
MaskUKF: An Instance Segmentation
Aided Unscented Kalman Filter for 6D
Object Pose and Velocity Tracking
Nicola A. Piga1,2*, Fabrizio Bottarel 1,2, Claudio Fantacci 3†, Giulia Vezzani 3†, Ugo Pattacini 4

and Lorenzo Natale1

1Humanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, Italy, 2Dipartimento di Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy, 3Humanoid Sensing and Perception, Istituto Italiano di
Tecnologia, Genova, Italy, 4iCub Tech, Istituto Italiano di Tecnologia, Genova, Italy

Tracking the 6D pose and velocity of objects represents a fundamental requirement for
modern robotics manipulation tasks. This paper proposes a 6D object pose tracking
algorithm, called MaskUKF, that combines deep object segmentation networks and depth
information with a serial Unscented Kalman Filter to track the pose and the velocity of an
object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art
performance on the YCB-Video pose estimation benchmark without the need for
expensive ground truth pose annotations at training time. Closed loop control
experiments on the iCub humanoid platform in simulation show that joint pose and
velocity tracking helps achieving higher precision and reliability than with one-shot
deep pose estimation networks. A video of the experiments is available as
Supplementary Material.

Keywords: 6D object pose tracking, object velocity tracking, unscented Kalman filtering, deep learning-aided
filtering, closed loop manipulation, humanoid robotics

1 INTRODUCTION

Object perception is one of the key challenges of modern robotics, representing a technology enabler
to perform manipulation and navigation tasks reliably. Specifically, the estimation and tracking of
the 6D pose of objects from camera images is useful to plan grasping actions and obstacle avoidance
strategies directly in the 3D world. Object manipulation is another important application, where the
evolution of the object state over time is fundamental for closing the control loop.

The problem of 6D object pose estimation and tracking has been extensively addressed both in the
computer vision (Drost et al., 2010; Tjaden et al., 2017; Mitash et al., 2018) and robotics community,
the latter focusing on solutions based on the use of Kalman and particle filtering techniques
(Wüthrich et al., 2013; Issac et al., 2016; Vezzani et al., 2017; Deng et al., 2019). Recently, deep
learning techniques have also been employed to solve the 6D object pose estimation problem (Li
et al., 2018; Xiang et al., 2018; Wang C. et al., 2019). These methods, although being fairly complex
and requiring a considerable amount of 3D labelled data, have shown impressive results in
approaching the problem end-to-end. However, it is not clear whether their performance always
generalizes to conditions not represented in the training set. Additionally, although successfully
employed in one-shot grasping tasks (Wang C. et al., 2019), the possibility of closing the loop for
tasks that require a continuous estimation of the object pose has not yet been thoroughly assessed.

In this paper we propose to take a step back from end-to-end deep pose estimation networks while
still leveraging neural networks. We called our approach MaskUKF, as it uses 2D binary masks and

Edited by:
Dong W. Kim,

Inha Technical College, South Korea

Reviewed by:
Jose Luis Sanchez-Lopez,
University of Luxembourg,

Luxembourg
Woojin Ahn,

Korea University, South Korea

*Correspondence:
Nicola A. Piga

nicola.piga@iit.it

†Present Address:
DeepMind,

London, United Kingdom

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 13 August 2020
Accepted: 02 February 2021
Published: 22 March 2021

Citation:
Piga NA, Bottarel F, Fantacci C,

Vezzani G, Pattacini U and Natale L
(2021) MaskUKF: An Instance

Segmentation Aided Unscented
Kalman Filter for 6D Object Pose and

Velocity Tracking.
Front. Robot. AI 8:594583.

doi: 10.3389/frobt.2021.594583

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945831

ORIGINAL RESEARCH
published: 22 March 2021

doi: 10.3389/frobt.2021.594583

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.594583&domain=pdf&date_stamp=2021-03-22
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full
http://creativecommons.org/licenses/by/4.0/
mailto:nicola.piga@iit.it
https://doi.org/10.3389/frobt.2021.594583
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.594583

an Unscented Kalman Filter (UKF) (Wan and Merwe, 2000) to
track the pose and the velocity of the object given a 3D mesh
model and depth observations in the form of point clouds.

Our contributions are the following:

• We combine consolidated techniques for object
segmentation using deep neural networks with non-linear
state estimation from the Kalman filtering literature.

• We show how to use depth information in the form of point
clouds directly in an Unscented Kalman filtering setting and
how to leverage recent advances in Serial Unscented filtering
to reach real-time performance.

• We propose a heuristic 1-parameter procedure to identify
and reject outliers from point clouds and increase tracking
performance.

• We demonstrate the importance of joint pose and velocity
tracking in a robotic setting with closed loop control
experiments on a humanoid platform in simulation.

One of the main advantages of our approach consists of
employing segmentation networks that are much simpler to
train than end-to-end pose estimation architectures.
Differently from other works, our approach does not require
6D labels of poses nor a specific training for each object of
interest. Indeed, a suitable initial condition for the 6D pose of the
object and a deep neural network (DNN) for segmentation,
trained once for all the objects of interest, are enough to
perform tracking. Finally, our approach allows estimating not
only the pose of the object but also its velocity (linear and angular)
that is paramount for closed loop control and in-hand
manipulation (Viña et al., 2015).

We compare our technique against state-of-the-art pose
estimation networks, object pose tracking algorithms, and a
baseline consisting in a simpler architecture which uses an
Iterative Closest Point (ICP) (Besl and McKay, 1992)
registration algorithm from (Rusu and Cousins, 2011) and the
masks from the segmentation network. Results demonstrate that
we achieve and in most cases surpass the state-of-the-art and the
baseline performance in terms of pose precision and frame rate.
We further evaluate our algorithm in a closed loop scenario to
demonstrate the advantages of our approach for robotic
applications.

The rest of the paper is organized as follows. After a review of
the state of the art on both 6D object pose estimation and
tracking, we present our MaskUKF algorithm for 6D object
pose tracking and the results of the experiments. Finally, we
conclude the paper providing additional remarks and future
perspectives.

2 RELATED WORK

MaskUKF draws from state-of-the-art pose estimation
techniques based on deep learning, as well as on classical
techniques for tracking.

