
TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/frobt.2022.904341

OPEN ACCESS

EDITED BY

Andreagiovanni Reina,
Université libre de Bruxelles, Belgium

REVIEWED BY

Qi Lu,
University of Texas at San Antonio, United
States
John Harwell,
University of Minnesota Twin Cities, United
States

*CORRESPONDENCE

Edgar Buchanan,
edgar.buchanan@york.ac.uk

Andy M. Tyrrell,
andy.tyrrell@york.ac.uk

SPECIALTY SECTION

This article was submitted to
Computational Intelligence in Robotics, a
section of the journal Frontiers in Robotics
and AI

RECEIVED 25 March 2022
ACCEPTED 08 December 2022
PUBLISHED 04 January 2023

CITATION

Buchanan E, Alden K, Pomfret A, Timmis J

and Tyrrell AM (2023), A study of error

diversity in robotic swarms for task

partitioning in foraging tasks.

Front. Robot. AI 9:904341.

doi: 10.3389/frobt.2022.904341

COPYRIGHT

© 2023 Buchanan, Alden, Pomfret, Timmis
and Tyrrell. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A study of error diversity in
robotic swarms for task
partitioning in foraging tasks

Edgar Buchanan1*, Kieran Alden1, Andrew Pomfret1,
Jon Timmis2 and Andy M. Tyrrell1*
1School of Physics, Engineering and Technology, University of York, York, United Kingdom, 2School
of Computer Science, University of Sunderland, Sunderland, United Kingdom

Often in swarm robotics, an assumption is made that all robots in the swarm

behave the same andwill have a similar (if not the same) errormodel. However,

in reality, this is not the case, and this lack of uniformity in the error model,

and other operations, can lead to various emergent behaviors. This paper

considers the impact of the error model and compares robots in a swarm

that operate using the same error model (uniform error) against each robot

in the swarm having a different error model (thus introducing error diversity).

Experiments are presented in the context of a foraging task. Simulation and

physical experimental results show the importance of the error model and

diversity in achieving the expected swarm behavior.

KEYWORDS

swarm robotics, fault tolerance, error diversity, task partitioning, foraging

1 Introduction

Robot swarms are capable of performing different tasks in an efficient and
decentralized way, in part, due to their high level of parallelization. In the past, swarm
robotic systems were assumed to be inherently robust to failures due to their high degree
of robot redundancy. However, Winfield and Nembrini (2006) demonstrated that this
is not always the case and that specific processes must be introduced to increase the
robustness of the swarm. Bjerknes and Winfield (2012) demonstrated that in various
scenarios, specific partial failures in robots can lead to task degradation or, in the worst
case, the task not being achieved.

Fundamental mechanisms to achieve robust fault-tolerant swarm robotic
systems have been considered by different authors including detecting faults
(Christensen et al., 2009; Tarapore et al., 2015), diagnosing the fault type (Li and
Parker, 2007; Keeffe et al., 2017), recovering from the fault (Humza et al., 2009;
Timmis et al., 2010), or a combination of all of these fault-tolerant methods
(Parker, 1998; Parker and Kannan, 2006). However, in all of these works, the
authors classify the robots according to their behavior, that is, a robot being either
faulty or non-faulty, where faulty robots exhibit abnormal behavior compared
with non-faulty robots. However, in reality, it is often hard to distinguish between
a faulty and non-faulty robot due to the diversity of errors across the swarm.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.904341
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.904341&domain=pdf&date_stamp=2021-10-15
mailto:edgar.buchanan@york.ac.uk
mailto:andy.tyrrell@york.ac.uk
https://doi.org/10.3389/frobt.2022.904341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2022.904341/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.904341/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.904341/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

The importance of considering error diversity in swarm
robotics can be summarized in three points. 1) It is possible to
reduce the reality gap between swarm behaviors in simulation
and swarm behaviors in hardware. 2) The error non-diversity
could lead to false positive results and missing critical faults that
ultimately led to failures. 3) It is important for each robot to learn
and adapt to its own inherent error; in this way, the robot swarm
will exhibit better performance.

To the best of the authors’ knowledge, there is no literature
where diversity in terms of levels of error is considered in
fault-tolerance experiments. Most related research examines
diversity across the swarm from an evolutionary perspective,
where controllers can be evolved independently for each robot
in the swarm. For example, reinforcement learning has been used
to train task-specialized robots where each robot in the swarm
learns to perform a specific task (Balch, 1998; Li et al., 2003;
Balch, 2005) or tasks have been previously allocated to robot
members (Zhang et al., 2008). Robot controllers are generally
evolved with two methods: genetically homogeneous or
genetically heterogeneous (Bongard, 2000; Potter et al., 2001;
Trianni and Nolfi, 2011; Tuci, 2014; Hart et al., 2018). In the
homogeneous method, the controller is expressed as a single
genotype, which is then cloned into each robot in the swarm.
With respect to the heterogeneous method, each robot has its
own genotype, and after evolution, each robot has a specific role
in the task. Despite this work on controller heterogeneous swarm
systems, there is no research that considers the appropriate level
of error for each robot during the simulation and its impact
on the performance of the swarm in both simulation and
hardware. In this paper, we identify and study the discrepancy
of results when degrees of diversity of error are considered,
referred in this paper as heterogeneous error, or if all the robots
share the same degree of error, referred to as homogeneous
error.

The task considered in this paper is task partitioning
in foraging. Task partitioning, first observed in biological
systems (Ratnieks and Anderson, 1999), has been used in
the swarm robotics context to prevent bottlenecks close to
the home area where the items are deposited (Goldberg
and Matarie, 2001; Brutschy et al., 2014; Pini et al., 2011). Other
approaches such as Pini et al. (2013), Pini et al. (2014), and
Buchanan et al. (2016) have focused on fault tolerance in order to
increase performance when the dead-reckoning error is present
in a robot. Task partitioning has also been used to study the
effect of task decomposition on emergent swarm intelligence
(Harwell et al., 2020).

Task partitioning is a technique that divides a single task
into multiple smaller subtasks, with the objective of reducing the
amount of distance traveled by each robot and, thus, the error in
dead reckoning. A robot finds an item in the environment and

transports the item toward the home area for a short distance
referred to as the partition length (P).Then, the item is exchanged
by either leaving the item on the floor for a different robot to
collect (indirect transfer) or waiting for the second robot to
receive the item directly from the first robot (direct transfer).
Since the robots are traveling a shorter distance P compared to
the total distance between the home area and the items’ source,
the dead reckoning is smaller.The amount of distance P depends
on the approach taken.

The experimental framework in this paper follows a top-
down approach from the macro to the micro perspective,
combinedwith three layers of abstraction: emulation, simulation,
and hardware.

In the first stage, emulation, an ensemble of differentmachine
learning techniques is trained with a dataset generated from
Latin hypercube sampling in simulations. The main advantage
of using emulation is to save time and computation resources,
compromising the resolution of the simulation. In other words,
the emulation is used to explore the experiments from a macro
or global perspective, which is only concerned with the behavior
of the swarm as a whole. Emulation is generated for each strategy
with each error type.

The second and third stages, simulation and hardware, are
studies from the micro or local perspective which is concerned
with the contribution of each robot to the task. This aids in
obtaining a comprehensive understanding of the behavior of the
swarm.

The contributions are summarized as follows:

• Demonstration that the assumptionmade that all the robots
in a simulated robotic swarm shared the same error model
can lead to unexpected swarm behaviors when testing the
behavior with physical robots where each robot experiences
a different error

• Difference in behaviors introduced by error diversity can be
mitigated by having each robot learn the task according to
the success of its performance, thus reducing errors for all
robots

The hypotheses explored in this paper are as follows:

1. The consideration of error diversity leads to different
correlation values than non-diversity

2. Each robot adapts differently to its inherent error

The rest of the paper is organized as follows. In Section 2,
a case study is presented and each task partitioning strategy is
described.Themethodology followed in the experiments for this
study is described in Section 3. Experiments and comments on
results are presented in Section 4, and Section 5 provides the
summary and conclusion.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 1
Foraging arena (left) and the finite state machine used by the robots (right). Left: the arena has a rectangular shape defined by its width (w) and
length (L). The distance between the home area and the items’ source is represented by d. Pi represents the individual partition length for robot i.
Right: non-partitioning strategy finite state machine composed of three states: explore, go-to-nest, and go-to-source.

