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A longstanding barrier to deploying robots in the real world is the ongoing need to author
robot behavior. Remote data collection–particularly crowdsourcing—is increasingly
receiving interest. In this paper, we make the argument to scale robot programming to
the crowd and present an initial investigation of the feasibility of this proposed method.
Using an off-the-shelf visual programming interface, non-experts created simple robot
programs for two typical robot tasks (navigation and pick-and-place). Each needed four
subtasks with an increasing number of programming statements (if statement, while loop,
variables) for successful completion of the programs. Initial findings of an online study (N �
279) indicate that non-experts, after minimal instruction, were able to create simple
programs using an off-the-shelf visual programming interface. We discuss our findings
and identify future avenues for this line of research.
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1 INTRODUCTION

As robots move out of controlled industrial environments into the real world, a persistent challenge is
the need to expand robot behavior to adapt and respond to real-world situations without constant
expert supervision. As an example, consider a robot guide that is, developed to operate in a space
where doors are always open; if it is placed in new surroundings where it encounters a closed door, it
might encounter a failure case since it might not be programmed with the right sequence of actions
that specify to open the door before proceeding. Versatility is crucial for robots to successfully
complete a wide variety of tasks, and it relies greatly on the ease with which robots can be
programmed (Lozano-Perez, 1983).

To date, robot programming has primarily been a task for engineers that required a high level of
mathematical and programming knowledge. This has limited the amount of programs created and,
in turn, versatility. One way to support versatile robots is to be able to monitor them and create
simple robot programs on the fly, which could potentially include expanding the ability to program
robots to non-experts. While short-horizon skill learning, such as pushing and grasping objects, has
typically been taught through small-scale learning from demonstration (LfD) (Argall et al., 2009) or
teleoperation-like control, higher-level behavior (the order of actions to accomplish a task
successfully) or additional rules (move to the next room, but if the door is closed open the door
first) could be scaled to the crowd and directly provided in the form of simple robot programs. The
main advantage to provide such additional rules and high-level robot behaviors using crowdsourcing
is the quick and easy access to a large pool of non-experts. As an example, in a pick-and-place task, if
a robot’s task changes from picking up any item from a tray to picking up only pink items, a non-
expert crowdworker anywhere on earth, at any time of the day, can provide a rule that specifies in
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which order and under which conditions actions should be
executed (If item is pink → Pick up item). Many robot tasks
or rules require knowledge that people commonly have, such as
household tasks or interaction tasks. Using crowdworkers to
monitor robots may be beneficial and efficient, as they can
monitor a number of such scenarios at a time without the
need to be on site.

However, this method of recruiting novices relies on people
being able to understand how to program different robots quickly.
Previous literature has used visual programming interfaces to
lower the barrier of entry for novice programmers. For
example, many researchers have developed dataflow-based
visual programming environments to this end (Glas et al., 2012;
Sauppé andMutlu, 2014; Alexandrova et al., 2015; Glas et al., 2016;
Porfirio et al., 2018; Suguitan and Hoffman, 2019). One limiting
factor of dataflow-based interfaces is that theymay not always scale
well with large space states (Glas et al., 2016; Huang et al., 2016).
This can make it difficult to modify or remove elements, as the
diagram can quickly become a jumble of elements and their
connections (Coronado et al., 2020).

Another potential method to allow novices to program is the
use of block-based interfaces (e.g., Pot et al., 2009; Datta et al.,
2012; Chung et al., 2016; Huang et al., 2016; Huang and Cakmak,
2017; Paramasivam et al., 2017; Coronado et al., 2018; Coronado
et al., 2019). We are inspired by these works and interested in
extending these methods to let non-expert crowdworkers provide
additional rules and exceptions to typical robot behaviors. In this
work, we focus on investigating if/how non-experts can create
simple robot programs using an off-the-shelf visual interface
without extensive training, rather than designing and
developing a novel interface. Leveraging prior work that
focused on the interface design, we are interested to see
whether such off-the-shelf interfaces can be customized to fit
our particular robot programming use case.

In addition to needing a method for users to program the
robot, we must consider how best to leverage a remotely shared
environment. Situated tangible programming has allowed users
with little-to-no training to program robots while situated in the
task context by using programming blocks to reference objects
(Sefidgar et al., 2017; Sefidgar and Cakmak, 2018). An extension
of this method included real-time feedback projected onto the
robot’s workspace and was used effectively by people with prior
traditional programming experience (Sefidgar et al., 2018).
Stenmark et al. (2017) developed a graphical interface with
built-in basic actions, tested with users with some technical or
mathematical experience, to create new robot skills. Unlike these
works, we explore collecting additional rules for a robot rather
than the generation of new skills and focus our attention on off-
site non-expert users.

Another consideration for our remote, novice programming
proposal is whether this work can be crowdsourced effectively. The
success of crowdsourcing in other tasks has been shown extensively
in prior work, including for spoken dialog generation for
conversational systems (Lasecki et al., 2013; Mitchell et al., 2014;
Leite et al., 2016; Yu et al., 2016; Guo et al., 2017; Kennedy et al.,
2017; Huang et al., 2018; Jonell et al., 2019) and interaction data and
non-verbal behavior (Orkin and Roy, 2007; Orkin and Roy, 2009;

Chernova et al., 2010; Rossen and Lok, 2012; Breazeal et al., 2013;
Sung et al., 2016). In previous research that is, more relevant to
ours, Lee and Ko (2011) crowdsourced non-expert programmers
for an online study and found that personified feedback of a robot
blaming itself for errors increased the non-programmers’
motivation to program. While this work demonstrated promise
for using the crowd for program correction, we focus instead on
program creation by non-expert crowdworkers.