Recent works addressing the problem of 6D object pose
tracking using classical tools (e.g., Kalman and particle

filtering) focused on handling occlusion and outliers.
Wüthrich et al. (2013) use depth measurements within an
articulated particle filtering framework in order to explicitly
model the occlusion of the object as a part of the state to be
estimated. This information is then used to reject range
measurements that do not belong to the surface of the object.
Issac et al. (2016) propose a Robust Gaussian Filter for depth-
based object-tracking that uses a heavy-tailed Gaussian noise
model to counteract occlusions and outliers.

End-to-end deep architectures for object pose estimation
have also been proposed. PoseCNN (Xiang et al., 2018)
estimates the pose of the object in an end-to-end fashion
from RGB images using a Convolutional Neural Network
and refines it using depth information and a highly
customized ICP. DenseFusion (Wang C. et al., 2019)
incorporates segmentation, RGB and depth information in a
dense pixel-wise fusion network whose output is refined using a
dedicated iterative refinement network.

In contrast to the end-to-end approaches, PoseRBPF (Deng
et al., 2019) combines Rao-Blackwellized particle filtering with a
deep neural network in order to capture the full object orientation
distribution, even in presence of arbitrary symmetries. However,
state-of-the-art performance is achieved only with a large amount
of particles, leading to low frame rates. Moreover, the method
requires a separate training for each object. SegICP (Wong et al.,
2017) follows a different path, incorporating off-the-shelf
segmentation networks, a multi-hypothesis point cloud
registration procedure and a Kalman filter to track the object
pose and velocity.

In our work, we follow a similar path as SegICP (Wong et al.,
2017) and PoseRBPF (Deng et al., 2019), since we combine DNNs
with a filtering algorithm. In particular, we combine
segmentation masks provided either by PoseCNN (Xiang
et al., 2018) or Mask R-CNN (He et al., 2017) with an
Unscented Kalman Filter. Differently from SegICP, we do not
require an intermediate registration step between the
segmentation module and the tracking stage. Instead, we
directly design our filtering algorithm around the observed
point cloud. In addition we also provide qualitative results on
velocity tracking performance and we show the advantage of
using it into a robotic application.

Our work is also similar to (Issac et al., 2016) in that we use a
single Gaussian filter with depth information only for the actual
tracking of the object and we explicitly take outliers into account.
However, our outlier rejection procedure requires far less
modifications of the standard Gaussian filter than (Issac et al.,
2016) in order to be employed.

The works we have mentioned in this section support their
findings by means of commonly adopted pose estimation metrics
(Hodan et al., 2018) evaluated on standard or custom-made
datasets. Our work is not different in this sense. Nevertheless,
our aim is also to show that having acceptable performance
according to such metrics does not necessarily hold when the
output of the pose estimation/tracking is used for closed loop
control in a robotic setting. To this end, we provide the results of
experiments showing that joint pose and velocity tracking helps
achieving higher precision and reliability in the execution of the

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945832

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

task than with one-shot deep pose estimation networks or
standard techniques like ICP.

3 METHODOLOGY

Given a sequence of input RGB-D images {It}1≤ t ≤NI
, the task of 6D

object pose tracking is to estimate the position rt and the
orientation ot of the object O with respect to the camera frame,
for every frame in the sequence. In our approach, we also estimate
the relative velocity between the camera and object frames. The
complete description of the object pose is then given by the state
vector

xt � (rt , vt , ot , _ot) ∈ R12, (1)

where rt ∈ R3 is the Cartesian position, vt ∈ R3 is the Cartesian
velocity, ot ∈ R3 is the Euler ZYX representation of the
orientation and _ot ∈ R3 is the vector of the angular rates. Our
approach relies on the assumption that an instance segmentation
algorithm is available in order to identify the object of interest
within the image It and provide a segmentation mask Mt . The
mask is used to extract a partial point cloud belonging to the
visible part of the surface of the object from the depth map of the
image It . The point cloud is then used as a measurement

yt � (yt,1, . . . , yt,L) ∈ R3L, (2)

in order to track the state of the object, with yt,j ∈ R3 the j-th point
and L the total number of points. Our approach makes the
assumption that a 3D mesh model of the object O is available.

In order to track the state of the object over time, we decided to
adopt an Unscented Kalman Filter (UKF) for the following
reasons:

• the ability to handle non-linear relationships between state
and measurements;

• the availability of a serial variant of the algorithm that
efficiently processes high-dimensional measurements as
in the case of point clouds;

• the possibility of integrating a motion model for the object
in a principled manner;

• the recognized superiority (Wan and Merwe, 2000; Julier
and Uhlmann, 2004) over alternatives based on
linearization, e.g., the Extended Kalman Filter, in terms
of unbiasedness and consistency.

In the remainder of this section, we describe MaskUKF in
details.

3.1 Segmentation
The first step in the proposed pipeline requires to segment the
object of interest within the input image It in the form of a binary
segmentation mask Mt . As the focus of our work is to develop a
6D object pose tracking algorithm, we rely on two existing
segmentation architectures.

One is the semantic segmentation network taken from
PoseCNN (Xiang et al., 2018), a recently proposed 6D pose

estimation network. We used PoseCNN because it is also
adopted in PoseRBPF (Deng et al., 2019) and DenseFusion
(Wang C. et al., 2019), two algorithms we compare to in the
experimental section of our work. In order to have a fair
comparison, we adopted the same segmentation network.

The second architecture is Mask R-CNN (He et al., 2017), a
consolidated region-based approach for object detection and
segmentation. Differently from the segmentation network from
PoseCNN, Mask R-CNN has not been proposed in the pose
estimation and tracking communities and represents an off-the-
shelf and commonly adopted solution for object segmentation.
For this reason, we decided to test our method also with this
segmentation framework.

3.2 Serial Unscented Kalman Filter
Wemodel the belief about the state of the object x as the posterior
distribution p(x|y1:t), given all the measurements y1:t up to the
instant of time t. We adopt a Gaussian filtering framework and
approximate p(x|y1:t) using a Gaussian distribution

p̂(x|y1:t) � N (x; μt , Pt), (3)

under the hypothesis that the state x evolves according to a
Markovian dynamic model, i.e.,

p(xt |x1: t−1, y1:t−1) � p(xt |xt−1), (4)

and the measurements yt are conditionally independent given
xt , i.e.,

p(yt ∣∣∣∣x1: t , y1: t−1) � p(yt ∣∣∣∣xt). (5)

We assume that the distributions in Eqs. 4 and 5 are Gaussian
and have the following form

p(x|xt−1) � N (x; f (xt−1),Qt), (6)

p(y∣∣∣∣xt) � N (y; h(xt),Rt), (7)

where f and h are generic non-linear functions, Qt is referred as
the process noise covariance matrix and Rt as the measurement
noise covariance matrix.