2 Case study: Foraging task
partitioning strategies

Foraging with dead reckoning as navigation is used as a task
to study the impact of the error diversity and uniformity across
the robots in the swarm to the behavior and performance of the
swarm.

Within a simple foraging task, a group of robots explore the
environment searching for items to collect. Then, after an item is
found, the position is recorded by the robot, and finally, the robot
transports the item toward the home area. This study focused on
a single home area; however, this work could be used formultiple
places at home (Lu et al., 2018).

Due to systematic andunsystematic errors in dead-reckoning
navigation, the real-time position is often inaccurate leading to
an error in the positioning estimation. Errors accumulate as a
robot travels, which in turn affects the estimated item position.
As a consequence, when the robot attempts to go back to where
it found the last item in order to collect further items, it reaches
a different location. One simple way to mitigate this error is to
partition the distance traveled by each individual robot.

In this study, two task partitioning foraging strategies are
used to examine the effects of error diversity and uniformity.
The objective of this approach is to compare traditional foraging
with a strategy where robots learn to divide the task intomultiple
smaller tasks, depending on the success, or otherwise, of item
collection. Different emergent behaviors are expected to appear
when error diversity and uniformity are considered for each
strategy. In the first part of this section, the foraging task is
described, and the first strategy, the non-partitioning strategy
(NPS) (Pini et al., 2011), is introduced. A second strategy is
then described as the dynamic partitioning strategy (DPS)
(Buchanan et al., 2016), where the number of partitions is
defined by a penalty and reward mechanism.

2.1 Foraging task and non-partitioning
strategy

In both strategies, contained in the environment is a virtual
beacon that guides the robots toward their home area (nest).The
arena, shown in Figure 1, is rectangular and is defined by its
width (w) and length (L) and the distance between the home area
and the items to be collected [source (d)].

In the non-partitioning strategy (NPS), the robots take the
items directly from the item source to the home area. The
controller is a finite-state machine (FSM) composed of three
states as shown in Figure 1, and each state is described as follows.

First, the robot starts in the explore state in which all the
robots are searching for items in the arena. The exploration
consists of a motor schema-based navigation (Arkin, 1987) with
two behaviors: 1) stay on the path and 2) avoid obstacles. Once
an item is within the range of vision of the robot, it records the
position, picks up the item, and then, enters the go-to-nest state.

In the go-to-nest state, the robot travels toward the home area
by following the virtual beacon. The robot aligns itself toward
the source of the light and moves straight to that location. The
robot knows it has reached the home area when ground sensors
on the robot detect a change in color. The item is deposited, and
the robot transitions to the go-to-source state.

The go-to-source state consists of the robot traveling back to
where the estimated position of the items’ source is recorded.The
robot uses dead reckoning as navigation to guide itself to reach
the item’s source. If an item is found, the robot picks up another
item and switches to go-to-nest state; if the robot does not find an
item, then it changes to the explore state.

In an ideal scenario, the robot would be continuously
retrieving items from the source without transitioning to
the explore state. However, in reality, robots are susceptible
to systematic and non-systematic errors introduced by the

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

dead-reckoning noise, which in turn affect target position
estimation.The error accumulates the longer the distance a robot
travels; therefore, the probability of finding the items source
decreases as d increases due to the drift from the actual items’
source and the estimated item’s source position.

In order to decrease the error introduced by dead-reckoning
noise, the task can be decomposed into smaller subtasks
performed by each robot, and this is described in the following
section.

2.2 Dynamic partitioning strategy

In dynamic partitioning strategy (DPS), each robot i changes
its individual distance traveled (Pi) using a penalty and reward
mechanism. Every time a robot finds an item in the go-to-source
state, Pi is increased. If the robot i does not find an item, then Pi
is decreased.

Pi is calculated with Eq. 1 where k defines the amount of
distance changed to Pi and α defines the ratio between reward
and penalty. As α decreases, the robot is rewarded. Pi(t) is the
partition length after the application of the penalty and rewards,
and Pi(t− 1) is the value beforehand.

Pi (t) =
{{{
{{{
{

Pi (t− 1) + k (1− α) if item found

Pi (t− 1) − kα if itemnot found.
(1)

3 Methodology

This section presents the methodology followed for all
experimental work in the study. First, parameters and outputs are
defined; then, the experimental framework is followed and the
tools used are introduced; and finally, the statistical techniques
used to analyze the experiments’ results are described.

3.1 Terms, parameters, and outputs

In order to understand the impact of having different error
models for each robot in a swarm compared to all robots having
the same error model, it is important to perform a study from
both themacro (the swarm as a whole) and themicro (each robot
by itself) perspectives.

From a macro perspective, the total items collected output
provides a good performance metric for the swarm as a whole,
and this can be compared with different swarm sizes and
distances between the home area and the items’ source.The social
entropy provides a metric for how homogeneous the swarm is,
according to the different individual errors.

From a micro perspective, it is important that the outputs
reflect the performance of each robot by itself.The collection ratio
output represents how successful a robot is at finding the item,
providing an indication of how bad the error is for each robot.
In a similar way, the explore ratio provides an indication of the
amount of time the robot spends exploring.

3.1.1 Terms and parameters
To allow appropriate results to be collected and meaningful

analysis to be undertaken, a number of environmental and
system parameters must be defined for the experiments. The
terms that are used for the experiments are simulation length,
swarm size, and the parameters are d, P, and α.

3.1.1.1 Terms
The experiment length term represents the duration of the

experiment until it stops.
The swarm size term represents the total number of robots

performing the task. The minimum swarm size is 2 because at
least a pair of robots is required to have task partitioning. The
maximum swarm size is 15, as with larger values the robots spend
more time avoiding each other than collecting items for the given
environments.

3.1.1.2 Parameters
The distance between the home area and the items’ source is

shown as d.
Swarm density is an implicit parameter explored in this study,

which is correlated to the swarm size and d.
The partition length (P) parameter represents the distance

that a robot travels from where it finds an item for the first time
to its home area, measured in meters. All robots start with the
same P.

The α parameter regulates the amount of penalty and reward
assigned to each robot in the swarm for DPS.

3.1.2 Outputs
The outputs collected and subsequently used to compare and

contrast the various methods from the experiments are the final
P̃, total items collected, explore ratio, collection ratio, and social
entropy. These outputs are described next.

The total items collected output represents the number of
items collected at the end of the experiment.

Pi, the final P̃, represents the last median of P̃ of all from
all the robots when the experiment stops from a uni-modal
distribution.

The explore ratio represents the amount of time spent by the
swarm in the explore state. The explore ratio is measured as TE

TT
where TE represents the sum of the total time spent by all the
robots undertaking iterations in the explore state and TT is the
simulation lengthmultiplied by the swarm size.

The collection ratio isolates the frequency with which a
robot successfully collects an item, allowing for the identification

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 2
Framework for the experiments in this study. 1) Emulation is generated from different machine learning techniques in order to perform an enriched
model analysis from a macro perspective which could not be possible to do in simulations due to constraints in time, battery span, and
computational power. 2) Simulations are used to study the model from a micro perspective. 3) Experiments in hardware are used to validate the
results shown in emulation and simulation.

of a correlation between the level of error and how often a
robot retrieves an item IF

(IF+IL)
. IF is a counter that records the

number of times a robot transitions to the go-to-nest state from
the neighborhood exploration state. IL is a counter that records
the number of times a robot enters the explore state from the
beginning of the simulation.

Social entropy is a metric that measures diversity in robot
swarms and was initially introduced by Balch (1998). This
metric is used to measure robot homogeneity across the swarm
according to the classification of robots by their individual
performance, where a robot can classify as faulty (high error)
or non-faulty (low error). Social entropy H(R) is calculated with
Eq. 2, where M is the number of subsets (faulty and non-faulty
robots), pi is the proportion of agents in each subset, and i and
R represent the group of robots. The lower the value of H(R)
the more homogeneous the swarm is. This parameter’s output is
explored in more detail in Section 4.2.2.

H (R) = −
M

∑
i=1

pi log2 (pi) . (2)

3.2 Experimental framework and tools

Theexperimental framework is a top-down approach divided
into three stages, as illustrated in Figure 2. The first stage
consists of studying the effect of implementing heterogeneous
and homogeneous errors from a macro perspective (considering
the swarm as a whole) by performing a sensitivity analysis on
each strategy via emulation.The second stage consists of studying
the effects of heterogeneous and homogeneous errors from a

local perspective (considering each robot as an individual) in
simulation. Finally, experiments with physical robots validate the
results from emulation and simulation.