In this paper, we created an initial experiment that used block-
based programming for crowdworkers to see how well they could
create simple robot programs on a virtual robot. It is important to
recognize that our aim is to investigate if/how people can create
simple robot programs, and this work is a first step towards non-
expert robot programming. As discussed in Section 5, future
avenues of work should address the transfer between our
simulation environment and real world environments. There
are numerous use cases in which crowdsourcing robot
programs could be promising. For example, a mobile robot in
a nursing home assisting human workers could use help to check
whether all residents have left their rooms right before meal time.
Also, a mobile robot that guides people to their gate at the airport
could be instructed to consider taking a longer, but more suitable
route (e.g., without stairs) in special cases, such as when guiding
elderly or visually impaired people.

As a first step, we showed that non-expert crowd workers can
program robots on two typical robot tasks after up to 1.5 min of
instructions. However, workers seemed to experience difficulty
with correct use of loop blocks, block placement, and variable use.
Exploring people’s common mistakes and commentary after they
completed the task, we discuss future directions of non-expert
robot programming through crowdsourcing. This paper provides
the following contributions:

1. A proposed method for scalable non-expert robot
programming through crowdsourcing;

2. An exploration of the extent to which non-expert crowd
workers can successfully create robot programs using an
off-the-shelf visual programming interface after minimal
training through an analysis of commonly made mistakes
from non-experts crowd workers’ created programs.

2 RELATED WORK

This work aims to contribute to new ways of large-scale robot
programming for real-world applications. As pointed out by Leite
et al. (2013), a long-standing barrier to deploying robots in the real-
world is the ongoing need to author robot behavior. For robots to
be deployed in naturalistic environments without constantly
breaking down and requiring expert assistance, they need to be
able to constantly add new behavior (sequences) to their existing
repertoire. Typically, engineers and robot programmers have been
responsible for authoring robot behaviors, an approach that does
not scale well to real-world, long-term interactions (Leite et al.,
2016). Recently, several studies have explored ways to make
robot programming more accessible to people with varying
levels of programming expertise.
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We need to recognize that programming can be intimidating
for novices (Eisenberg, 1997), due to high cognitive load, complex
languages, and error-proneness (Bau et al., 2017). Drag-and-drop
graphical interfaces, such as Google’s Blockly and MIT’s Scratch,
have been commonly used to facilitate this process. In these
interfaces, visual blocks represent programming procedures
which can be visually snapped together, eliminating the need
to write actual code and deal with syntax errors (Trower and
Gray, 2015). Block-based languages focus on recognition of
blocks instead of recalling programming vocabulary, reduce
cognitive load by chunking code into meaningful blocks, and
reduce error-proneness as users do not need to write code (Bau
et al., 2017).

Many researchers have developed flow-based visual
programming environments for robot programming (Sauppé
and Mutlu, 2014; Alexandrova et al., 2015; Glas et al., 2016;
Suguitan and Hoffman, 2019), but these interfaces may not
always scale well with large space states (Glas et al., 2016;
Huang et al., 2016). Systems such as Blossom (Suguitan and
Hoffman, 2019), Interaction Blocks (Sauppé and Mutlu, 2014),
and RoboFlow (Alexandrova et al., 2015) allow users to specify
interaction patterns or behavior sequences for social robots.
Alternatively, other works have explored the use of visual drag-
and-drop interfaces (Pot et al., 2009; Datta et al., 2012; Chung
et al., 2016; Huang et al., 2016; Huang and Cakmak, 2017;
Paramasivam et al., 2017; Coronado et al., 2018; Coronado
et al., 2019). One series of these includes CustomPrograms
(Huang et al., 2016), iCustomPrograms (Chung et al., 2016),
and Code3 (Huang and Cakmak, 2017), all of which allowed
non-experts to program a robot to perform basic social
behaviors with minimal training. Code3 lets users create
models of objects to use to teach the robot new behaviors
through demonstration and program the robot through a
visual programming interface called CodeIt (Paramasivam
et al., 2017).

Situated tangible programming has allowed users with
minimal training to program robots while situated in the task
context, using programming blocks to reference objects (Sefidgar
et al., 2017). An extension of this method included real-time
feedback projected onto the robot’s workspace and was used
effectively by people with prior traditional programming
experience (Sefidgar et al., 2018).

Stenmark et al. (2017) developed a graphical interface with
built-in basic actions, tested with users with some technical or
mathematical experience, to create new robot skills. Unlike this
work, we focus on collecting robot behavior from predefined
actions rather than the generation of new skills.

Prior work has used crowdsourcing for spoken dialog
generation for conversational systems (Jurčíček et al., 2011;
Lasecki et al., 2013; Mitchell et al., 2014; Leite et al., 2016; Yu
et al., 2016; Guo et al., 2017; Kennedy et al., 2017; Huang et al.,
2018; Jonell et al., 2019), interaction data and non-verbal behavior
(Orkin and Roy, 2007, Orkin and Roy, 2009; Chernova et al.,
2010; Rossen and Lok, 2012; Breazeal et al., 2013; Sung et al.,
2016). However, no previous work created a method to collect
new robot behaviors for day-to-day tasks on a large scale using
semi-situated non-experts.

In sum, non-expert robot programming and crowdsourcing
have both been explored in previous robotics and human-robot
interaction (HRI) research. To date, no research has combined
these two approaches to examine the opportunities and
challenges of large-scale remote non-expert robot
programming as a method for robot behavior collection.

3 MATERIALS AND METHODS

3.1 Robot Programming Interface
We built a visual programming interface based on MIT’s Scratch
(Resnick et al., 2009), an intuitive, accessible drag-and-drop
programming tool using a general-purpose language for which
prior work has shown effectiveness for non-experts (Malan and
Leitner, 2007). As previously discussed, visual programming is a
popular tool for non-expert programming, and it particularly fits
our robot programming through crowdsourcing use case as it
allows for intuitive, non-expert robot programming without the
need for extensive training.

