMP and (IK). The questionnaire
results showed that the users prefer the anthropomorphic motion
planned through the proposed approach with respect to the non-
anthropomorphic one planned by means of Cartesian DMP and
IK.

Our contribution is to investigate to which extent the modalities
by which humans perceive motion affect their judgment about
the human likeness of movements. Our results show that the
physical interaction with the robot simplifies the detection of
human movements if compared to the mere observation of the
same movements. In our view, this supports the thesis that,
depending on the task, robots can be provided with different
degrees of human likeness, in view of acceptance. Also, in the
same view, not all artificial trajectories are the same, but some
are more frequently perceived as human than others. This paves
the way to the design of robots resembling human behavior and,
therefore, is expected to improve robot acceptance in human-robot
collaboration.

The remainder of the paper is organized as follows: Section 2
describes two Turing tests, each featuring a different experimental
setup; Section 3 presents the results of such experiments
and Section 4 discusses the results and provides concluding
remarks.

2 Materials and methods

With the focus on robot acceptance, we designed our
experiments to excite the visual and the proprioceptive systems
separately, and to analyze which of them is more effective in the
view of human-robot collaboration. The experiments are shaped
in the form of Turing tests: the stimulus provided to a human
subject is a handwriting motion, and the subject is required to
decide whether it is produced by a human or by an artificial
agent.

2.1 Participants

The participants were recruited among members of the Natural
Computation and Robotics Laboratories and students attending the
M.Eng. degrees at our department. All the participants accepted
to participate on a voluntary basis, and formally expressed their
consent to participate by reading and signing a consensus form. The
participants were divided in two disjoint groups, referred to as G1
and G2. The nine subjects of G1 provided the human trajectories,
while the 36 of G2 participated in the tests. None of the subjects
of G2 had previous experience of physical interaction with a robot.
Details about the participants included in G1 and G2 are reported in
the Supplementary Table S1.

2.2 Generation of trajectories

In general, the equipment adopted to record movements
and the motor task that is investigated characterize studies on
human movements. Recording systems (motion tracker, tablet,
smartwatch, etc.) and motor tasks (gait, reaching movements,
handwriting, etc.) are selected according to the final application
or the particular aspect of the movements to be investigated.
Pen-tip movements during signing, drawing or writing acquired
with graphic tablets and smartpads have been largely adopted
(Diaz et al., 2019; Parziale et al., 2021; Cilia et al., 2022), but video
recording of gait as well as food manipulation during feeding
have also been suggested (Bhattacharjee et al., 2019; Kumar et al.,
2021).

In our work, the motor task we opted for is the drawing of
the simple shapes illustrated in the top panel of Figure 1, because
they do not trigger the processing of semantic information in the
subjects involved in the experiments. The advantage of adopting
these shapes instead of characters, words, signatures or other goal-
driven actions, is that of not activating cortex regions devoted to
integrating semantic information, as it would happen if the task had
a semantic content (Harrington et al., 2009), thus avoiding cognitive
biases that could affect the experimental results. Notwithstanding,
the tasks are not simple from a motor perspective, in that their
execution requires the proper synchronization of many elementary
movements.

The subjects of G1 were requested to draw the proposed shapes
with a ballpoint pen on a sheet of paper placed on an ink-and-paper
WACOM Intuos 2 digitizing tablet with a 100 Hz sampling rate. The
motion of the ballpoint pen over the 2D plane of the tablet was
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FIGURE 1
Human handwriting patterns and time laws.

recorded through the software MovAlyzeR R©v6.1 (Teulings, 2021).
The subjects were instructed to draw 10 times each pattern so
as to occupy as much as possible of the A4 surface of the sheet.
They were free to write at their own pace and only the on-paper
movements were recorded. The acquisition setup is reported in
Figure 2.