3.2.1 Simulation and hardware
The simulator used throughout the work described in

this paper was ARGoS (Pinciroli et al., 2011), and this was
selected due to the support provided to run experiments for
large numbers of robots. For the experiments in this study, a
simulated and real version of the psi-swarm robot platform
(Hilder et al., 2014) (Figure 2) is used. This robot has infrared
and ground color detector sensors. Since this robot does not
have a camera, a virtual camera is used in hardware experiments
instead to aid the robot in detecting the items.The virtual camera
consists of a tracking system that retrieves the position of an
ArUco tag (Garrido-Jurado et al., 2014) attached on top of each
robot. A Bluetooth signal is sent to the robot to let it know that it
has found an item.

The source code for the psi-swarm controller used
in the experiments and detailed in this paper can
be found online at https://github.com/edgarbuchanan/
psiswarm_task_partitioning.

3.2.2 Training data
A total of four datasets are generated from the outputs of

the Latin hypercube sampling (Mckay et al., 1998) in simulations
for each strategy (NPS and DPS) and for each error type
(heterogeneous and homogeneous). On average, 5 h of simulated
time represent roughly 1 min in real time. The number of
replicates needed for the experiments shown in this paper is
180 (see Section 3.3 for more information). Therefore, for a set
of experiments for a single strategy, it would take 3 h in real

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://github.com/edgarbuchanan/psiswarm_task_partitioning
https://github.com/edgarbuchanan/psiswarm_task_partitioning
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

TABLE 1 Parameters and outputs used for the Latin hypercube
sampling.

Parameters

Strategy Name Interval

NPS
Swarm size [2–14]

d [0.5–2.0 m]

DPS

Swarm size [2–14]

d [0.5–2.0 m]

α [0–1]

Outputs

Name Interval

Total items collected [0 max]

Explore ratio [0.1]

Collection ratio [0.1]

time. The amount of time required for experiments escalates if a
population of samples and/or number of generations is required.
Therefore, for parameter analysis that requires a large number of
samples, the dataset can take a long time to produce.

3.2.3 Emulator
Incorporating a combination of machine learning

algorithms, an emulation is created that can be used as a
surrogate for original simulations. This emulator is capable of
making efficient predictions of simulation output for a given
parameter set, reducing the time and resource requirements
inherent in simulation due to the large number of replicates and
size of the parameter space.

Parameters and outputs considered for the training of each
emulator can be found in Table 1.

The procedure to generate the emulator and use this to
perform a predicted sensitivity analysis is as follows. For
each parameter in each strategy, a value range is assigned
and sampled using Latin hypercube sampling, which ensures
adequate coverage of the parameter space (Figure 3i).Then, each
of the four datasets is used to train and validate the performance
of five machine learning techniques (neural network, random
forest, general linear models, support vector machine, and
Gaussian process).

These five individual emulators are combined to form
one predictive emulation, or ensemble, where predictions are
generated by weighing the performance of each algorithm on
a test set (Figure 3ii). Combining the five algorithms has been
shown to increase the accuracy of prediction over using each
emulator in isolation (Alden et al., 2018).

Finally, the emulation is used to perform an enriched
sensitivity analysis of the parameter space (Figure 3ii). Using
sensitivity analyses, important parameters are revealed for
each strategy, the understanding of the relationships between
parameters and outputs with each is increased, and regions can
be found for the parameters with maximum and minimum
performance.

The statistical tools used to provide a better understanding
of each strategy are the following. To assess the degrees of
dependency between parameters and outputs, the partial rank
correlation coefficients are calculated for each parameter–output
response pair (Mckay et al., 1998). To determine whether
the parameters can be optimized to produce the desired
behavior, the evolutionary algorithm non-dominated sorting
genetic algorithm II (NSGA-II) (Deb et al., 2002) has been
used. More information for each tool can be found in
Section 3.3.

In this paper, we have included figures that show key
results from these analyses, which are then discussed in more
detail. However, for completeness, we include the results of the
emulation training and test procedures and all statistical analyses

FIGURE 3
From simulation to emulation block diagram. A dataset is generated from Latin hypercube analysis in simulations (i). This dataset is used to train
and validate the ensemble composed with different machine learning techniques (ii). Different statistical tools are used to analyze the ensemble
model (iii).

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 4
Consistency analysis that shows that the sample size value of 180
is large enough to avoid an aleatory uncertainty effect (A-test
lower than 0.56) in the outputs (items collected, P, explore ratio,
and collection ratio).

in the supporting website https://www.york.ac.uk/robot-lab/
taskpartitioning/.

3.3 Statistical tests and techniques

This section shows the statistical tests used to analyze the
results from the experiments.The statistical analysis is performed
using Spartan (Alden et al., 2013); for more information
about each technique, please refer to Alden et al. (2014) and
Alden et al. (2018).

3.3.1 Consistency analysis
The consistency analysis technique allows the identification

of the number of executions that minimizes the effect of aleatory
uncertainty caused by inherent stochastic variation within non-
deterministic simulations. In this technique, 20 distributions
are compared with the Vargha–Delaney test for a different
number of runs.The Vargha–Delaney A test is a non-parametric
effect magnitude test that can be used to indicate the difference
between twodistributions (Delaney andVargha, 2000).Themore
different the distributions are, the closer the score is to 0 and
1. We believe that our data do not need to be transformed as
suggested in Neumann et al. (2015) because the amount of time
that it takes for these variables to change is greater than the
length of the tick used for simulations (0.1 s). The value of 180
as sample size has an A-test score below 0.56 as shown in Figure
4 which suggests that the aleatory uncertainty in the outputs
has been mitigated and also avoids over-fitting the experiments
with a larger sample size. In summary, this technique is used to
minimize variation from non-determinism in the results to get
the correct interpretation of the results.

FIGURE 5
Trajectories of two different physical robots, A (left) and F (right),
moving forward for 30 s with a speed of 0.02 m/s.

3.3.2 Partial rank correlation coefficients
The partial rank correlation coefficients (PRCCs) are used

here in order to identify the degrees of dependency between
each parameter. This is carried out by performing a Latin
hypercube sampling across parameter space, and the number of
samples is 1,000.The main difference between random sampling
and Latin hypercube sampling is that with the latter, it is
possible to increase the reliability that the entire space is covered
adequately. The PRCC provides a measure of the influence of
a single parameter with a single output. Strong correlations
(close to 1 or −1) correspond to influential parameters over their
respective outputs in spite of non-linearity introduced by other
parameters. In summary, this technique allows us to identify the
key parameters for specific outputs, and in this way, it is possible
to identify if the error diversity or lack of it has any influence on
these key parameters.

3.3.3 Non-dominated sorting genetic
algorithm II

The non-dominated sorting genetic algorithm II (NSGA-II)
is an evolutionary technique that explores the entire parameter
space in order to maximize and/or minimize multiple outputs.
Once all the solutions for population converge (or meet the
specific convergence criteria), this set of solutions is referred to as
the Pareto front. In later sections of this paper, it will be revealed
that the consideration of error diversity distorts this Pareto front,
and this is correlated to the number of high-error robots.

3.4 Error model

The error model consists of adding noise to each motor as
shown in Eqs 3, 4.The simulated noise μ is generated from taking
a sample fromaGaussian distribution each time tickwithmedian
k[t] and σ where σ changes for each robot. Curvature functions
k for each robot can be found in the Appendix. Every time a
robot changes the speed of its motors, timer t is set to 0. This
noise model recreates the bias in the robot of moving toward a

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.york.ac.uk/robot-lab/taskpartitioning/
https://www.york.ac.uk/robot-lab/taskpartitioning/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 6
Trajectories of the physical (left column) robots and their
respective simulated versions (right column). Each character (A–F)
represents the ID of each different robot where, each robot moves
forward along the x-axis for 30 s at a speed of 0.02 m/s, and 10
iterations are shown for each robot. X(m) and Y(m) represent the
coordinates of the robot.

single direction. Examples of trajectories with physical robots are
shown in Figure 5.