We adapted the original Scratch interface to provide our
workers with a clean interface tailored to the current robot
programming task (see Figure 1). The interface provides the
user with predefined code blocks that we can flexibly define for
each task. We defined a set of blocks to test the desired
programming statements; blocks and functionality irrelevant to
the task were removed. The blocks can be dragged into the
workspace and snapped together to form a program that
produces the desired robot behavior. The program can be
tested by clicking the green flag icon, and the program
execution can be stopped by clicking the red stop button.
When a program is tested, the stage (see Figure 1C) visualizes
the program output. For any incorrect program, simple error
messages state what is incorrect and encourage the user to retry.
For the pick-and-place task, we created a 3D animated robot that
moved its arms to illustrate picking and placing cylinders. The
web-based application runs on most standard web browsers.

Workers on the crowdsourcing platform Amazon Mechanical
Turk (AMT) were introduced to the problem through our
Human Intelligence Task (HIT) that contained the
instructions, the link to the web application with our visual
programming interface, a questionnaire, and a file upload.
When the web application was open in the worker’s web
browser, the session, including cursor movement and mouse
clicks, was screen-recorded and saved for qualitative analysis.
Workers were requested to download their program and then
upload it to our server to pass the HIT. This gave us the
opportunity to analyze both the continuous process of the
workers’ programming and the finished program.

3.2 Robot Programming Tasks
The two tasks are informed by prior research on robot
programming. One task is a navigation task (see Figure 2) in
which the robot needs to move to predefined locations, inspired
by Huang et al. (2016). The other task is a pick-and-place task
(see Figure 3), in which the robot needs to stack cylinders,
similar to Sefidgar et al. (2017). These are typical tasks for which
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it is likely that a robot would need to adapt its behavior based on
the particular environment in which it is deployed (e.g., different
factory, home, etc.). However, as mentioned earlier, our
crowdsourced robot programming use case is illustrated by
but not limited to these two tasks.

The interface contains program blocks and program statements;
program blocks can contain other program blocks and statements,
and a program statement can contain program variables. The tasks
are designed such that different programming statements (blocks,
conditionals, loops, and variables) can be gradually introduced,
which allows for flexible definition of new programming

statements. We are interested to see for what combinations of
programming statements non-experts can successfully create
programs, so we introduced an increasing number of
programming statements rather than comparing programming
statements individually. We created four subtasks for each task
to explore at which levels difficulties would arise:

• Blocks subtask: in which the robot can be programmed with
some simple blocks that are formed from simple control
structures; this subtask only involved dragging and

FIGURE 1 | The interface consists of (A) blocks to drag and drop to the (B) workspace. The (D) instructions explain the task. The program can be (E) run and
stopped, and the program’s output is visualized in the (C) stage. Finally, users can (F) download their program.

FIGURE 2 | The navigation task in which the robot (A) needs to move
from the living room, through the kitchen, to the hallway and to the charging
station (C), charge its battery, and move back. If the cat (B) (controlled by a
variable that is either or 1) blocks the door, the robot first needs to make
the cat move.

FIGURE 3 | The pick-and-place task, in which a virtual robot needs to
pick cylinders from a box on the table and place them correctly. If the chosen
cylinder’s color is pink, the robot must place it on the table; otherwise it must
be put in the bin below the table. It should stack cylinders until the stack’s
height is 3.
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dropping blocks (e.g., “move to room,” where the room
could be chosen from a drop-down menu);

• Conditional subtask: that uses a decision statement
introduced in the form of an if-else conditional;

• Loop subtask: that includes the if-else conditional from the
conditional subtask and additionally introduces an iteration
statement in the form of a loop (e.g., repeat until a certain
condition is satisfied, similar to a while-loop);

• Variables subtask: that includes both an if-else conditional
and a loop, and also introduces variables and operators that
need to be used to specify the conditions that must be
satisfied for the conditional and loop to be triggered.

To fit the typical duration of HITs, which are usually short
tasks, the instructions of the tasks were kept to a minimum. In a
pilot study (N � 3, one male, 2 female; μ age � 35.0, SD � 17.32),
we had non-programmers talk aloud while they programmed a
virtual robot in the navigation task, starting with no
instructions, and providing increasingly more instructions.
These pilots informed us that an abstract overview of the
interface and its components were the minimally sufficient
instructions. This is specifically desirable when creating
programs for a wide range of situations for which one
general instruction video can suffice. Prior to the task,
participants watched a minute-long instruction video
showing the basic usage of the interface. To gain some initial
insight on the impact of instructions on task success, we ran an
additional study in which people watched the same instruction

video with an additional 30 s of instruction that illustrated the
use of the loop programming statement. The 1-min and 1.5-min
instruction videos can be found here, respectively: vimeo.com/
492089177 and vimeo.com/492088923.

The task instructions were kept the same for each subtask, but
the variables subtask included one sentence about the variables;
e.g., in the navigation task: “When the cat is present the
cat_present variable is 1 and otherwise 0. The fully_charged
variable goes from 0 (empty battery) to 1 (fully charged).” For
all subtasks, the maximum duration of the task was 15 min, and
the maximum HIT time was 30 min.

3.2.1 Navigation Task
In the blocks subtask of the navigation task, workers made a
program using the available blocks (see Figure 4) to make the
robot [located at (1) in Figure 2]: 1) move to its charging station
located in the hallway; 2) charge its battery; and 3) move back to
the living room. The robot could only move between rooms that
were adjacent to each other and its battery would drain while it
operated. In the conditional subtask, we introduced a cat [located
at (2) in Figure 2] that would randomly appear and block the
door from the kitchen to the hallway. This was not mentioned in
the instructions. In the real world, sudden changes in the
environment may cause robots to fail at a task. For example,
the robot might get stuck when the cat blocks its way. This
could also be a closed door, as mentioned as an example in the
Introduction. In this case, workers could use a conditional to
specify a sequence of actions that the robot should perform to
continue. Here, they can specify that the robot should “make
the cat move” if the cat blocked the door [see (2) in Figure 4].
In the loop subtask, the robot had to charge “until fully
charged,” and we introduced a loop block [see (3) in
Figure 4] that would repeat any code placed inside it until
the condition was met. Finally, in the variable subtask, both the
conditional and the loop stayed the same, but variables had to
be used to specify the condition for these blocks; e.g., the
“repeat until fully charged” changed to “repeat until
placeholder,” where a variable could be placed inside the
placeholder [see Figure 4(4)].