The probabilistic formulation in Eqs. 6 and 7 can be expressed,
in functional form, in terms of the followingmotionmodel for the
state x at time t

xt � f (xt−1) + wt−1,
wt ∼ N (0,Qt), (8)

and measurement model for the measurement y at time t

yt � h(xt) +]t ,
]t ∼ N (0,Rt). (9)

At each instant of time t, the previous belief

N (x; μt−1, Pt−1) (10)

is propagated through the model in Eq. 8 in order to obtain the
predicted mean μ−t and covariance P−

t of the state. Next, a new
measurement yt is incorporated into the belief taking into
account the measurement model in Eq. 9 according to the
following correction step

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945833

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Kt � Pxy,t(Py,t)− 1,
μt � μ−t + Kt(yt − ŷt),
Pt � P−

t − KtP
T
xy,t

(11)

Here, Kt is usually called the Kalman gain, Pxy,t is the state-
measurement covariance matrix, Py,t is the measurement
covariance matrix and ŷt is the predicted mean of the
measurement. The actual estimate x̂t is extracted as the mean
μt of the approximate posterior p̂(x|y1:t).

3.2.1 The Unscented Transform Algorithm
The UKF algorithm, that we adopted, follows the general
Gaussian filtering framework presented above. In the UKF, all
the predicted and corrected mean and covariances are evaluated
using the unscented transform (UT) algorithm (Julier and
Uhlmann, 2004) that propagates the Guassian belief through
the functions f and h even if they are not provided with an
analytical expression (as in our case for the measurement
function h, later described).

More precisely, the UT algorithm, which we recap here in the
case of an additive transform y � g(x) + q, evaluates a Gaussian
approximation of the joint distribution of x and y

(x
y
) ∼ N((μx

μy
),(Px Pxy

PT
xy Py

)), (12)

when x ∼ N (μx, Px) and q ∼ N (0,Q) by means of a fixed
number of so-called sigma points that capture the mean and
covariance of the original distribution of (x, q) exactly. The main
steps of the algorithm are as follows.

Let n be the size of the state x.
1) Form the sigma points for the random variable x:

X (0) � μx,
X (i) � μx +

n + λ

√ [

Px

√]
i
,

X (i+n) � μx −

n + λ

√ [

Px

√]
i
, i � 1, . . . , n,

(13)

where [A]i is i-th column of the matrix A and λ is a suitable
constant.

2) Propagate the sigma points through the function g:

Y(i) � g(X (i)), i � 0, . . . , 2n. (14)

3) Compute the propagated mean μy , the propagated
covariance Py and the cross-covarianace Pxy :

μy � ∑2n
i�0

W(m)
i Y(i),

Py � ∑2n
i�0

W(c)
i (Y(i) − μy)(Y(i) − μy)T + Q,

Pxy � ∑2n
i�0

W(c)
i (X (i) − μx)(Y(i) − μy)T ,

(15)

with W(m)
i and W(c)

i suitable weights.

3.2.2 Serial Correction Step
One challenge in the application of the correction step in Eq. 11
to our scenario is the necessity to invert the matrix Py,t having

dimension 3L × 3L. Here, L, the number of points within the
point cloud, might be quite large (in the order of thousands or
more), thus making difficult to perform the inversion of the
matrix in real-time. An efficient solution to this problem, under
the hypothesis that the noise covariance matrix Rt in Eq. 9 is
block diagonal, is given by the serial UKF correction step
proposed in (McManus and Barfoot, 2011).

The serial processing approach reformulates the correction
step in Eq. 11 in an algebrically equivalent way using the
Sherman-Morrison-Woodbury identity (Jack and Morrison,
1950). The algebraic reformulation is designed around the
following two matrices:

X t � [/

W(c)

i

√ (X (i),−
t − μ−t)/] i � 0, . . . , 2n, (16)

Yt � [/

W(c)

i

√ (Y(i)
t − ŷt)/] i � 0, . . . , 2n

� ⎡⎢⎢⎢⎢⎢⎣Yt,1

/
Yt,L

⎤⎥⎥⎥⎥⎥⎦. (17)

ThematrixX t contains the weighted vector differences between the
predicted sigma points X(i),−

t of the state, obtained after
propagation through the model in Eq. 8, and the predicted
mean of the state μ−t . Similarly, the matrix Yt contains the
weighted vector differences between the predicted sigma points
Y(i)

t of the measurement, obtained after propagation through the
model in Eq. 9, and the predictedmean of themeasurement ŷt . This
matrix can be also re-written in terms of the block matrices
Yt,j ∈ R3×(2n+1) where the j-th block contains three rows
associated with the j-th point in the point cloud yt .

Given the definition of X t and Yt , it can be easily shown that
the predicted covariance of the state P−

t , the state-measurement
covariance matrix Pxy,t and the measurement covariance matrix
Py,t in Eq. 11 can be expressed as

P−
t � X tXT

t ,
Pxy,t � X tYT

t ,
Py,t � YtYT

t + Rt ,
Rt � diag(Rt,1,/,Rt,L)

(18)

where Rt,j ∈ R3×3 is the measurement covariance matrix associated
to the j-th point in the point cloud yt . Substituting Eq. 18 in Eq. 11
results in the following re-formulation of the correction step:

μt � μ−t + X tYT
t (YtYT

t + Rt)− 1(yt − ŷt),
Pt � X tXT

t − X tYT
t (YtYT

t + Rt)− 1YtXT
t

� X t(I2n+1 − YT
t (YtYT

t + Rt)− 1Yt)XT
t .

(19)

Using the Sherman-Morrison-Woodbury identity (Jack and
Morrison, 1950) and the fact that Rt is block diaognal, the
covariance update equation in Eq. 19 becomes as follows:

Pt � X t
⎛⎝I2n+1 +∑L

j�1
YT

t,jR
− 1
t,j Yt,j

⎞⎠− 1

XT
t

� X tC
−1
t XT

t

(20)

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945834

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

where Ct ∈ R(2n+1)×(2n+1).
Following a similar reasoning, the state update equation in Eq.