Experiments recorded with physical robots and trajectories
produced in the simulator for the first six robots are shown in
Figure 6. The error model in simulation closely resembles the
error model in hardware. A model of the psi-swarm used in
the simulator in this work can be found at https://github.com/
edgarbuchanan/psiswarm_model.

rightWheelSpeed = actuatedRightWheelSpeed

± μ∗ actuatedRightWheelSpeed, (3)

le ftWheelSpeed = actuatedLe ftWheelSpeed

± μ∗ actuatedLe ftWheelSpeed. (4)

It is important to mention that for the heterogeneous error,
the error model for each robot is fixed, and it does not change for
the experiment shown in this paper.

4 Experiments and results in a
multi-scale model approach

This section presents experiments to demonstrate
the performance difference between heterogeneous and
homogeneous errors. First, by using emulation, a sensitivity
analysis is performed for each strategy (NPS and DPS) from a
macro perspective. Second, through experiments in simulations
and hardware, the performance of the swarm from a micro
perspective is considered.

4.1 A study from a macro perspective
using emulation

This section presents the results from the emulation for each
strategy (NPS and DPS).

4.1.1 Non-partitioning strategy
The first strategy to be described is the non-partitioning

strategy (NPS), where the robots take the items directly from
their source and transport them to the home area. Pi is the same
as d, and it does not change across the simulation.

For the NPS emulation, two parameters are considered:
swarm size and d. The swarm size is the number of robots that
comprise the swarm where the range is between 2 and 14 robots.
Heterogeneous and homogeneous errors are considered for the

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://github.com/edgarbuchanan/psiswarm_model
https://github.com/edgarbuchanan/psiswarm_model
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 7
LHA for the NPS (left) and DPS (right) with homogeneous and heterogeneous error. Left: correlations change for each error type except for the
total items collected for both parameters (swarm size and d) and the collection ratio for the d parameter. Right: results are similar between
heterogeneous and homogeneous errors except for the correlation between the swarm size term, the explore ratio, and the collection ratio.

TABLE 2 LHA correlation values for the NPS. Values in bold represent a
big difference, greater than 0.5, between heterogeneous and
homogeneous errors.

Parameter—output Heterogeneous Homogeneous

Swarm size—total items collected 0.95 0.97

Swarm size—explore ratio −0.03 0.8

Swarm size—collection ratio 0.31 −0.94

d—total items collected −0.87 −0.94

d—explore ratio 0.17 −0.99

d—collection ratio −0.91 0.97

emulation, in a range for d from 0.5 to 2.0 m. The width of the
arena does not change, and the home area and items’ source are
against the arena walls.

4.1.1.1 Latin hypercube analysis
Results from the Latin hypercube analysis are illustrated in

Figure 7 and summarized in Table 2, and key scatter plots are
shown in Figure 8.

Results for heterogeneous error show that the swarm size
term is only highly positively correlated (absolute correlation
coefficient greater than 0.7) with the total items collected output
(Figure 7). This means that as the swarm size increases, the total
items collected output increases, and this is because there are
more robots collecting items in the arena.

The parameter d is highly negatively correlated with the total
items collected and the collection ratio. As d decreases, it takes less
time to transport the items from the items’ source to the home
area. In addition, since the distance the robots are traveling is
shorter, the probability of finding items increases.

Results for homogeneous error show that the swarm size term
is not only highly correlated with the total items collected output

but also with both the explore ratio and collection ratio (Figure 7,
right). As the swarm size increases, time spent in the explore state
increases because robots spend more time avoiding each other.
As a consequence, robots travel more when transporting items.
Therefore, the error increases and the probability of finding items
decreases, which is reflected in the collection ratio output where
it has a highly negative correlation with the swarm size term.

In a similar way, d is not only highly correlated with the
total items collected and the collection ratio but also with the
explore ratio for both error types. As d increases, the probability
of finding items decreases; therefore, robots spend more time
exploring than transporting items because they are getting lost
more often.

Even though robots with homogeneous and heterogeneous
errors are performing the same strategy, NPS, with the same
settings, results from LHA differ. The main reason for this
difference is that the individual errors in each robot, for the
heterogeneous errors, affect the performance of the swarm as a
whole in different ways, as explained below.

Total items collected are very similar for homogeneous and
heterogeneous errors, as shown in Figure 8. However, as for
the explore ratio, the correlation coefficient is very different
from each other, −0.03 for heterogeneous error and 0.8 for
homogeneous error. With the heterogeneous error model, there
are fluctuations across the swarm size term space due to the
individual errors considered. For example, between swarm sizes
2 and 3 (robots A, B, and C), the explore ratio ranges from 0.4
to 0.8. This is because this group of robots is characterized by
their small errors compared to other robots in the swarm, as
shown in the error models in the previous section (Figure 6).
Therefore, these robots spendmore time transporting items than
exploring. However, this does not occur with the homogeneous
error, as shown in Figure 8, where the explore ratio increases
steadily without any oscillations present.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 8
LHA for the swarm size term for the NPS with heterogeneous (left column) and homogeneous (right column) errors and for the total items
collected (top row), explore ratio (middle row), and collection ratio (bottom row) outputs. The blue rectangles represent the proportion of
low-error robots, and the green box represents the proportion of high-error robots. Robot individual error models introduce fluctuations with the
heterogeneous error as shown with the explore ratio and collection ratio. However, this does not happen with the homogeneous error because all
the robots share the same error parameters.

The collection ratio output for heterogeneous error also
has fluctuations, as shown in Figure 8. In the regions where
high-error robots are introduced, the collection ratio drops
and increases again when low-error robots are introduced
(i.e., the range between five and seven robots). However,
with homogeneous error, the collection ratio decreases
steadily with no fluctuations as the swarm density increases
and the robots spend more time avoiding each other.
This is due to there being no high-error robots that are
introduced at any point because all the robots have the same
error.

As shown, results are different from LHA between
heterogeneous and homogeneous errors for the explore ratio
and the collection ratios. This is because fluctuations introduced
between high- and low-error robots affect the correlation
coefficients. Complementary LHA scatter plots can be found
online at https://www.york.ac.uk/robot-lab/taskpartitioning/.

4.1.1.2 Non-dominated sorting genetic algorithm II
The NSGA-II was used to find the Pareto front for the best

values for swarm size and d parameters in order to maximize
the total items collected and the collection ratio and minimize

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.york.ac.uk/robot-lab/taskpartitioning/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 9
NSGA-II results for the NPS with heterogeneous (left column) and homogeneous (right column) errors. The two-dimensional inputs are swarm
size—d (top row). Two-dimensional outputs are shown as total items collected—collection ratio (middle row) and total items collected—explore
ratio (bottom row). With both the heterogeneous error and the homogeneous error, the total items collected are maximized with high swarm sizes
(yellow box). With both the heterogeneous error and the homogeneous error, the collection ratio is maximized with low swarm sizes (blue
rectangles). The explore ratio is maximized with low swarm sizes and high d for the heterogeneous error and low swarm sizes and low d for the
homogeneous error. The latter result demonstrates that since this proportion of robots experiences a low error, it is better for these robots to
travel a longer d, and as the robot density is lower, the robots spend less time avoiding each other. The Pareto front is discontinuous for the
heterogeneous error which means that these robots with high-error rates harm the item collection than they contribute to it.

the explore ratio, as shown in Figure 9. The Pareto front is
discontinuous for the heterogeneous error (left column), as the
emulation captures the heterogeneity in the errors. For instance,
for small swarm sizes, from 2 to 3 (robots A, B, and C), the
error is small, which means that the robots can travel longer
distances. This minimizes the explore ratio, and they spend
the least amount of time avoiding each other since the swarm

density is low. Robots between swarm sizes 2 and 4 with a
d of 0.5 maximize the collection ratio. This is because the
robots are traveling a shorter distance between home and source;
therefore, error accumulation is small. Between 5 and 7 (robots
E, F, and G), robots are characterized by their high degree of
error. Therefore, these robots behave more like obstacles and
impede item collection. As a consequence, the swarm is affected

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

TABLE 3 LHA correlation values for the DPS. Values in bold represent a
big difference, greater than 0.5, between heterogeneous and
homogeneous errors.