3.2.2 Pick-and-Place Task
In the blocks subtask of the pick-and-place task, we asked people
to create a program to make the robot pick up the green cylinder
(out of three colored cylinders on the table) and place it on the
pink one, then pick up the blue cylinder and put it on the green
one. In the conditional subtask, the robot had to pick one
cylinder from a box on the table and place it on the table if
the color of the cylinder was pink or put it in a box under the
table if it was not (see Figure 3). For this subtask, we introduced
a conditional that would check if the picked cylinder was pink.
The box contained three pink cylinders, a blue cylinder, and a
green cylinder. The robot would pick up blocks in a random
order so that users could not use the order to create a correct
program. In the loop subtask, the robot had to stack cylinders if
the cylinder’s color was pink until the stack’s height was three.
This could be done using the loop block. In the variables subtask,
the conditional and loop statements required variables inside an

FIGURE 4 | The blocks used in the navigation task, illustrating the blocks
used in the different programming statements subtasks: (A) block statements
only, (B) a conditional, (C) a loop, and a conditional and loop that require (D)
variables.
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operator to specify what condition must be met to trigger the
statements.

In both tasks, the robot may fail in its task, but in the
navigation task it is an unexpected event that causes the robot
to fail (a cat may randomly appear) inherent to the environment,
whereas in the pick-and-place task it is embedded in the task
instructions (only place a cylinder if the color is pink).

3.3 Experimental Method
In order to investigate the research questions outlined earlier, we
conducted an online study using the system described in the
previous section. We focused on program creation, similar to
Sefidgar et al. (2017), as we were interested in the success rate for
program creation by non-experts and what difficulties arose
during program creation using an off-the-shelf interface. We
collected data through crowdsourcing, giving us substantially
more data to analyze for patterns of common challenges.

3.3.1 Measures
From the task screen recordings, the collected programs and
survey responses, we extracted the following measures.

3.3.1.1 Task Success
From task recordings and uploaded programs, we counted how
many people successfully completed each subtask. This means
that the program did what was asked without errors.

3.3.1.2 Task Duration
We manually extracted task duration as the number of seconds
it took people to create their final program, regardless of task
success. Due to some software issues with the external
recording tool, we had N � 24 recordings for the blocks
subtask, N � 24 for the conditional subtask, N � 17 for the
loop subtask, and N � 23 for the variables subtask for the
navigation task. For the pick-and-place task, we obtained N �
20 recordings for the blocks subtask, N � 19 for the conditional
subtask, N � 22 for the loop subtask, and N � 20 for the
variables subtask. We asked people to spend a maximum of
15 min on the task, after which they should submit their
program regardless of whether it was correct. Naturally, we
expected an increase in task duration with the increase in
programming statements.

3.3.1.3 Task Usability
To assess task usability, we adapted the widely used System
Usability Scale (Brooke, 1996). A reliability analysis showed
that the scale had acceptable reliability, α � 0.88, so we used
the mean score in our analyses. We included the following items
(R indicates reverse-scoring):

1. I think that I would like to do this task frequently as a HIT.
2. I found the programming task unnecessarily complex (R).
3. I thought the programming task was easy to perform.
4. I think that I would need the support of a technical person to

be able to perform the programming task (R).
5. I would imagine that most people would learn to do this

programming task very quickly.

6. I felt very confident doing the programming task.
7. I needed to learn a lot of things before I could get going with

the programming task (R).
8. I found the programming task very challenging to

perform (R).

3.3.1.4 Task Load
We adapted the NASA Task Load Index (Hart and Staveland,
1988), removing the physical demand item and the original pair-
wise comparisons as they were not relevant to the current task.
The remaining five items, rated using a slider from 0 (labeled very
low for item 1, 2, 4, and 5, and perfect for item 3) to 100 (labeled
very high for item 1, 2, 4, and 5, and failure for item 3), were as
follows:

1. Mental demand: How mentally demanding was the task?
2. Temporal demand: How hurried or rushed was the pace of the

task?
3. Performance: How successful were you in accomplishing what

you were asked to do?
4. Effort: How hard did you have to work to accomplish your

level of performance?
5. Frustration: How insecure, discouraged, irritated, stressed and

annoyed were you during the task?

A reliability analysis showed moderate scale reliability, α �
0.70, which could be increased to acceptable reliability, α � 0.80, if
item 3 was deleted. Hence, we excluded performance and
averaged the four remaining items to get the task load score.

3.3.1.5 Open Question
To gain amore in-depth understanding of what difficulties people
experienced during the task, we added the following open-ended
question: “During the task, what did you find difficult? Did you
have any problems?” Participants could write an open answer to
this question in a text box.

3.3.2 Participants
We recruited 344 participants online through AMT, of whom
65 participants were excluded due to missing data or non-
serious attempts, resulting in a total of 279 participants. Of
these, 105 participants completed the navigation task (71
male, 32 female; μ age � 34.21, SD � 9.28) with the original
instructions and 84 participants (55 male, 27 female, 2 other;
μ age � 32.34, SD � 8.77) with an additional 30 s of
instructions. 90 participants did the pick-and-place task
with the original instructions (58 male, 32 female; μ age �
34.8, SD � 11.33). To avoid learning effects that could
influence our comparisons, participants could only
perform one HIT. Participants were compensated 4 USD.

Of the 105 participants who completed the navigation task
with 1-m instructions, 29 participants did the blocks subtask (20
male, 8 female, 1 other; μ age � 38.48, SD � 8.91), 29 did the
conditional subtask (21 male, 7 female, 1 other; μ age � 35.52,
SD � 9.94), 19 did the loop subtask (16 male, 3 female;
μ age � 29.11, SD � 5.45), and 28 did the variables subtask
(14 male, 14 female; μ age � 31.89, SD � 9.03).
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Of the 84 participants who completed the navigation task with
1.5-m instructions, 29 (20 male, 8 female, 1 other; μ age � 29.24,
SD � 7.53) performed the conditional subtask, 28 did the loop
subtask (17 male, 11 female; μ age � 32.32, SD � 7.82), and 27 did
the variables subtask (18 male, 8 female, 1 other; μ age � 35.37,
SD � 10.03) of the navigation task.