19 becomes

μt � μ−t + X tC
−1
t
⎛⎝∑L

j�1
YT

t,jR
−1
t,j (yt,j − ŷt,j)⎞⎠ (21)

where yt,j ∈ R3 is the j-th point extracted from the point cloud yt
and ŷt,j ∈ R3 is the associated predicted mean extracted from the
predicted measurement vector ŷt .

In summary, updating the state and the covariance of the state
requires inverting the matrix Ct having size (2n + 1) × (2n + 1)
instead of the 3L × 3L matrix Py,t . Since the size n is typically
much smaller than L (we recall in our case n � 12), the serial
approach requires to invert a relatively small matrix compared to
the standard approach and allows achieving real-time
computations.

3.3 Measurement Model
The specification of the measurement model accounts for the
definition of the function h in Eq. 9. The role of h is to establish
the relationship between the state xt and the measurements that
we expect to observe when the object Oxt is in configuration xt.

In this paper we adopt a likelihood-field like (Thrun et al.,
2008) model and we decide to consider the point cloud yt as an
ensemble of independent points

yt � (yt,1, . . . , yt,L) ∈ R3L, (22)

each distributed according to a normal distribution

yt,j ∼ N (πt,j, σ
2
j I3). (23)

Given an object Oxt , the mean πt,j is defined here as the point on
the surface of the object zOxt having minimum distance from the
real measured point yt,j. More formally,

πt,j(xt) � arg min
p ∈ zOxt

�����yt,j − p
�����. (24)

It can be easily shown that the model described in Eqs. 22–24 can
be cast into the following measurement equation

yt � h(xt) +],
] ∼ N (0,R), (25)

where

h(xt) � (πt,1(xt), . . . , πt,L(xt)),
R � diag(σ2

1I3, . . . , σ
2
LI3). (26)

In summary, given the object in configuration xt , the point
cloud that we expect to observe is obtained by projecting the
actual point cloud yt on the surface of the object. The
resulting measurement Eq. 26 is non-linear with additive
noise and the noise covariance matrix R has a diagonal block
structure as required by the hypothesis of the serial UKF
correction step.

The proposed measurement model also resembles the Nearest
Neighbour procedure adopted in classical variants of the ICP
registration algorithm. In addition to it, our measurement model

provides a principled way to specify the uncertainty associated to
the point cloud using the variances σ2j .

3.3.1 Implementation of the Measurement Model
In order to implement the measurement equation Eq. 26, we
should ideally solve the L × (2n + 1) optimization problems
corresponding to evaluation of L projections in Eq. 24 for
each of the 2n + 1 sigma points as per Eq. 14. In order to
reduce the computational cost of these evaluations, we
approximate the projections πt,j using a Nearest Neighbor
approach.

In the following we assume that the 3D mesh of the object is
available. First, we sample the mesh using the Poisson Disk
Sampling algorithm proposed in White et al. (2007). This
produces a cloud PC of uniformly distributed points about the
surface of the object that we represent using a 3D k-d tree T.
Then, in order to evaluate an approximation of the projections
πt,j(X(i)

t) for a given sigma pointX (i)
t , it is sufficient to express the

measurement yt,j in the reference frame of the object in
configuration X (i)

t and to perform an efficient Nearest
Neighbour search on the k-d tree T for each transformed
point yt,j(X(i)

t) resulting in the propagated sigma point
Y(i)

t (X(i)
t). The propagated sigma points, expressed in the

reference frame of the object, are finally converted back in the
reference frame of the camera obtaining the sigma points Y(i)

t .
We stress the fact that our choice to project the measurements

onto the surface of the object in a given configuration represents a
possible, although not unique, solution to the data association
problem between the measurements yt and the points PC
sampled on the mesh of the object. This solution guarantees
that the length of each propagated sigma point Y(i)

t is the same as
the vector of the measurement yt , i.e., 3L, and allows evaluating
the mean μy and the associated quantities in Eq. 15. Different
solutions, e.g., projecting the points on the sampled cloud PC that
are visible from the camera viewpoint onto yt , would possibly
produce sigma points of incompatible sizes thereby making
impossible to execute the UT algorithm.

We also remark that the implementation of the projections πt,j

using a Nearest Neighbour search is made possible by the
adoption of the Unscented Kalman filter that, differently from
other alternatives such as the Extended Kalman filter, does not
require the evaluation of the Jacobian of the projections, i.e., of
the Nearest Neighbour search, with respect to the state x which
might be intractable.

3.4 Outlier Rejection
Point clouds from modern RGB-D sensors are characterized by
non Gaussian noise and outliers that violate the hypotheses of the
model in Eq. 25 leading to divergent estimates in Gaussian filters
(Issac et al., 2016). To tackle this, we try to identify outliers by
picking pairs of points on the point cloud yt , pi and pj,
respectively, and their projections, πi and πj, on the surface of
the object in configuration x̂t−1. Under the assumption that the
tracking process has already reached a steady state condition, we
expect that the point cloud at time t fits very closely the surface of
the object in the estimated configuration at time t − 1. As a result,
the distance dij between the two points and the distance dπij

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945835

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

between their projections should be preserved if both pi and pj are
not outliers, i.e., belongs to the surface of the object. Then, by
comparing the absolute difference between dij and dπij to a
threshold ∣∣∣∣∣dij − dπ

ij

∣∣∣∣∣> δ, (27)

we are able to identify possible outliers. In such a case, the point
between pi and pj that has higher distance from its projection is
marked as an outlier.

Since outliers that violate the additive Gaussian noise
hypothesis are usually distributed relatively far from the actual
surface of the object, we propose, as a heuristic, to choose
candidate pairs of points as the combination of one point pi
and its furthest point pfi on the point cloud for each point on the
point cloud yt . Every time an outlier is found, it is removed from
the point cloud and the procedure is repeated until all points have
been visited.

An efficient evaluation of the points pfi is obtained using the
algorithm proposed in Curtin and Gardner (2016).

3.5 Motion Model
The motion model in Eq. 8 accounts for our prior knowledge
about the motion of the object. We use the White Noise
Acceleration model (WNA) (Bar-Shalom et al., 2002) from the
tracking literature. This model assumes that the Cartesian
acceleration €r(t) is driven by a white noise process wr(t) with
assigned power spectral density Qr ∈ R3×3. The same model has
been adopted for the rotational part of the state, with power
spectral density Qo, resulting in

€r(t) � ωr(t),
€o(t) � ωo(t). (28)

In order to obtain a discrete time model as in Eq. 8, we exactly
discretized the WNA model assuming constant Cartesian and
angular Euler rates within each sampling period ΔT. The final
model is as follows

xt � Fxt−1 + w,
w ∼ N (0,Q), (29)

where F is the state transition matrix, that depends on ΔT , and Q
is the process noise covariance matrix depending on Qr , Qo and
ΔT . The complete expressions of the matrices F and Q can be
found in Bar-Shalom et al. (2002).