Parameter—output Heterogeneous Homogeneous

Swarm size—total items collected 0.9 0.97

Swarm size—explore ratio 0.42 −0.41

Swarm size—collection ratio −0.29 0.37

d—total items collected −0.76 −0.93

d—explore ratio −0.73 −0.36

d—collection ratio −0.42 −0.56

α—total items collected 0.07 −0.22

α—explore ratio −0.97 −0.97

α—collection ratio 0.99 0.99

negatively. Lastly, between 8 and 14 (robots H, I, J, K, L, M,
and N), robots with low error are again introduced, which
contribute to a high total items collected output. Further work
could potentially use this discontinuous Pareto front in order
to identify the threshold of the number of high-error robots
that when overcome the swarm throughput is affected negatively.
This would help to measure the degrees of robustness of the
task.

The Pareto front is continuous for the homogeneous error
(right column), as all the robots contribute in the sameway. If the
total items collected were to be maximized, the swarm size needs
to be increased. However, if the collection ratio is maximized and
the explore ratio is minimized, the size of the swarm needs to be
decreased. In order to optimize the three outputs, it is necessary
to have the smallest d.

4.1.1.3 Summary
From this analysis, it can be concluded that it is important to

consider heterogeneous and homogeneous errors, as the results
can bemisleading if they are considered separately because of the
different correlation values, and this validates the first hypothesis.
In addition, the use of different statistical techniques helps
provide a better, more in-depth understanding of the system.The
NSGA-II exploits the heterogeneity and finds new solutions that
maximize and minimize outputs and strategies described in the
following section to decrease this effect by dividing the task into
multiple components.

4.1.2 Dynamic partitioning strategy
The dynamic partitioning strategy (DPS) is a strategy where

robots change their individual partition length (Pi) according to
a penalty and reward mechanism. Pi changes with the parameter
α.

α regulates the amount of penalty and reward to Pi. As α
increases, the robot i gets penalized and not rewarded, and as
α decreases, the robot is rewarded more than penalized. The

interval used for the experiments shown in this section is [0, 1].
Initial Pi is randomly selected from a uniform distribution at the
same interval as d.

4.1.2.1 Latin hypercube analysis
Results from the Latin hypercube analysis are summarized in

Table 3, and key scatter plots are shown in Figure 10.
Results between heterogeneous and homogeneous errors are

very similar for all the correlations, except for the correlation
between the swarm size term and the explore ratio and the
collection ratio, as shown in Figure 7. This discrepancy is
produced by the heterogeneity within the individual errors.
However, the correlation is kept lowwith the absolute correlation
coefficient being lower than 0.7.

The total items collected output is, once again, mainly
correlated to the swarm size and d parameters for the reasons
explained in the previous section. However, α has a negative
correlation with the explore ratio and a positive correlation with
the collection ratio. This means that as α increases, the robots
are exploring less and finding items more often because all the
robots are adjusting theirPi. In otherwords, asα increases, robots
are traveling shorter distances, allowing for less dead-reckoning
error accumulation.

The discrepancy mentioned earlier for the swarm size term is
shown in Figure 10. For the heterogeneous error, the collection
ratio decreases and the explore ratio increases, whereas for the
rest of the swarm, this correlation pattern cannot be seen.
This could be due to high error robots compensating for the
heterogeneous error, whereas for the homogeneous error, the
explore ratio and the collection ratio decrease and increase
steadily, respectively, for the homogeneous error. As the swarm
size increases, there is a higher supply of robots, which allows for
the successful creation of a chain between the home area and the
source.

Fluctuations introduced by low-error robots affect the
estimation of the correlation coefficient.

4.1.2.2 Non-dominated sorting genetic algorithm II
Large swarm sizes provide the best item collection, and

α regulates the explore ratio and collection ratio where as α
increases, the collection ratio increases and the explore ratio
decreases; see (Figure 11) for this effect with the heterogeneous
error. In a similar way, the NSGA-II for the heterogeneous error
exploits the small swarm size in order to achieve the best explore
ratio and collection ratio.

The Pareto front for the DPS is smooth, and discontinuities,
or gaps, are smaller than those in the NPS. This is because the
DPS has better regulation over individual errors, homogenizing
the swarm. Each robot i is learning its own Pi for the given alpha
(see next section for more details). This can also be seen for the
α and swarm size inputs where there are only two batches of
solutions: the ones closer to the swarm size of two robots and the
ones closer to the swarm size of 14. This means that fluctuations

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 10
LHA for the d parameter for the DPS with heterogeneous (left column) and homogeneous (right column) errors and the explore ratio (top row) and
collection ratio (bottom row) outputs. The blue rectangle represents the proportion of low-error robots.

by high- and low-error robots between the intervals 4 and 10 are
ignored and have no significant contributions to the results.

Results for the homogeneous error show that a larger
swarm provides the best item collection, and as α increases,
the collection ratio increases, while the explore ratio decreases.
The Pareto front for the set of solutions is continuous and
smooth.

4.1.2.3 Summary
α helps to regulate the collection ratio in order to optimize

the explore ratio. The total items collected output is provided
mainly by the swarm size and d. In this way, it is possible to
find a set of parameters that provides a good trade-off between
the explore ratio and the throughput of items according to the
needs of the user. Finally, fluctuations caused by individual
error models are reduced, and a continuous Pareto front for
the output is generated for the heterogeneous error due to
individual convergence of Pi for each robot. Since the robots are

traveling shorter distances, the error is lower and more uniform.
More information about Pi convergence can be found in the
experiments from simulation and hardware in the next section.

4.2 A study from a micro perspective
using a simulator and hardware

In the previous section, the effect of considering individual
robot errors in emulation with each strategy was explored. An
emulator was used to aid with this study, and it was found
that results differ for heterogeneous and homogeneous errors.
In this section, this discrepancy is explored in detail by using
experiments from a micro perspective with simulations and
hardware (stages 2 and 3 from the experimental framework
shown in Figure 2).

The parameter values chosen, unless stated, for the
experiments in this section are shown in Table 4.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 11
NSGA-II results for the DPS with heterogeneous (left column) and homogeneous (right column) errors. Two-dimensional inputs are shown as
swarm size—d (first row) and swarm size—alpha (second row). Two-dimensional outputs are shown as total items collected—explore ratio (third
row) and total items collected—collection ratio (fourth row).

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

TABLE 4 Parameter values for micro perspective experiments.

Parameter Value

Experiment length 5 h

Swarm size 6

d 1 m

P 0.5 m

α 0.5

4.2.1 Heterogeneous and homogeneous errors
As discussed in Section 3.4, when modeling the error for

each robot, it was found that the error varies between robots.This
section describes error diversity and non-diversity in simulations
(Figure 12).

In the first set of experiments, the robots are performingDPS,
where Pi is the same as d. The convergence of Pi is shown in
Figure 13. All the robots converge to a single similar P with the
homogeneous error. However, robots with heterogeneous errors
converge to a different Pi for each robot i.

The impact of different errors is reflected in individual
performance. In experiments shown in Figure 14, all robots
start with a Pi of 0.4 m and α of 0.5 with homogeneous
and heterogeneous error models for DPS. The robots with
homogeneous errors have a similar individual performance to
each other. However, robots with heterogeneous errors have
different individual performance according to each robot.

Robot specialization emerges from DPS in the sense that
every robot learns its own Pi according to its inherent degree of
error, as shown in Figure 13. This is consistent with the results
presented in Figure 14, where the Pi for each robot is correlated
with the amount of time that a robot spends exploring the
environment. For example, robot A spends the least amount of
time in the explore state and, therefore, has the greater Pi with a
value close to 0.5 m. Robots D and E spend the greatest amount
of time in the explore state, and these robots travel the small Pi
with a value close to 0.3 m. In addition, this is consistent with the
trajectories shown in Figure 6.

For instance, Figure 13 shows that robots D, E, and F
learn the smallest Pi, and this is related to their individual
performance, where these robots spend more time in the explore
state than the rest of the robots, as shown in Figure 14. In

FIGURE 12
Screenshot of one of the experiments in simulation (left) and hardware (right).

FIGURE 13
Convergence to a solution with homogeneous (left) and heterogeneous (right) errors with the DPS. Robots with the homogeneous error converge
to a single Pi and robots with the heterogeneous error converge to different Pi.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 14
Individual performance with homogeneous (left) and heterogeneous (right) error models. Robots with the homogeneous error have similar
individual performance, and robots with the heterogeneous error have different individual performance.

FIGURE 15
Item collection with homogeneous and heterogeneous errors with
different values for α. The peak for item collection is 0.4 for the
homogeneous error model and 0.5 for the heterogeneous error
model.

addition,Figure 6 shows that these same robots have bigger error
drifts.