For the 90 participants completed the pick-and-place task,
20 people did the blocks subtask (13 male, 7 female; μ age � 38.10,
SD � 13.11), 22 did the conditional subtask (18 male, 4 female;
μ age � 29.27, SD � 6.26), 23 did the loop subtask (16 male,
7 female; μ age � 34.17, SD � 10.54), and 25 did the variables
subtask (11 male, 14 female; μ age � 37.60, SD � 12.57).

3.3.2.1 Programming Experience
Programming experience was measured on four items adapted
from prior work (Feigenspan et al., 2012), rated on a scale from 1
(very inexperienced) to 10 (very experienced). Reliability was
high, α � 0.95; so we used the mean score. All people reported
themselves as inexperienced at programming (navigation task:
μ � 3.15, SD � 2.58, median � 1.5; navigation task with additional
instructions: μ � 2.76, SD � 2.36, median � 1.63; pick-and-place
task: μ � 3.81, SD � 2.74, median � 2.63), and on average had less
than 2 years of overall programming experience (navigation task:
μ � 1.70, SD � 2.81; navigation with additional instruction: μ �
2.33, SD � 4.68; pick-and-place task: μ � 2.22, SD � 4.23) and of
professional experience (navigation task: μ � 0.89, SD � 1.87;
navigation with additional instruction: μ � 0.82, SD � 2.64; pick-
and-place task: μ � 1.38, SD � 2.49). A logistic regression showed
no significant association between programming experience and
task success, p � 0.37.

3.3.3 Data Analysis Plan
We treated the four subtasks with different numbers of
programming statements as independent variables. We
analyzed success rates for each task and its subtasks. To
test whether semi-situated robot programming could be
done in a sensible amount of time with reasonable task
load, we examined task duration for people who completed
the task. We compared usability and task load for both
success and failure cases.

We expected task duration and task load to increase and
usability to decrease with the number of programming statements
because of the increasing complexity of the programs. To see at
which programming statement the complexity caused a
significant difference in the aforementioned measures, we
performed three pair-wise comparisons: the basic subtask with
the conditional subtask, the conditional subtask with the loop
subtask, and the loop subtask with the variables subtask, with
Bonferroni corrections for multiple comparisons using α � 0.016
as the significance threshold.

To explore what difficulties people faced during program
creation, we analyzed the task recordings and classified the
types of errors for people who failed to successfully create a
program. Additionally, two authors double-coded the answers to
the open-ended question described in Section 3.3.1 to classify
what challenges people reported. The answers were coded into
one or more of the following categories: No problems, Task order:

challenges related to figuring out the steps of the task, Blocks:
challenges related to figuring out how the blocks work,
Anticipation: challenges anticipating the robot’s environment,
Interface: challenges related to the interface, and Other. Fuzzy κ
(Kirilenko and Stepchenkova, 2016) showed acceptable inter-
rater agreement, κ � 0.7.

To study the impact of instructions on performance, we
compared rates of task success in the conditional, loop, and
variables subtasks of the navigation task across both
instruction levels. We did not run any other tests to compare
the tasks due to differing task designs.

4 RESULTS

4.1 Navigation Task
4.1.1 Task Success
Overall, 34% of participants successfully completed the original
task. Most of them finished the blocks subtask (86.2% success
rate) rather than the conditional (20.7%), loop (10.5%), or
variables subtasks (10.7%) (see Figure 5). A Chi-square test of
independence found a significant relationship between
programming concepts and task success, χ2 (3, N � 105) �
48.32, p < 0.0001. Specifically, people who created programs
that required a conditional statement (20.7%) were less likely to
successfully complete the task than people in the blocks subtask
(86.2%), χ(1) � 25.02, p < 0.0001. There were no significant
differences between the conditional and loop subtasks or the loop
and variables subtasks. For the navigation task with 1.5-min
instructions, the task success was 33.3% for the conditional
subtask, 28.6% for the loop subtask, and 7.7% for the variables
task. Task success did not differ significantly between this version
of the navigation task and the one with 1-min instructions,
ps > 0.1.

FIGURE 5 | Percentage of successfully completed programs per
subtask per task. * indicates significant differences (p < 0.016) (Recall that
each task is only compared statistically to the task directly below it, for a total
of three pairwise comparisons).
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4.1.2 Task Duration
Across all subtasks, the mean task duration for successful
tasks was 349 s (s) (SD � 278 s). The task duration appeared
to increase with the number of programming statements:
starting with the blocks subtask (μ � 250.48 s, SD � 217.98,
median � 190.0), then the conditional subtask (μ � 390.0 s,
SD � 211.82, median � 365.0), followed by the loop subtask
(μ � 503.50 s, SD � 443.35, median � 503.50), and finally, the
variables subtask (μ � 690.0 s, SD � 256.32, median � 720.0).
However, Mann-Whitney U tests for the task duration in
seconds showed no significant differences between the
subtasks for people who successfully completed the
program, ps > 0.07.

4.1.3 Task Usability
We observed a decrease in task usability with the increase in
programming concepts, with the blocks subtask having the
highest average task usability score (μ � 4.47, SD � 0.74,
median � 4.88), followed by the conditional subtask (μ � 4.16,
SD � 0.70, median � 4.13), the loop subtask (μ � 3.95, SD � 0.65,
median � 3.88), and, finally, the variables subtask (μ � 3.13, SD �
0.87, median � 3.13).

Mann-Whitney U tests of independent samples were used
to examine the relationship between the task usability score
and the different subtasks. Results revealed a statistically
significant difference between the blocks subtask and the
conditional subtask, U � 263.50, Z � −2.46, p � 0.014.
Specifically, people in the blocks subtask rated the task
usability higher (mean rank � 34.91) than did the people
who did the conditional subtask (mean rank � 24.09).
There was also a significant difference between the loop
subtask and the variables subtask, U � 118.50, Z � −3.21,
p � 0.001, where people who did the loop subtask rated
usability higher (mean rank � 31.76) than those who did
the variables subtask (mean rank � 18.73).