From the recorded human trajectories, we extracted the
geometrical features, i.e., the path in planar coordinates, and
assigned each of them two different time laws from robotics
literature to move along, referred to as MethodA (Kavraki and
LaValle, 2016) and MethodB (Slotine and Yang, 1989). In particular,
MethodA assumes that the velocity is uniform, while MethodB
assumes that the velocity depends on curvature, according to a
time-optimal profile, as in the case of human movements. Thus,
for each pattern, there are three different execution modalities,
which we term classes, one human and two artificial, denoted in
the sequel as Human, MethodA and MethodB. We use the term
Human to denote trajectories that, although executed by an artificial
agent, are not obtained by any model, but are a mere replication
of the human movements acquired through the graphic tablet.
For more information about MethodB trajectories, refer to the
Supplementary Material.

2.3 Observation experiment

In this experiment only visual stimuli are provided to the
subjects for making a decision. To this purpose, we generated
animations of the trajectories in compliance with human and
artificial time laws. Based on the assumption that context
information have an effect on the judgment of human likeness,
we stimulated the self-identification with the execution of a
handwriting task by including an icon of a human hand holding
a pen, and generating the animated trajectory as the hand moves,
so as to simulate a pen releasing ink on a sheet. This represents
the major difference with respect to the experiments reported
by (Chamberlain et al., 2022) and (Quintana et al., 2022), as we
purged videos from the visual clues that could divert the attention
of the individual from the movement (such as a robotic manipulator
structure), and include elements to help the human subject in the
self-identification process.

The visual stimuli are presented as a sequence of 10 instances
of the aforementioned patterns, generated by randomly selecting
three human trajectories, one for each pattern, and, for each of
them, the corresponding trajectories generated by MethodA and
MethodB, respectively, plus one more artificial trajectory generated
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FIGURE 2
Acquisition setup (left), observation experiment setup (center), interaction experiment setup (right).

by MethodB. During the test, one trajectory animation at a time is
presented on a screen, and the participant is requested to decide
if the movements in the video are produced by a human or by
an artificial agent. The test is designed in such a way to avoid
a participant skipping or pausing a video, going back to already
answered questions or repeating the entire survey. A screenshot of
the survey is provided in Figure 2, while the Supplementary Video
S1 is the screen recording of a subject completing the observational
experiment.

2.4 Interaction experiment

In this experiment, subjects only receive proprioceptive stimuli
formaking a decision. For the purpose, we let the subject be in touch
with the robot tip while performing the movements, as it will be
described in the sequel. In order to isolate the proprioception, and
hence preserve the purpose of the experiment, the visual and hearing
systems are inhibited through a sleep mask and ear muffs.

The interaction experiment is performed with a velocity-
controlled UR10 robot, fed with both human and artificial
trajectories. Velocity-based control, i.e. the tracking of velocity
references, is preferred over position-based control, i.e. the tracking
of position references, because a characteristic of humanmovements
is that their tangential velocity profiles can be decomposed into
a sequence of submovements with an invariant velocity profile
(Morasso and Mussa Ivaldi, 1982; Plamondon and Guerfali, 1998).
So, preserving this characteristic should be the key to generating
human-like movements with a robot. Since human behavior is
expected to be encoded in the velocity information, removing (or
reducing) non-desirable effects of control is paramount for this
experiment.

In terms of its workspace, the robot performs the handwriting
trajectories in its free space (without interacting with surrounding
objects) on a virtual horizontal plane. The human participant holds
the robot end-effector, specifically designed and 3D-printed to be
grasped like a pen. For safety reasons, a physical barrier is placed
between the robot and the human, preventing the latter to enter
the robot workspace with the entire body. In addition, the robot is

programmed to operate close to its workspace boundary, so that its
extension towards the human is limited. The end-effector is stiff, so
as to prevent introducing artificial dynamics, but also fragile enough,
for safety reasons, to break at a collision before provoking injuries to
the participant’s hand.

For each participant, the robot executes nine handwriting
trajectories (3 Human, 3 MethodA, 3 MethodB) composed as in
the previous experiment. To avoid a drop-off in the attention of
the participants or the insurgence of fatigue effects, which could
affect the experimental results, we reduce the temporal duration
of the experiment by executing the three trajectories from the
same class one after the other before asking the participant to
make a decision. So, each participant interacts with three different
sequences made up of three trajectories. The order of the three
sequences is randomized among participants in such a way that
the human trajectories are presented as the first, the second or the
third sequence of movements. After each sequence, the participant
is requested to decide if the movements performed by the robot had
been generated by a human or by an artificial agent.