It is important to bear in mind the difference in performance
between heterogeneous and homogeneous errors in order to
select the appropriate value of α for the swarm to maximize
the item collection, as shown in Figure 15. In the case of a
homogeneous error model, α should be 0.4 in order to have the
best item collection. As with the heterogeneous error model, the
value would be 0.5.

Figure 16 shows the individual performance for different
swarm sizes, strategies (NPS and DPS), and error types
(homogeneous and heterogeneous).The individual performance
is estimated by dividing the total items collected by the swarm size.
For the homogeneous error, the individual performance starts to
drop after swarm size 2 for the NPS and after a swarm size of 7
for the DPS. The results differ with the homogeneous error, and

this is due to the mix of low- and high-error robots in the swarm,
as mentioned in the previous section. For example, NPS peaks
at four robots because the first four robots experience low error,
and after this, the robots introduced experience high error, as
shown in Figure 8. This is not the case for the DPS, where the
distribution resembles more of a bimodal distribution with two
peaks at 4 and 9, each peak at the location where robots with low
error are introduced.

More results regarding the robot swarm flexibility against a
changing d, change of errormodels, and change of swarm size can
be found in the supplementary material https://www.york.ac.uk/
robot-lab/taskpartitioning/.

Indirect item transference is the method chosen for most of
the experiments shown in this section because it has the highest
item collection with the lowest convergence speed. This is an
important aspect to consider due to the battery life of the physical
robot only lasting 30 min.

To conclude, the aforementioned results demonstrate that
each robot exhibits different performance, and this validates the
second hypothesis. It is important to consider individual models
for each robot when working with swarm robotics. By doing so,
it is possible to reduce the reality gap and select the best α that
maximizes the item collection, as well as potentially select the
best Pi and α for each robot to improve the item collection. In
Section 4.2.3, experiments with physical robots and how they
compare with simulations are shown.

4.2.2 Social entropy
Results from the NSGA-II in emulation for the NPS

showed a discontinuous Pareto front for the heterogeneous
error and a continuous Pareto front for the homogeneous error
(Figure 9). In this section, these results are explored in more
detail to understand the reason for this discrepancy, using
an approach based on a social entropy metric. This metric
measures the error diversity across the swarm and is described in
Section 3.1.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.york.ac.uk/robot-lab/taskpartitioning/
https://www.york.ac.uk/robot-lab/taskpartitioning/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 16
Individual performance for different swarm sizes for the homogeneous error (left) and heterogeneous error (right) for the NPS in red and the DPS
in blue. The individual performance decreases after the first robot for the NPS and after seven robots for the DPS with the homogeneous error. The
individual performance peaks at four robots for the NPS and at eight robots with the DPS for the heterogeneous error.

FIGURE 17
Social entropy and individual performance (left and right columns) for each strategy: NPS and DPS (first and second rows, respectively). Social
entropy changes for each strategy due to the number of robots classified as having high error.

Decision trees and nearest neighbor classifiers are used to
categorize robots into two groups according to their individual
performances. Principal component analysis (Wold et al., 1987)
is used to convert the variables from the individual performance
data to their principal components. This is carried out in
order to transform possibly correlated variables into a set of

values for linearly uncorrelated variables. The requirement for
classification is that the accuracy should be higher than 90%.
Figure 17 illustrates the social entropy for each swarm size
in the interval [2, 14] for each strategy. The social entropy
is overlapped with the results from the NSGA-II reported in
Section 4.1.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 18
Individual performance for physical robots performing the NPS in three different arenas with dimensions of 1.0 m × 1.3 m (top row), 2.1 m × 1.2 m
(middle row), and 2.4 m × 1.6 m (bottom two). The go-to-source rate is smaller than the go-to-nest rate as the arena becomes smaller.

The social entropy for the NPS illustrates that the Pareto
front breaks when the social entropy reaches its highest peak.
For a swarm interval between 2 and 4, the social entropy is
low. This means that the swarm is homogeneous and composed
of robots with a low degree of error. This is the reason for
the cluster of points in d at 1.75 m. However, after the first
robot with a high degree of error is introduced (robot D or
the fourth robot), the social entropy increases. At this stage,
the swarm is homogeneous enough to have a continuous Pareto
front. However, the discontinuity in the Pareto front appears
when the second robot with a high degree of error is introduced

(robot E or the fifth robot).The social entropy reaches its highest
peak point at this point. The social entropy starts to decrease
after the sixth robot (robot F) is introduced. The social entropy
decreases steadily becausemore robots with a low degree of error
are added to the swarm, which decreases diversity. The Pareto
front reappears after the ninth robot is introduced. After this
point, the Pareto front is similar to the homogeneous error Pareto
front (Figure 9).

Overall, the social entropy across the swarm for the DPS is
similar to the NPS. The social entropy peak again is located after
the fifth robot, and the Pareto front becomes discontinuous after

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 19
Individual performance for physical robots performing the DPS for three different arenas with dimensions of 1.0 m × 1.3 m (a), 2.1 m × 1.2 m (c),
and 2.4 m × 1.6 m (e). Time spent in the go-to-source state is roughly similar to that in the go-to-nest state, and time spent in the explore state is
lower than that with the DPS.

this point. However, in contrast to the NPS, the social entropy
remains high (greater than 0.8). This prevents the Pareto front
from being continuous until the social entropy drops below 0.8.
The DPS creates a clear distinction between high and low degree
of error, and because of this, the social entropy increases. This
might be because task partitioning is sensible for high noisy
degree of error robots.

As noted, the social entropy changes with each strategy, and
the reason is that each strategy provides a different performance
for each robot. For the NPS, the highest degree of error robots

classified are 2, robots D and G. For the DPS, the robots
experience the least amount of time in the explore state. The
number of high-degree error robots increases to 4 (D, E, G, and
J).

In the case of the DPS, robots D, E, G, and J experience the
highest degree of error.Therefore, these robots cannot be further
optimized.This is consistent with the results shown in Figure 17,
where the Pi for robots D and E with a d of 0.4 m does not
increase indefinitely as with robots A, B, C, and F. This means
that robots have not reached the optimal distance that decreases

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 20
Convergence of Pi for different P

0
i of 1.0 (top left), 0.7 (top right), and 0.4 m (middle left) for an arena of 2.1 m × 1.1 m. Convergence for arenas

1.0 m × 1.3 m (middle right) and 2.4 m × 1.6 m (bottom left) for P0
i of 0.4 are also shown. The convergence changes from robot to robot and is due

to the error and velocity of the robot.

the error. In other words, robots D, E, G, and J experience such a
high degree of error that the partitioning strategies are unable to
provide a suitablePi for the robots to increase their performance.

4.2.3 Experiments with physical robots
In this section, the experiments studied in the previous

section are explored with physical robots. Three different arena
sizes are used for the experiments using six robots, where
individual performance and convergence are explored. A single
replicate for each arena is shown in this section. It is important

to mention that a definite conclusion cannot be drawn from the
results shown in this section due to this low sample size; however,
the results are promising. The results shown are not the same. A
screenshot from an experiment is shown in Figure 12.

Results for robots performing the NPS are shown in
Figure 18. Regardless of the arena size, the robots experience
different individual performance which means that they are not
identical to each other. In addition, robots spend most of their
time exploring instead of retrieving items in the home area.
Finally, robots spend less time in the go-to-source state than in the

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

FIGURE 21
Item collection with physical robots and different arena sizes. The
DPS starts to overcome the NPS as the arena size increases.

go-to-nest state.This is because since robots are traveling a longer
Pi, they experience a greater drift from the original position,
causing the target to be beyond the walls of the small arena, as
previously seen. This effect decreases as the arena size increases
because the target is within the arena boundaries.

Individual performance for robots with the DPS can be
found in Figure 19. In a similar way to experiments with the
NPS, robots performing the DPS experience an increment in
the amount of time spent in the explore state as the arena size
increases. In contrast with the NPS, robots spend more time in
the going-to-source state.The reason for this is that the robots are
traveling shorter Pi which decreases the probability of the target
being beyond the arena size for the small arena in a similar way
to that in the simulations.