4.1.4 Task Load
Task load appeared to increase with the increasing number of
concepts, with the lowest average task load for the blocks subtask
(μ � 29.71, SD � 20.55, median � 24.50), followed by the
conditional subtask (μ � 40.16, SD � 24.79, median � 44.0)
and the loop subtask (μ � 42.01, SD � 17.30, median � 34.50),
which have similar means to each other, and, finally, the variables
subtask (μ � 62.86, SD � 16.23, median � 60.88). A Mann-
Whitney U test showed a statistically significant difference

between the loop subtask (mean rank � 15.39) and the
variables subtask (mean rank � 29.84), U � 102.50, Z � −3.55,
p < 0.0001.

TABLE 1 | Classification of mistakes in the navigation task (improper use, IU; no
use, NU) per programming statement per subtask [conditional (C), loop (L),
and variables (V)].

Subtask If-else Loop Variables

IU NU IU NU IU NU

C 19 (68%) 2 (7%) N/A N/A N/A N/A
L 13 (72%) 2 (11%) 4 (22%) 1 (6%) N/A N/A
V 12 (44%) 9 (33%) 3 (11%) 9 (33%) 6 (22%) 11 (41%)

FIGURE 6 | Navigation task: Correct program (A) and improper order of
robot action (move) and if-else conditional (B).

FIGURE 7 | Navigation task: Correct program (A) and the “else” in the if-
else conditional incorrectly used as “then” (B).
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4.1.5 Common Challenges
We manually classified improper use and no use of the three
programming statements (e.g., conditional, loop, and
variables (see Table 1)). The most common error was the
order of blocks related to the conditional statement. Many
participants placed the “move to hallway” block before the
conditional statement (see Figure 6). The robot first needed
to check if the cat was blocking the door before it can
proceed to the hallway; however, many people placed the
conditional check after “move to hallway.” For example, one
participant mentioned “(A problem was) grasping (. . .) if I
should make sure the cat was out of the way before going into
the Hallway or the inverse (. . .)” (loop subtask). Another
participant said: (. . .) It was unclear to me if (. . .) we (make)
the cat move to ENTER the hall (thus it should happen in the
kitchen), or making the cat move as we enter the first bit of
hallway?” (variables subtask). The second most common
error was improper use of the conditional statement. The
“else” in the conditional was treated as a “then” (see
Figure 7). Consequently, the action placed in the “else”
would only be executed if the condition was not met, but it
should always execute. 23% of the participants’ open
answers were coded as issues with Anticipation of the
environment, e.g., when the cat would appear and the
robot’s battery life.

4.2 Pick-and-Place Task
4.2.1 Task Success
Roughly 56% of all participants successfully completed the
task, of whom most completed the blocks subtask (94.7%
success rate) or the conditional subtask (81.8%), whereas the
loop and variables subtask had 26.1 and 32.0% success rates,
respectively (see Figure 5). A χ2 test of independence found a
significant relationship between programming concepts and
task success, χ2 (3, N � 89) � 31.75, p < 0.0001. People who
created programs in the conditional subtask were more likely
(81.8%, mean rank � 29.41) to successfully complete the
program than people in the loop subtask (26.1%), χ(1) �
14.03, p < 0.0001.

4.2.2 Task Duration
Again, we expected the task duration to increase with the
number of programming concepts; therefore, we performed
the planned pairwise comparisons. For the pick-and-place task
(across all subtasks), the mean task duration for successful tasks
was 3 min and 44 s (SD � 2 min and 44 s). For successful cases,
the task duration (in seconds) appeared to increase with the
number of programming statements, but the task duration in
the conditional subtask (μ � 128.38, SD � 81.26, median �
117.0) appeared lower than in the blocks subtask (μ � 194.28,
SD � 83.94, median � 172.0), followed by the loop subtask (level
3, μ � 303.0, SD � 281.57, median � 195.5), and finally, the
variables subtask (μ � 355.5, SD � 110.35, median � 373.0).
Mann-Whitney U tests for the task duration in seconds showed
no significant differences in task duration for people who
successfully completed the program between the subtasks,
ps > 0.018.

4.2.3 Task Usability
Task usability decreased with the increase in programming
concepts, with the blocks subtask having the highest average
usability score (μ � 4.41, SD � 0.65, median � 4.69), followed by
the conditional subtask (3.83, SD � 0.90, median � 3.88), the loop
subtask (μ � 3.63, SD � 0.95, median � 3.50), and finally, the
variables subtask (μ � 3.46, SD � 1.13, median � 4.0). However,
Mann-Whitney U tests of independent samples showed no
statistically significant differences between subtasks, ps > 0.03.

4.2.4 Task Load
Task load was lowest for the blocks subtask (μ � 28.96, SD �
17.10, median � 32.75). The task loads for the conditional (μ � 45,
SD � 18.66, median � 42.0), the loop (μ � 51.93, SD � 21.21,
median � 57.50) and variables subtasks (μ � 49.51, SD � 23.08,
median � 43.50) were similar to each other. A Mann-Whitney U
test showed only a statistically significant difference between the
blocks subtask (mean rank � 16.68) and the conditional subtask
(mean rank � 25.89), U � 123.50, Z � −2.43, p � 0.014.

4.2.5 Common Challenges
Table 2 reports the distribution of classified mistakes. The most
common programming mistake was to place the loop at either the
end of the program or at the beginning, without enveloping the
rest of the blocks (see Figure 8). This problem started to occur in
the loop subtask. 24% of the open answers were coded as issues
with Block functionality. Participants explaining their problems
said “(. . .) My thought was more like a timeline, so I put the block
‘Repeat Until Height is 3’ at the end expecting to function when
the robot movement was done,” (loop subtask) and “I wasn’t
exactly sure how to nest commands, the only thing I had to think
about was where to put the repeat command (. . .)” (loop subtask).
Another recurring mistake in the loop and variables subtasks was
placing the loop inside the conditional statement, causing it to
only execute if the conditional statement was true and only for the
blocks inside that loop.