Before the experiment, the operator describes the protocol (see
the Supplementary Material) and shows to the participant the three
movement patterns, printed in the original size and posted on a desk
whose top is immediately below and parallel to the virtual plane
where the robot movements are executed. This way, the participant
is aware of the trajectories’ geometrical features and, during the
experiment, can pay attention only to the proprioception of the
movement. This should prevent participants from creating a mental
image of movements they are experiencing, a phenomenon that
could disturb their decision-making process or cause a drop-off in
their attention.

A picture of the interaction experiment setup is shown in
Figure 2, while the Supplementary Video S2 shows a human
subject interacting with the UR10 robot.

2.5 Experimental procedure

Each participant was requested to complete the visual test, and
a week later, was recalled for the interaction test. The visual test
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FIGURE 3
Experimental results over all the performed experiments (top) and accuracy vs. position in the interaction experiment (bottom).

was available on a website for 1 week, and participants were allowed
to participate at their convenience. For the interaction test, the
participants were admitted one at a time to the room where the
experiment was performed to prevent their judgment could be
affected by the opinion of other participants.

Through this methodology, the two experiments present a
significant difference: while the visual test is performed with no
previous experience of the movement patterns (the participants
never saw the patterns before taking the test and were completely
unaware of the experiment’s purpose), the movements proposed at
the interaction experiment were already experienced, although only
through observation.

Eventually, and in order to estimate the possible interaction
between experiments, we asked the subjects to take the visual test
again (with the same trajectories in the same order) immediately

after participating to the interaction experiment. The goal is to
exclude or confirm that human judgment is somehow affected by
experience.

3 Results

The results of the three experiments, in terms of correct decision
percentage, for the three trajectory classes, are summarized in
Figure 3 (top).

The results of the first experiment show that there is no evidence
that human subjects are able to discriminate human and artificial
trajectories by only observing the movement itself, even when their
velocity profiles are quite different, as for trajectories generated by
MethodA.
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FIGURE 4
Correct decision rate for each participant and experiment.

The results of the Second experiment reveal some important
facts. First, the correct decision rate for MethodA trajectories
considerably increases compared to the observation case. This
confirms that the proprioceptive sensory system is more sensitive
than the visual one in recognizing movements with velocity profiles
that are different from those of humans. Second, the correct
decision rate of Human and MethodB trajectories in the interaction
experiment is similar, thus indicating that MethodB is a better
candidate to design human-like trajectories compared to MethodA.
As a matter of fact, 55.56% of them are classified as human.

Figure 3 (bottom) reports, for the interaction experiment,
the correct decision rate in discriminating human and artificial
trajectories depending on the position of the trajectories in the entire
sequence. The histogram shows that the later the human trajectories
appear in the sequence the higher the correct decision rate. In
particular, the correct decision rate for human trajectories is equal
to 20%, 57.14%, and 75% when they are the first, second and third
of the sequence, respectively. In the case of artificial trajectories, the
loss of performance when either MethodA or MethodB trajectories
are executed in the second position seems to depend on which
trajectory has been executed first in the sequence. Nevertheless, this
observation could only be confirmed with experiments involving a
larger number of subjects.

These results suggest that the subjects use the first sequence to
set a reference, and then evaluate the following ones with respect to
it. Moreover, it seems that when evaluating the first sequence, they
exhibit some bias towards the artificial category, possibly because
they have never experienced a direct interaction with a robot, hence
the whole experience is perceived as “artificial”, and such a feeling
translates in their judgment. As the experiment proceeds, they adjust
to the setting: the bias toward artificial is reduced, they concentrate
more on the task and the performance consequently increases.

This interpretation is also confirmed by analyzing the results
depending on the number of repetitions of the robot movements
the subject asked for before answering the question. In particular,

we find out opposite results in the case of human and artificial
trajectories, and in particular:

• In the case of human trajectories, the correct decision rate is
57.69% for those executed only once, while it drops to 40.00%
for those executed twice;
• In the case of MethodA trajectories, the correct decision rate is

72.41% for those executed only once, and it reaches 100.00% for
those executed twice;
• In the case of MethodB trajectories, the correct decision rate is

34.62% for those executed only once, and it reaches 70.00% for
those executed twice.