Since the battery of these robots last for 30 min, the
convergence experiments were divided into three different sets
as shown in Figure 20. In each set, the robots started with a
different P of 1, 0.7, and 0.4 m for an arena of size 2.1 m × 1.2 m.
All the robots converge at a distance close of about 0.4 m, which
varies from robot to robot.The velocity of convergence is not only
related to the degree of the error in the robot but also to the speed
of the robot which changes slightly for each robot. Furthermore,
from the figures, it can be seen that there is no change in the Pi
for at least for the first 5 min of the experiments. This is the time
that it takes to find the first item.

As for the item collection, the DPS performs better than the
NPS as the arena size increases as shown in Figure 21 because of
the following issues. First, as the area of the arena decreases, the
probability of finding the items’ source increases even though the
collection rate is low.Thismeans that partitioning is not required.
Second, robots are spending more time dropping and picking up
itemswith theDPS,which causes a delay in the itemgetting to the

nest. Finally, robots spend more time avoiding each other when
they are in the go-to-nest state.

In summary, results from experiments with physical robots
are similar to the results from simulation. The shape of the
arena affects the performance of the go-to-source state, mainly
for the NPS. The DPS performs better than the NPS as the size
of the arena increases. Finally, the final Pi changes according
to the amount of error in the robot i. However, there are some
differences due to the reality gap because the models used in
the simulator do not provide enough information about the real
world.

5 Discussion

It is a common assumption that all the robots are similar,
and a single robot model in simulations represents the entire
group of robots in a robotic swarm. Furthermore, it was assumed
that all robots would have the same behavior when performing a
task. However, the work in this paper has shown that this is not
necessarily the case.

At themoment of retrieving the trajectories for each robot, as
shown in Section 3.4, each robot experiences a different degree
of error. Each robot has a different bias, small or large, formoving
in the left or right direction. The trajectories of 14 robots were
modeled and recorded.

In the enriched analysis in Section 4.1, it was shown
that two different patterns emerged from heterogeneous and
homogeneous errors for each strategy. Each pattern represents
different properties of the task partitioning approach. On
one hand, the pattern shown with the homogeneous error
provides information about the interactions of each parameter
with each output. On the other hand, the pattern with the
heterogeneous error provides information on how the swarm
copes with robots with a high and low degree of error for each
strategy.

The individual contribution of each robot changes according
to its inherent error, as shown in Section 4.2. If the homogeneous
error is considered, all the robots converge to the same Pi value.
However, if the heterogeneous error is considered, then each
robot converges to a different Pi. Pi is able to adapt to changes
in the error itself, d, and swarm size.

The social entropy measurement for each strategy bridges
the results between the macro and micro perspectives
(Section 4.2.2). The number of high-degree error robots plays
an important role in defining optimality. As the number of
high degrees of error robots increases, this affects the range of
optimal solutions. In addition, even though the task partitioning
strategies increase the performance of each robot, there are
a specific number of robots that gain no benefit from task
partitioning due to their high degree of error.

Finally, the experiments with physical robots shown in
Section 4.2.3 validate the previous results in terms of the fact

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

that each robot performs differently and each robot converges to
a different solution according to the inherent error.

The work presented in this paper is limited to a single task,
a single robot platform, and a single type of error, but there is
no reason this work could be applied to other domains. Here are
some examples of future work:

• The work presented in this paper could be extended to other
tasks such as collective object transportation and collective
decision-making. In collective object transportation, there is
a high reliance on the input from the sensors, and the error in
the sensors could be studied. In collective decision-making,
error diversity could lead to false positives in decisions.

• The error diversity could be analyzed for other robot
platforms, and this could lead to interesting results. On the
one hand, the error diversity is so uniform that the approach
in this paper becomes insignificant; on the other hand, the
error diversity could be greater, and its importance becomes
greater.

• In this paper, it was shown that the number of high-error
robots changes the dynamics of the swarm’s behavior. Swarm
diagnosis and recovery can be implemented to address these
robots’ errors.

In conclusion, it is important to consider both homogeneous
and heterogeneous errors in order to have a comprehensive
understanding of the performance of a swarm.

6 Conclusion

The task partitioning strategies have been shown to
increase performance in foraging tasks in robotic swarms
with dead-reckoning noise (Pini et al., 2013; Pini et al., 2014;
Buchanan et al., 2016). However, a common assumption is that
all the robots in a swarm share the same error model. In this
paper, how different degrees of error affect the swarm was
studied.

In this paper, it has been shown how each robot in the swarm
experiences different degrees of error (heterogeneous error).
There is a single degree of error that describes all the robots
(homogeneous error), and the results undertaking a foraging task
differwhen considering heterogeneous and homogeneous errors.
The work has shown that it is important to consider both error
types to have a full understanding of the system. Finally, the
number of high degrees of error in the swarm defines optimality
in the system. The degrees of robustness can be measured by
identifying the ranges of optimality, and the reality gap is able
to be reduced. The work in this study has also shown that it is
possible to distinguish robots that harm the performance of the
swarm.

Further work will consider measuring the degrees of
robustness in tasks other than foraging. It will be important
to examine how a range of different degrees of error would
affect fault detection and diagnosis. Our hypothesis is that the
number of false positives would increase and a threshold that
differentiates robots between faulty and non-faulty would be
required.

Data availability statement

The datasets presented in this study can be found in
online repositories.The names of the repository/repositories and
accession number(s) can be found in the article/Supplementary
Material.

Author contributions

The individual contributions for this article were as follows:
conceptualization: EB, KA, AP, JT, and AT;methodology: EB and
KA; software: EB; validation: EB and KA; formal analysis: EB
and KA; investigation: EB, KA, AP, JT, and AT; visualization: EB;
supervision: EB, AP, JT, and AT; project administration: EB, KA,
AP, JT, and AT; funding acquisition: EB; and writing—original
draft: EB, KA, AP, JT, and AT. All authors read and agreed to the
published version of the manuscript.

Funding

EB acknowledges financial support from Conacyt. JT was
sponsored in part by the Royal Society.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Buchanan et al. 10.3389/frobt.2022.904341

References

Alden, K., Cosgrove, J., Coles, M., and Timmis, J. (2018). Using emulation
to engineer and understand simulations of biological systems. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 17, 302–315. doi:10.1109/TCBB.2018.2843339

Alden, K., Read, M., Andrews, P. S., Timmis, J., and Coles, M. (2014). Applying
spartan to understand parameter uncertainty in simulations. R J. 6, 63–18.
doi:10.32614/rj-2014-025

Alden, K., Read, M., Timmis, J., Andrews, P. S., Veiga-Fernandes, H.,
and Coles, M. (2013). Spartan: A comprehensive tool for understanding
uncertainty in simulations of biological systems. PLoS Comput. Biol. 9, e1002916.
doi:10.1371/journal.pcbi.1002916

Arkin, R. (1987). Motor schema based navigation for a mobile robot: An
approach to programming by behavior. Proc. 1987 IEEE Int. Conf. Robotics
Automation 4, 264–271. doi:10.1109/ROBOT.1987.1088037

Balch, T. (1998). Behavioral diversity in learning robot teams. Ph.D. thesis
(Atlanta, GA, United States: Georgia Tech Library).

Balch, T. (2005). Communication, diversity and learning: Cornerstones of
swarm behavior. Lect. Notes Comput. Sci. 3342, 21–30. doi:10.1007/978-3-540-
30552-1_3

Bjerknes, J. D., and Winfield, A. F. T. (2012). “On fault tolerance and scalability
of swarm robotic systems,” in Springer tracts in advanced robotics 83 STAR (Berlin,
Heidelberg: Springer), 431–444. doi:10.1007/978-3-642-32723-0_31

Bongard, J. C. (2000). “The legion system: A novel approach to evolving
heterogeneity for collective problem solving,” in European conference on genetic
programming (Berlin, Heidelberg: Springer), 16–28.

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., and Dorigo, M. (2014). Self-
organized task allocation to sequentially interdependent tasks in swarm robotics.
Aut. Agents Multi-Agent Syst. 28, 101–125. doi:10.1007/s10458-012-9212-y

Buchanan, E., Pomfret, A., and Timmis, J. (2016). Dynamic task partitioning for
foraging robot swarms. Int. Conf. Swarm Intell. 9882, 113–124. doi:10.1007/978-3-
319-44427-7_10

Christensen, A. L., Grady, R. O., and Dorigo, M. (2009). From fireflies
to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13, 754–766.
doi:10.1109/tevc.2009.2017516

Deb, K., Member, A., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6,
182–197. doi:10.1109/4235.996017

Delaney, H. D., and Vargha, A. (2000). A critique and improvement of the
CL common language effect size statistics of McGraw and wong. J. Educ. Behav.
Statistics 25, 101–132. doi:10.2307/1165329

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., andMartín-Jiménez,
M. (2014). Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognit. 47, 2280–2292. doi:10.1016/j.patcog.2014.01.005

Goldberg, D., and Matarie, M. J. (2001). Design and evaluation of robust
behavior-based controllers for distributedmulti-robot collection tasks. Robot teams
Divers. Polymorph., 1–24.