4.3 Summary of Findings
To summarize the results presented, we found that a third of the
participants in the navigation task could successfully program the
robot. People were significantly less likely to successfully
complete the task in the conditional subtask as compared to
the blocks subtask. More than half of the participants in the pick-
and-place task could successfully create a simple robot program;
people were significantly less likely to successfully complete the

TABLE 2 | Error classification in the pick-and-place task (improper use, IU; no use,
NU) per programming statement for the conditional (C), loop (L), and variables
(V) subtask.

Subtask If-else Loop Variables

IU NU IU NU IU NU

C 4 (18%) 0 (0%) N/A N/A N/A N/A
L 5 (21%) 0 (0%) 10 (42%) 6 (25%) N/A N/A
V 9 (36%) 2 (8%) 11 (44%) 3 (12%) 12 (48%) 1 (4%)
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task in the loop subtask as compared to the conditional subtask.
For both tasks, the task duration increased when more
programming concepts were introduced. For the navigation
task, the usability decreased between the blocks and
conditional subtask and between the loop and variables
subtask. For the navigation task, task load was significantly
higher for the variables subtask as compared to the loop
subtask; there was no significant difference for task load in the
pick-and-place task. Inspecting the created programs and open
answers, the most common mistakes were the order of blocks in
the navigation task and the use of the loop block in the pick-and-
place task.

5 DISCUSSION AND FUTURE WORK

This section discusses our findings on task success and common
challenges as reported by non-experts during the robot
programming task, and we discuss avenues for future work
including the transfer from a simulation environment to
integration with a real robot and quality control of the
crowdworkers’ input.

5.1 Task Success
A higher percentage of workers succeeded in the pick-and-place
task than in the navigation task, which may have been due to the
non-deterministic nature of the cause for robot failure in the
latter. People had difficulties handling the cat-event with basic
switch logic; many participants placed a “move to hallway”
command before the conditional statement to check if the cat
blocked the robot’s way. Participants could re-try and adapt their
program, but did not create the program successfully. Looking at
people’s open answers, this difficulty may have been because the

procedural if-statement may not align with their mental
representation of the task at hand. It is reasonable that
participants expected that the robot would start moving
towards the hallway, and while moving, would execute the
conditional statement in parallel rather than sequentially. It is
important to note that participants could re-try, hence, they could
observe how/when the robot executed its actions. According to
the cognitive dimensions framework, it is crucial that there is a
cognitive fit between the mental representation and language
representation (Green and Petre, 1996). Especially because this
difficulty was not a common challenge in the pick-and-place task,
this suggests that participants may have had different mental
representations of the two tasks.

5.2 Common Challenges
Interestingly, in the pick-and-place task, people experienced
difficulties with the placement of the loop block, which was
reflected in their open answers: almost a quarter of
participants in the pick-and-place task mentioned issues
related to how the blocks worked. The difference between the
two tasks in terms of the loop statement is that in the navigation
task only one action should be placed in the loop block, while in
the pick-and-place task, a sequence of actions should be
encapsulated in the loop block. It may have been unclear to
participants that multiple blocks could be placed inside the loop
block. Difficulties with proper programming block placement can
most likely be solved by showing people a simple example and
ensuring that workers watch the instruction video. In this study,
participants started with a blank slate, starting with the initial
robot program for which they can specify an additional rule could
be a viable option as well. Another direction of important future
work is the investigation of crowd workers who repeatedly
complete robot programming tasks over a longer period of

FIGURE 8 | Pick-and-Place task: Correct program (A) and the loop incorrectly placed at end of program rather than around the “if-else” conditional (B).
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time. This may provide a more stable quality of the input we
receive, but also create an interesting opportunity for the workers
to become more familiar with robot programming.

5.3 Training Time
The use of non-experts for robot programming is first and
foremost that the quick and easy access to a large pool of
robot teachers. It is undesirable if people need to undergo
extensive training before they are able to create simple rules
and programs for robots. In other words, we envision a pipeline in
which workers can quickly obtain the minimal skills to perform
the task provided that their attempt is serious, so we wanted to
keep the instructions to a minimum. Although non-significant,
results suggested a potential increase in success rate in both the
conditional (20.7–33.3%) and the loop subtask (10.5–28.6%) after
adding only 30 s of video-based instructions explaining the
functionality and use of a loop statement to a 1-min
instruction video. Variable use, which has a different
functionality than conditionals and loops, remained susceptible
to errors (7.7% subtask success). This finding motivates the
suggestion mentioned above, to have a smaller group of
workers repeatedly provide input to a robot. This way, we
could ask them to invest some time familiarizing themselves
with the interface as they would be using it over a longer period of
time. One specific approach that we want to study in the future is
for non-experts to provide rules in natural language. For example,
in case the robot is baking a cake and runs out of eggs on the
counter (exception), a rule to enable quick robot learning: If there
are no more eggs on the counter → Fetch eggs from the fridge.
Then, more experienced crowd workers could translate this to a
simple robot program. Leveraging collaboration between workers
is one major advantage of crowdsourcing, which we have not yet
explored in this current work.

5.4 Integration With a Real Robot
We conducted an initial study if/how well non-experts could
create simple programs that specify additional rules for robots.
This paper offers a first exploration, but does not offer a complete
solution to non-expert robot programming using crowdsourcing.
We explored the suitability of non-expert robot programming
using an off-the-shelf visual programming interface that has
proven intuitive for non-programmers on two typical robot
programming tasks. Results provide initial evidence that non-
experts can successfully create small robot programs using
crowdsourcing and enjoy performing such tasks. However, this
initial work focused on a simulation environment and hence, it is
important to discuss the gap between this work and this approach
on a real robot.