The results of the second visual test, executed soon after the
interaction experiment, show no evidence that previous experience
of observation and interaction increases the human ability to
identify human and artificial movements. Indeed, the results are in
line with those of the first one. Furthermore, although participants
are able to correctly detectMethodA artificialmovements during the
interaction experiment, they cannot identify the samemovements in
the second visual test. This suggests that the difficulty in recognizing
human movements, in our experiments, might be unrelated to the
lack of experience, while being related to the fact that movement
features aremore easily perceived through the proprioceptive system
than visually.

The correct decision rate for each participant and experiment
is reported in Figure 4. Each histogram, associated with each
experiment, has 36 bars, each corresponding to the correct decision
rate achieved by each participant in that experiment. Mean and
standard deviation over all the participants are overlapped on
each histogram. A Wilcoxon test with a significance level of 0.05
is used to compare the results of the two visual experiments.
The null hypothesis that the medians of the differences between
the two group samples are equal is accepted with p-value equal
to 0.68.
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4 Discussion

The robot acceptance by human operators is a complex issue,
that is tightly connected to the human perception of motion. In
order to assess how different senses perform to this respect, we ran
experiments involving human subjects, who were asked to observe
and interact with an artificial agent in two different experimental
setups, stimulating only one sense at a time. For practicality, the
selected movements were extracted from handwriting tasks. In
particular, we assessed the validity of the experimental method
consisting of exciting the visual system only and, in view of
acceptance, compared it with a different experimental method
consisting of exciting the proprioceptive system only.

In the first test, the handwriting motion was reproduced in a
video, whereas, in the second test, the blindfolded and soundproofed
participant was asked to hold the robot end-effector, while being
compliant with its motion. In both scenarios, the participants were
asked to judge the human likeness of each individual movement,
which could embed a human or an artificial time law (derived
with one of two different methods from the robotics literature).
Eventually, we repeated the first test to assess the influence of
experience on judgment.

The outcomes of this research can be summarized as follows:

• a set of participants is not able to reliably distinguish between
human and artificial movements shown in a video, even by
eliminating visual elements hampering, e.g. a physical robot,
and by adding visual elements helping, e.g. a hand with a pen,
the self-identification process: whatever class of movements is
shown, the correct decision percentage is about 50%;
• during the interaction with a robot executing handwriting

movements, participants are able to identify artificial
movements adopting uniform velocity (77.78%), but the
same does not hold for those that adopt curvature-dependent
velocity, which resemble the human ones (44.44%);
• The experience of observation and interaction does not seem to

help detect movements in further observation experiments;
• The experience of interaction does seem to help for further

interactions, in fact, the correct decision rate for each
movement class also depends on the order in which trajectories
are executed in the interaction experiment (human movements
executed as first are 20.00% correctly identified, while human
movements executed as last are 75.00% correctly identified).

From the last observation, a new research question arises: does
a human need a comparison to correctly distinguish human and
artificial movements? In view of investigating robot acceptance,
should the experimental method be defined in terms of “which of
these two movements made you feel more comfortable?”. Talking
to the participants after they performed the tests, they reported,
referring to human movements they were unaware of, that “the
movement was too perfect to be performed by a human”. We
observed that there are expectations about the robotic/artificial
movement that undoubtedly affect the judgment. This also explains
why, after gaining some experience of interaction, the correct

decision rate tends to increase. Also, in light of these observations,
we believe that formulating the question in terms of comfort instead
of human likeness is more appropriate in view of robot acceptance.
In this case, we would move the focus to the quality of the motion
itself, instead of identifying themotionwith a robot or a human.This
is a research direction that we are willing to investigate in a future
work.

In addition, the experimental setup can be improved by
including additional tools: for example, a motion tracker could
be used to record more generic 3D movements from human
subjects, while a 3D simulation environment, featuring a 3D
human-like avatar reproducing themotion, could empower the self-
identification process and provide further insights about the role and
power of observation in the acceptance of artificial movements.
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