Hart, E., Steyven, A. S., and Paechter, B. (2018). Evolution of a functionally
diverse swarm via a novel decentralised quality-diversity algorithm. Available at
http//:org.arXiv/abs/1804.07655.

Harwell, J., Lowmanstone, L., and Gini, M. (2020). “Demystifying emergent
intelligence and its effect on performance in large robot swarms,” in Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, Richland, SC, 13 May 2020, 474–482.

Hilder, J., Naylor, R., Rizihs, A., Franks, D., and Timmis, J. (2014). “The pi
swarm:A low-cost platform for swarm robotics research and education,” in Towards
Autonomous Robotic Systems (TAROS), Birimingham, England, September 2014,
151–162. doi:10.1007/978-3-319-10401-0_14

Humza, R., Scholz, O., Mokhtar, M., Timmis, J., and Tyrrell, A. (2009).
Towards energy homeostasis in an autonomous self-reconfigurablemodular robotic
organism. Comput. World Future Comput. Serv. Comput. Adapt. Content, Cogn.
Patterns, Comput. 2009, 21–26. doi:10.1109/ComputationWorld.2009.83

Keeffe, J. O., Tarapore, D., Millard, A. G., and Timmis, J. (2017). “Fault diagnosis
in robot swarms : An adaptive online behaviour characterisation approach,” in

Computational Intelligence (SSCI), 2017 IEEE Symposium Series, Honolulu, HI,
USA, 27 November 2017-01 December 2017, 1–8.

Li, L., Martinoli, A., and Abu-mostafa, Y. S. (2003). “Diversity and specialization
in,” in Proc. Of the second int. Workshop on mathematics and algorithms of social
insects (Beijing, China: Baidu), 91–98.

Li, X., and Parker, L. E. (2007). “Sensor analysis for fault detection in
tightly-coupled multi-robot team tasks,” in Proceedings - IEEE International
Conference onRobotics andAutomation,Kobe, Japan, 12-17May 2009, 3269–3276.
doi:10.1109/ROBOT.2009.5152389

Lu, Q., Hecker, J. P., and Moses, M. E. (2018). Multiple-place swarm foraging
with dynamic depots. Aut. Robots 42, 909–926. doi:10.1007/s10514-017-9693-2

Mckay, M. D., Beckman, R. J., and Conover, W. J. (1998). A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code. Technometrics 21, 239–245. doi:10.2307/1268522

Neumann, G., Harman, M., and Poulding, S. (2015). Transformed vargha-
delaney effect size. Int. Symposium Search Based Softw. Eng. 1, 318–324.
doi:10.1007/978-3-319-22183-0

Parker, L. E. (1998). Alliance: An architecture for fault tolerant multirobot
cooperation. IEEE Trans. Robotics Automation 14, 220–240. doi:10.1109/70.681242

Parker, L. E., and Kannan, B. (2006). Adaptive causal models for fault
diagnosis and recovery in multi-robot teams. IEEE International Conference on
Intelligent Robots and Systems, Beijing, China, 09-15 October 2006, 2703–2710.
doi:10.1109/IROS.2006.281993

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G, Brutschy, A, Brambilla, M, et al.
(2011). ARGoS: A modular, multi-engine simulator for heterogeneous swarm
robotics. IEEE International Conference on Intelligent Robots and Systems, San
Francisco, CA, USA, 25-30 September, 2011, 5027–5034.

Pini, G., Brutschy, A., Birattari, M., and Dorigo, M. (2011). Task partitioning
in swarms of robots: Reducing performance losses due to interference at shared
resources. Lect. Notes Electr. Eng. 85, 217–228. doi:10.1007/978-3-642-19730-7_15

Pini, G., Brutschy, a., Pinciroli, C., Dorigo, M., and Birattari, M. (2013).
Autonomous task partitioning in robot foraging: An approach based on cost
estimation. Adapt. Behav. 21, 118–136. doi:10.1177/1059712313484771

Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., and Birattari, M. (2014). Task
partitioning in a robot swarm: Object retrieval as a sequence of subtasks with direct
object transfer. Artif. Life 20, 291–317. doi:10.1162/artl_a_00132

Potter, M. A., Lisa, A., and Meeden, A. C. S. (2001). Heterogeneity in the
coevolved behaviors of mobile robots: The emergence of specialists. Int. Jt. Conf.
Artif. Intell. 17, 1337–1343.

Ratnieks, F. L.W., and Anderson, C. (1999). Task partitioning in insect societies.
Insectes Sociaux 46, 95–108. doi:10.1007/s000400050119

Tarapore, D., Lima, P. U., Carneiro, J., and Christensen, A. L. (2015). To
err is robotic, to tolerate immunological: Fault detection in multirobot systems.
Bioinspiration Biomimetics 10, 016014. doi:10.1088/1748-3190/10/1/016014

Timmis, J., Tyrrell, A., Mokhtar, M., Ismail, A., Owens, N., and Bi, R. (2010). An
artificial immune system for robot organisms. Adaptability: Symbiotic Multi-Robot
Organisms: Reliability, 279–302.

Trianni, V., and Nolfi, S. (2011). Engineering the evolution of self-
organizing behaviors in swarm robotics: A case study. Artif. life 17, 183–202.
doi:10.1162/artl_a_00031

Tuci, E. (2014). “Evolutionary swarm robotics : Genetic diversity , task-allocation
and task-switching,” in Lecture notes in computer science (Cham: Springer), 98–109.

Winfield, A. F., and Nembrini, J. (2006). Safety in numbers: Fault-
tolerance in robot swarms. Int. J. Model. Identif. Control 1, 30–37.
doi:10.1504/IJMIC.2006.008645

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis.
Chemom. intelligent laboratory Syst. 2, 37–52. doi:10.1016/0169-7439(87)80084-9

Zhang, Y., Bastani, F., Yen, I.-L., Fu, J., and Chen, I.-R. (2008). “Availability
analysis of robotic swarm systems,” in 2008 14th IEEE Pacific Rim International
Symposium on Dependable Computing, Taipei, Taiwan, 15-17 December 2008
(IEEE), 331–338.

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2022.904341
https://doi.org/10.1109/TCBB.2018.2843339
https://doi.org/10.32614/rj-2014-025
https://doi.org/10.1371/journal.pcbi.1002916
https://doi.org/10.1109/ROBOT.1987.1088037
https://doi.org/10.1007/978-3-540-30552-1_3
https://doi.org/10.1007/978-3-540-30552-1_3
https://doi.org/10.1007/978-3-642-32723-0_31
https://doi.org/10.1007/s10458-012-9212-y
https://doi.org/10.1007/978-3-319-44427-7_10
https://doi.org/10.1007/978-3-319-44427-7_10
https://doi.org/10.1109/tevc.2009.2017516
https://doi.org/10.1109/4235.996017
https://doi.org/10.2307/1165329
https://doi.org/10.1016/j.patcog.2014.01.005
http//:org.arXiv/abs/1804.07655
https://doi.org/10.1007/978-3-319-10401-0_14
https://doi.org/10.1109/ComputationWorld.2009.83
https://doi.org/10.1109/ROBOT.2009.5152389
https://doi.org/10.1007/s10514-017-9693-2
https://doi.org/10.2307/1268522
https://doi.org/10.1007/978-3-319-22183-0
https://doi.org/10.1109/70.681242
https://doi.org/10.1109/IROS.2006.281993
https://doi.org/10.1007/978-3-642-19730-7_15
https://doi.org/10.1177/1059712313484771
https://doi.org/10.1162/artl_a_00132
https://doi.org/10.1007/s000400050119
https://doi.org/10.1088/1748-3190/10/1/016014
https://doi.org/10.1162/artl_a_00031
https://doi.org/10.1504/IJMIC.2006.008645
https://doi.org/10.1016/0169-7439(87)80084-9
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