3.6 6D Object Pose Tracking Framework
The tracking process is initialized by specifying the initial mean
μ0 and covariance P0 representing the initial belief on the state of
the object. Then, the tracking process starts as soon as the first
segmentation maskM0 is available. At each frame It we apply the
binary mask Mt to the depth map and extract the segmented
point cloud yt , refining it as described in Section 3.4 to remove
outliers. The resulting point cloud is used to correct our belief of
the pose and velocity of the object. Our 6D object pose tracking
framework is shown in Figure 1.

In case themask is not available at time t, we use themost recent
available mask instead. Differently from pose estimation networks,
such as (Wang C. et al., 2019), this choice allows our method to run
at full frame rate even when coupled with slower instance
segmentation algorithms. If Mt is empty, due to total occlusion,
or when most of the extracted 3D points are invalid, due to lack of
texture, we stop feeding the measurements yt to the correction step
in Eqs. 20 and 21 because there are none or too few to be
informative enough. Usually, such an absence of measurements
is counteracted by the usage of the Kalman prediction step only.
However, if the object is undergoing a motion characterized by
moderate to high velocities, this approach is discouraged and leads
to unbounded predictions. We instead keep performing the
correction step using a static virtual point cloud ~yt(x̂t−1)
sampled on the surface of the object in a configuration
corresponding to the last estimate available. As a result, the
estimated velocities are driven to zero in case the absence of
information persists for multiple frames allowing the tracking
process to safely recover when the measurements are available
again. We remark that the proposed procedure does not require to
manually force the state of the filter which would impair the
correctness of the state covariance associated with the state.

4 EXPERIMENTS

In this section we present the results of two separate sets of
experiments that we conducted in order to evaluate the
performance of our method.

In the first set of experiments, we evaluate our method against
a standard dataset for pose estimation benchmarking. Following
prior work (Li et al., 2018; Wang C. et al., 2019; Deng et al., 2019),
we adopt the YCB Video dataset (Xiang et al., 2018). The main
goals of the first set of experiments are to:

FIGURE 1 | Illustration of our MaskUKF framework for 6D object pose tracking. For each RGB-D frame, a generic instance segmentation algorithm provides the
segmentation mask of the object of interest. The mask is combined with the depth frame to produce a partial point cloud of the object that is further refined to remove
possible outliers. The resulting measurements are fed into an Unscented Kalman filter to update the belief of the object pose and velocity.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945836

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

• compare the proposed architecture against state-of-the-art
algorithms in tracking, i.e., PoseRBPF (Deng et al., 2019),
and pose estimation, i.e., DenseFusion (Wang C. et al.,
2019), from RGB-D images using standard metrics from
the computer vision and tracking communities;

• assess the advantage of the proposed architecture as
opposed to the Iterative Closest Point (ICP) baseline.

Moreover, these experiments aim to:

• determine the performance of the proposed approach in
multi-rate configuration, when segmentation masks are
available at low frequency, i.e., at 5 fps, as it might
happen in a real scenario;

• assess the ability of our method to estimate the 6D velocity
of the object (linear and angular);

• demonstrate the effectiveness of the outlier rejection
procedure described in Section 3.4.

In the second set of experiments, we compare the performance
of the proposed architecture in a robotic setting against a one-
shot pose estimation network, i.e., DenseFusion (Wang C. et al.,
2019), and against ICP within a dynamic pouring experiment
carried out in the Gazebo (Koenig and Howard, 2004)
environment using the iCub (Metta et al., 2010) humanoid
robot platform. In these experiments, we employ a robotic
control system in order to track a bowl container with the
end-effector of the robot during a pouring action. We close
the loop using either the output of our method or the output
of the methods we compare to. The aim of these experiments is to
understand how different algorithms for object pose estimation
and tracking affect the closed loop tracking performance and the
reliability of the simulated system in a dynamical robotic setting.
Our results include end-effector tracking errors for several
configurations of the control gains as well as the qualitative
evolution of the end-effector trajectories over time.

Overall, the aim of our experiments is twofold. On one hand,
we want to test our method on a standard computer vision dataset
that has been adopted in the pose estimation and tracking
communities. On the other hand, we want to test the
effectiveness of our method in a robotic scenario involving
closed loop vision-based control.

4.1 Comparison with the State of the Art
In order to conduct our experiments, we considered several
algorithms from the state of the art.

PoseRBPF (Deng et al., 2019) is a 6D object pose tracking
algorithm adopting a deep autoencoder for implicit orientation
encoding (Martin et al., 2018) and a particle filter to track the
position and the orientation of the object over time from RGB-D
observations. This algorithm requires a textured 3D mesh model
of the object both at training and test time and requires a 2D
detector in order to be initialized. The authors adopt the
segmentation stage of PoseCNN as source of detections. In
order to have a fair comparison with PoseRBPF, we also
adopted PoseCNN as source of segmentation masks in our
experiments.

Following the authors of PoseRBPF, we also compare our
method with a 6D object pose estimation network from the state
of the art, DenseFusion (Wang C. et al., 2019). This network fuses
segmentation, RGB and depth information at the pixel level in
order to regress the 6D pose of the object. An iterative refinement
network is used to refine the pose. We notice that this method has
similar requirements to our since it needs the object segmentation
in order to isolate 2D and 3D features on the part of the input
image containing the object. Moreover, it requires a 3D mesh
model of the object of interest in order to be trained. DenseFusion
adopts PoseCNN as source of segementation masks as our
method.

As baseline, we also compare against a basic point cloud
registration ICP algorithm (Rusu and Cousins, 2011). In order
to have a fair comparison with our pipeline, we adopted an ICP
algorithm that is assisted by segmentation and that is equipped
with its own outlier rejection procedure. Given that the ICP
algorithm needs to be initialized at each iteration, we adopted the
estimate from the previous frame as the initialization. Similarly to
the other algorithms that we considered, the ICP algorithm
requires a 3D mesh model of the object in order to sample a
target point cloud, on the surface of the object, to be registered
with the point cloud extracted from the depth image.