In addition to the two tasks presented in this work, we envision
scenarios like a mobile robot in a nursing home assisting human
workers to check whether all residents have left their rooms right
before meal time or a mobile robot that guides people to their gate
at the airport and should consider taking a longer, but more
suitable route (e.g., without stairs) in special cases, e.g., when
guiding elderly or visually impaired people. In our use case, the
crowd is leveraged to provide additional rules to the robot
behavior as implemented initially by experts. These rules will

help the robot handle new situations that require adaptations of
existing actions and behaviors, such as those that require a change
in the sequence in which actions are performed.

This work is only the first step towards gathering collective
intelligence for robots using crowdsourcing. We envision a
pipeline that integrates a crowdsourcing platform with an
autonomous robot deployed in the real world. Similar to Leite
et al. (2016), the robot will continuously collect additional rules
from crowd workers using semi-situated learning, a robot-human
pipeline in which the robot autonomously decides when to
request help from the crowd. Ideally, when the robot fails to
accomplish a task, it can query workers for help to gradually learn
adequate (social) behaviors and become increasingly
autonomous. This method will not prevent the robot from
failure, it instead focuses on failure cases that have not been
anticipated at development. Such failures will inevitably happen
at one point during development in the real world. At such
moments, we need a human teacher to help the robot recover
from its failure. Hiring an expert for each of these failures is
expensive, hence, non-expert input provides an interesting and
viable alternative for “common sense” failure cases in which non-
experts can provide the additional rules the robot needs.
Particularly, if the teacher can help the robot remotely, this
would greatly improve teacher availability. Crowd workers
would get partial information about the environment and the
robot’s problem and create programs that allow the robot to
achieve its goal. This requires us to consider some additional
challenges. In this initial work, we assumed aspects such as
sensing and world modeling as given, however, these need to
be integrated and tests need to be done with crowd workers to
investigate what information they need to provide meaningful
and effective input to the robotic system.

Moreover, as robots will encounter new events for which they
do not have detection yet, it is interesting to further explore to
what extent workers can provide relevant information for
detection and handling of those new events. We also must
determine which parts of the pipeline are suitable for non-
expert crowd workers to perform and which require more
programming expertise. For example, program correction,
debugging, and reward shaping to facilitate robot learning and
sequential decision making are clear avenues for future work.
More concretely, we are interested in using this non-expert robot
programming pipeline in the following way: oftentimes, the rules
non-experts can provide to the robot can be formulated in natural
language (e.g., If X, then do Y, or Never do X), and can quickly be
provided by crowd workers remotely. Such rules can be either
automatically translated into constraints on the robot behavior,
or we can let experienced non-experts (semi-experts) translate
these rules into robot programs. Alternatively, program
correction, for example, correcting synthesized programs by
injecting additional rules into them, is an interesting
alternative to explore. For both tasks, task duration, and load
seemed to increase and usability seemed to decrease with the
number of programming statements. Real-world tasks will likely
involve a large number of programming statements and we must
further study how to best distribute the work to crowd workers
according to these factors.
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In this study, participants could test their programs an
unlimited number of times. Unlimited testing may not be
desirable—or feasible in terms of time and cost—with a real
robot. Alternative ways to provide adequate feedback to workers
on program success need to be explored.

5.5 Quality of Crowd Input
We had to exclude 65 participants, of which a portion provided
non-serious attempts at the task. Using crowd workers to monitor
robots and create simple robot programs shifts the responsibility
from a small group of experts to a large pool of non-experts,
making data quality checks of utmost importance. For this, we
need to explore ways to define robot task success for situations
that the robot has not encountered before. When is crowd input
“good?” When is the situation handled “successfully?” Can we
define a measure of evaluation which allows the robotic system to
autonomously evaluate its performance? How can we avoid
deadlocks and too restricting constraints? It would be
interesting to study to what extent non-experts can perform
quality assurance. For example, an autonomous robot
deployed in the real world may gather and store information
throughout the day about the situations in which it fails and
request input from workers during off-time [similar to Leite et al.
(2016)], allowing for quality checks between obtaining and
executing a new behavior. Then, if we can assure the quality
of the constraints/rules from non-experts, and if these rules are
provided the form as described in this work, we can define them
in terms of logic (e.g., temporal logic), this would mean that we
can formally verify the robot’s behavior and it does not contain
deadlocks, and adheres to the set of constraints. Prior work has
investigated whether people could create human-robot
interactions when given a set of constraints (Porfirio et al.,
2018), and our approach would complement this by letting
people define additional constraints that were impossible to
anticipate at design time. Equally important is to design such
a pipeline in a responsible way, which means that the pipeline
design “seeks the most benefit to society and the least harm to the
environment” (p.9 Winfield et al., 2020). If, while under
deployment, a robot shares information about its environment,
the task, and the interactions it has, then the people who work
alongside or with this robot need to be made aware of and consent
to that.

6 CONCLUSION

A timely and persistent challenge in deploying robots in the real
world is their versatility. To date, robot programming remains
primarily a task done by engineers and expert programmers,
which can be costly and inconvenient. We posit that robot
programming includes a set of common knowledge tasks and
propose to scale robot programming to the crowd. We presented
initial findings on collecting simple robot programs as created by
non-experts using crowdsourcing.

Our findings provide initial support for this approach,
demonstrating that non-experts can successfully create simple
programs after 1-min instructions. Overall, workers mentioned

enjoying the task—even for tasks with an increased number of
programming statements—and grasped programming
statements (e.g., conditional, loop) that were explained or were
of a similar nature as the statements explained in a one- or 1.5-
min instruction video, and their task success seemed to increase
with minimal additional instructions.

Clear avenues for future work include a study of roles for
crowd workers (e.g., debugging, program correction), defining
“success”measures to allow for autonomous queries to the crowd,
and a longitudinal investigation in which crowd workers
repeatedly provide input to the robot that it autonomously
adds to its behavior repertoire over time. All in all, this initial
exploration provides important insights into if/how we can use
non-experts to help develop more versatile and robust robots that
can operate over longer periods of time.
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