In summary, our method and all the methods that we
considered use the RGB data in order to segment or detect the
object in the image plane at initialization time or at each frame
and use the depth information as observation to track or estimate
the pose of the object. Moreover, they all require a 3D mesh
model at training time or at execution time.

Even though our approach is somewhat similar to the SegICP
(Wong et al., 2017) algorithm, we do not compare against it as the
authors do not provide their results on the YCB Video Dataset
and the implementation of the algorithm is not publicly available.

4.2 Implementation Details
In order to perform our experiments we used either the semantic
segmentation network from the PoseCNN (Xiang et al., 2018)
framework as trained by the authors on all the 200k+ frames of
the YCB Video dataset or the Mask R-CNN (He et al., 2017) model
that we trained using 50k frames from the same dataset. For the
experiments in the Gazebo environment, we relied on a simulated
segmentation camera.

The initialization of the tracking is not a focus of this paper. For
this reason, we reset both the UKF and the ICP to the ground truth
perturbed with a displacement of 5 cm along each Cartesian axis and
a variation of 10° for each Euler angle. Although we could have
initialized the algorithms using a pose estimation network, to the best
of our knowledge, the magnitude of our displacement is higher than
the error produced by state-of-the-art pose estimation algorithms
(this is actually confirmed by our Table 1, e.g., for DenseFusion for
the <2 cmmetric). Hence, our choice poses a even more challenging
condition than initializing using a pose estimation network. We
stress that the initialization is done as soon as the object is visible in
the scene and the first segmentation mask is available. Differently
from other state-of-the-art tracking algorithms, e.g., PoseRBPF
(Deng et al., 2019), we never re-initialize our algorithm within a
video sequence, e.g., after a heavy occlusion of the object.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945837

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

We remark that all the results presented hereafter are obtained
from a single run of our method since both the UKF and the ICP
are deterministic.

To enforce repeatability in the evaluation of the projections in
Eq. 24, we relied on uniform point clouds sampled on the 3D
mesh of the objects as provided within the YCB Video Dataset.

The code used for the experiments is made publicly available
for free with an Open Source license online.1

4.3 Results on YCB Video Dataset
4.3.1 Description of the YCB Video Dataset
The YCB Video dataset features RGB-D video sequences of 21
objects from the YCB Object and Model Set (Calli et al., 2015)
under different occlusion conditions. The dataset contains 92 RGB-
D video sequences recorded at 30 fps, split in a training set of 80
videos and a testing set of 12 videos from which 2,949 key-frames
are extracted in order to evaluate performancemetrics. Every frame
is annotated with segmentation masks and 6D object poses.

4.3.2 Evaluation Metrics
We use two different metrics. The first metric is the average
closest point distance (ADD-S) (Xiang et al., 2018) which
synthesizes both symmetric and non-symmetric objects into
an overall evaluation. This metric considers the mean distance
between each 3D model point transformed by the estimated pose
and its closest neighbour on the target model transformed by the

ground truth pose. Following prior work (Wang C. et al., 2019),
we report, for each object, the percentage of ADD-S smaller than
2 cm and the area under the ADD-S curve (AUC) with maximum
threshold set to 10 cm.

We report results using the ADD-S metric, because it allows
comparing with other state-of-the-art algorithms especially when
their implementation is not publicly available. Indeed, the authors of
PoseRBPF (Deng et al., 2019) and DenseFusion (Wang C. et al.,
2019) report the results of their experiments using this metric.
Nevertheless, the ADD-S metric does not report the actual error
in position and orientation in the algorithm output that we deem
very important in order to evaluate an algorithm for robotic
applications. Moreover, the ADD-S metric is evaluated on a
subset of the video frames, called key-frames. For these reasons
and for a better evaluation, we also report, as additional metric, the
Root Mean Square Error (RMSE) over the entire trajectory of the
Cartesian error er,t and the angular error eo,t , which is the standard
metric used in tracking literature (Bar-Shalom et al., 2002). We
evaluate the angular error as the geodesic (Huynh, 2009) between the
actual and the estimated orientation in [0, π). In order to have a fair
comparison, we omitted part of the angular error due to symmetries
for texture-less objects and for objects that have a pure cylindrical
shape. In fact, algorithms that only use the depth information, as
ours and ICP, cannot infer the rotation along the main axis of
rotation of such objects.

4.3.3 ADD-S Metric
Table 1 shows the evaluation for all the 21 objects in the YCB
Video dataset. We report the ADD-S AUC (<10 cm) and the

TABLE 1 |Quantitative evaluation of 6D pose on YCB-Video Dataset key-frames (ADD-S). We do not report ADD-S < 2 cm for PoseRBPF as this information is not available
in the original paper. In this experiment, segmentation masks are available at each frame It. A bold entry indicates a strictly better result (i.e. if different algorithms have the
same best result, the associated entries are not bolded).

Pose
RBPF

DenseFusion
(iterative)

ICP MaskUKF ICP MaskUKF

Segm. - PoseCNN Mask R-CNN

Objects AUC AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002 95.1 96.4 100.0 95.0 100.0 96.1 99.6 93.9 97.6 96.1 99.6
003 93.0 95.5 99.5 97.0 100.0 96.7 99.7 96.3 100.0 89.2 82.3
004 95.5 97.5 100.0 97.6 100.0 98.1 99.6 97.0 99.3 98.1 99.6
005 93.8 94.6 96.9 94.3 97.4 96.7 96.9 95.8 96.8 94.1 91.3
006 96.3 97.2 100.0 97.8 100.0 98.2 99.4 98.0 100.0 98.2 99.4
007 95.3 96.6 100.0 96.9 99.8 94.1 94.6 97.2 100.0 96.2 99.7
008 92.0 96.5 100.0 91.0 100.0 93.8 98.1 91.0 95.8 75.7 43.5
009 97.5 98.1 100.0 97.7 100.0 98.3 99.5 98.5 100.0 98.7 99.5
010 77.9 91.3 93.1 87.5 84.6 93.2 96.3 84.1 83.0 94.0 93.9
011 86.9 96.6 100.0 97.2 100.0 97.6 99.7 96.6 97.6 97.7 99.7
019 94.2 97.1 100.0 97.7 100.0 96.5 99.3 97.6 100.0 96.4 99.3
021 93.0 95.8 100.0 94.9 99.2 97.0 99.6 96.1 100.0 97.0 99.6
024 94.2 88.2 98.8 97.3 100.0 97.6 99.5 94.2 89.9 97.5 99.5
025 97.1 97.1 100.0 94.5 100.0 97.1 99.7 94.5 100.0 97.4 99.7
035 96.1 96.0 98.7 97.5 100.0 96.5 98.9 97.4 99.8 89.8 78.8
036 89.1 89.7 94.6 92.4 99.6 95.0 99.6 91.7 97.9 94.7 99.6
037 85.6 95.2 100.0 84.8 64.1 96.5 99.4 86.0 64.1 95.7 100.0
040 97.1 97.5 100.0 91.5 94.4 96.8 100.0 91.1 94.4 95.6 98.8
051 94.8 72.9 79.2 53.9 54.8 70.0 71.9 43.1 43.7 47.1 42.1
052 90.1 69.8 76.3 76.1 62.5 80.3 71.8 80.8 60.1 35.7 14.4
061 95.7 92.5 100.0 84.1 40.3 97.7 99.7 93.6 100.0 97.1 99.7
ALL 93.3 93.1 96.8 91.9 92.7 94.2 95.9 91.5 92.5 89.5 87.8

1https://github.com/robotology/mask-ukf

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945838

Piga et al. MaskUKF

https://github.com/robotology/mask-ukf
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

ADD-S < 2 cm metrics evaluated on the 2,949 key-frames
provided. In order to evaluate on the exact key-frames, we run
our experiments under the hypothesis that the segmentation
results are available for each frame It .

When considering segmentation from PoseCNN, the
percentage of frames with error less than 2 cm is lower for our
method than DenseFusion. However, our method outperforms
both the DenseFusion framework and ICP in terms of the area
under the ADD-S curve with maximum threshold set to 10 cm.
This demonstrates that, in the interval [0 cm, 2 cm), errors for
MaskUKF have a distribution that is more concentrated
towards zero.

We remark that even if the increase in performance is
moderate, our architecture is much simpler than some pose
estimation networks, such as DenseFusion, especially in terms
of training requirement (we recall that MaskUKF can track object
poses given a suitable initial condition and a trained segmentation
network). Our method also outperforms the tracking algorithm
PoseRBPF under the same metric.

We detected a performance drop when comparing results
obtained with different segmentation networks, namely
PoseCNN and Mask R-CNN. We verified that this is due to
missing detections or completely wrong segmentation from
Mask R-CNN. See, e.g., objects 003, 008, 035. Another
example is that of the two “clamps” (051 and 052) that have
the very same shape but a different scale, hence difficult to
segment using a conventional instance segmentation network.
For these two objects PoseRBPF outperforms all the other
algorithms. More in general, the results suggest that the

performance might vary with the specific segmentation
algorithm that is adopted. In this work, differently from
PoseRBPF and DenseFusion that rely on PoseCNN for the
detection and segmentation, respectively, we have also
considered a general purpose instance segmentation
algorithm, such as Mask R-CNN, that has not been trained
in the context of 6D pose estimation.

4.3.4 RMSE Metric
In Table 2, we report the RMSE metrics evaluated on all the
frames. In order to compare with DenseFusion, we run their
pipeline on all the frames of each video sequence. We cannot
compare with PoseRBPF since their implementation is not
publicly available.

When equipped with the PoseCNN segmentation network,
our method outclasses both the DenseFusion framework and ICP.
While the increase in performance is minimal for the Cartesian
error, the difference is considerable for the angular error that, in
average, is almost halved with respect to the competitors.

Using segmentation from Mask R-CNN, our method still
outperforms ICP in terms of the angular error while the
Cartesian error is comparable. As already noticed, also the
RMSE metric reveals, on average, a drop in performance when
using this segmentation with respect to PoseCNN due to missing
detections or completely wrong segmentation.

If we consider both segmentations, we can see that, for
some specific objects, the reduction in angular error is indeed
substantial. As an example, when using Mask R-CNN, the
angular error for object 005 is 6.32° for MaskUKF while, for

TABLE 2 | Quantitative evaluation of 6D pose on all frames of YCB-Video Dataset (RMSE). Objects in bold are considered symmetric. In this experiment, segmentation
masks are available at each frame It. A bold entry indicates a strictly better result (i.e. if different algorithms have the same best result, the associated entries are not bolded).

Dense Fusion
(iterative)

ICP MaskUKF ICP MaskUKF

Segm. PoseCNN Mask R-CNN

Objects er (cm) eo (°) er (cm) eo (°) er (cm) eo (°) er (cm) eo (°) er (cm) eo (°)

002 0.464 2.35 0.742 2.05 0.592 1.63 1.11 14.8 0.599 1.55
003 0.918 4.86 0.41 2.31 0.661 2.96 0.712 3.12 3.59 59.7
004 0.334 2.93 0.406 2.02 0.398 1.84 0.676 76.1 0.506 2.02
005 0.47 9.04 1.56 63.7 1.15 13 1.53 45.6 3.24 6.32
006 0.449 27.8 0.356 5.28 0.46 3.3 0.249 3.63 0.34 3.15
007 0.447 37.2 0.603 61.6 1.26 29.5 0.475 61.3 0.772 77.1
008 0.651 7.61 1.4 89.6 1.49 18.3 1.87 20.1 8.92 142
009 0.3 3.88 0.559 4.56 0.458 2.39 0.291 2.01 0.411 1.82
010 7.43 53.9 4.12 131 1.63 68.5 4.93 114 2.21 5.62
011 0.678 46.1 0.652 10.6 0.937 5.52 1.54 19.4 0.868 5.29
019 0.297 7.56 0.225 2.13 0.866 3.97 0.237 2.3 0.885 4.04
021 1.05 14.2 1.36 87 0.556 7.5 0.803 24.4 0.535 6.98
024 0.705 85.9 0.45 4.2 0.513 2.74 1.35 25 0.492 3.14
025 0.659 50.3 0.492 122 0.567 6.01 0.497 120 0.468 17.4
035 0.559 22.1 0.543 3.35 1.1 6.1 0.506 3.75 3.21 21.1
036 1.64 7.69 1.8 9.49 1.41 1.63 3.01 21.3 1.55 1.74
037 1.63 82.3 2.81 31 0.634 5.08 3.19 32.4 1.3 5.83
040 0.464 4.35 2.75 10.8 0.962 5.51 2.78 120 1.77 6.69
051 12.1 98.1 15.3 75.8 13.2 85.2 17.9 74.8 16.7 72.8
052 4.75 114 5.82 52.3 5.45 22.8 4.28 24.3 13.5 67.8
061 0.895 91.6 4.26 139 0.485 3.53 2.29 176 0.68 10.5
ALL 3.23 44.8 3.69 60.8 3.07 26 4.13 62.3 4.9 38.5

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 5945839

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

ICP, is 45.6°. With the same segmentation, the error for object
010 is 5.62° while, for ICP, is 114°. Moving to the PoseCNN
segmentation, for the object 061 MaskUKF achieves 3.53°

while, for DenseFusion, the error is 91.6° and, for ICP, it is
even higher, 139°. Similar examples are those of objects 021,
024 and 037. As can be seen from Table 3, where we reported
the maximum percentage of occlusion for each object among
all YCB Video frames, these objects are among those involved
in moderate to severe occlusions.

In order to provide an insight on the motivations behind
the performance improvement, we provide in Figure 2 an
excerpt of the trajectories of the estimated pose for the object
021 in the sequence 0055 according to several algorithms. In
that sequence, the object is visible from its shortest and
texture-less side (Figure 3) hence producing partial and
ambiguous measurements. As can be seen both from the
plot and in Figure 3, the estimate from ICP, that uses only
depth information, pivots around the measurements
resulting in a totally wrong estimate of the orientation.
The output orientation from DenseFusion is often wrong
despite the availability of RGB information because the
visible part of the object is almost texture-less, hence
ambiguous. Our algorithm, instead, provides a sound
estimate of the pose over time. This can be explained in
terms of the motion model in Eq. 28 that helps regularize the
estimate when only partial 3D measurements are available
using the information encoded in the estimate of the previous
step and in the estimated velocities. In the specific case of the
sequence 0055, the camera is rotating very slowly around the
object of interest, hence the estimated velocities helps
enforcing the correct estimate and reducing pivoting
phenomena as seen in the outcome of the ICP algorithm.
A similar reasoning justifies the performance of our method
in presence of occlusions.

4.3.5 Qualitative Evaluation
Figure 3 illustrates some samples 6D estimates on the YCB Video
Dataset. As can be seen, both ICP and DenseFusion fail to
estimate the correct pose of the cans in the leftmost columns
due to challenging occlusion. In the central column, the bleach
cleanser is visible from its shortest and texture-less side resulting
in wrong estimates of the orientation when using DenseFusion

TABLE 3 |Maximum occlusion percentage among YCB Video Dataset frames for
each object.

Objects %

005_tomato_soup_can 96.9
010_potted_meat_can 69.6
061_foam_brick 68.2
003_cracker_box 61.2
024_bowl 59.7
052_extra_large_clamp 59.0
008_pudding_box 51.4
035_power_drill 47.6
037_scissors 45.4
036_wood_block 44.9
002_master_chef_can 44.6
021_bleach_cleanser 43.0
011_banana 42.5
004_sugar_box 40.95
051_large_clamp 39.3
040_large_marker 22.3
025_mug 15.5
019_pitcher_base 12.8
007_tuna_fish_can 8.0
006_mustard_bottle 3.6
009_gelatin_box 0.8

FIGURE 2 | Comparison of the trajectories of several algorithms for the object 021_bleach_cleanser within a subset of the sequence 0055 from the YCB Video
Dataset. Our method is more precise than ICP and smoother than DenseFusion which exibits spikes and irregularities. In this figure, the orientation of the object is
represented in a compact way using the Euler vector θ � θe obtained as the product of the axis of rotation e and the angle of rotation θ.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458310

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

and ICP. Another challenging case is that of the cracker box, on
the right, that is only partially visible in the RGB frame. While
DenseFusion struggles to estimate the correct orientation, our

algorithm and ICP are able to recover it properly. We do not
report qualitative results for PoseRBPF as their implementation is
not publicly available, hence it is not possible to reproduce the
estimated poses.

Figure 2 shows trajectory samples of the estimated pose for
one of the object from the YCB Video Dataset obtained by
different algorithms. Our algorithm is visibly more precise
than ICP and smoother than DenseFusion, which makes it
more suitable for closing the control loop in robotic applications.

4.3.6 Multi-Rate Experiment
In Table 4, we report the results of the experiment in which we feed
the UKF and the ICP algorithm with masks fromMask R-CNN (He
et al., 2017) at the maximum frame rate declared by the authors,
i.e., 5 fps. As described in Section 3.6, if the mask at time t is not
available, our algorithm uses the most recent one instead. In order to
make the comparison fair, we adopted the same strategy for the ICP
algorithm. We provide the ADD-S (AUC) and RMSE metrics.

In this scenario, our algorithm outperforms the ICP
baseline especially in terms of the orientation of the
objects. A direct comparison with the results in Table 1
reveals a drop in the ADD-S performance (slightly more
accentuated for ICP). This is an expected behavior due to
the re-use of old masks on several consecutive frames. The
same considerations apply for the position and orientation of
most objects except for those, such as 051 and 052, whose
masks provided by Mask R-CNN are wrong or missing in
several frames. Indeed, if the masks are provided less
frequently, there are less chances that the tracking
algorithm uses erroneous 3D information extracted from
wrong masks.

FIGURE 3 | Qualitative results on the YCB Video Dataset. All the results reported here are obtained using the segmentation masks from PoseCNN. The estimated
pose is represented as a coloured point cloud transformed in the estimated pose and projected to the 2D RGB frame.

TABLE 4 | Quantitative evaluation of 6D pose on multi-rate scenario using YCB-
Video Dataset (ADD-S (AUC), RMSE). Objects in bold are considered
symmetric. A bold entry indicates a strictly better result (i.e. if different algorithms
have the same best result, the associated entries are not bolded).

ICP MaskUKF

Segm. Mask R-CNN @ 5 fps

Objects AUC er (cm) eo (°) AUC er (cm) eo (°)

002 93.4 1.29 28.1 96.0 0.603 1.61
003 88.0 3.21 100 79.0 5.27 64.2
004 97.0 0.624 76.5 97.7 0.779 2.98
005 93.4 1.87 36.1 95.4 12.3 21.7
006 97.6 0.398 47 98.1 0.353 3.48
007 96.9 0.584 61.1 95.9 0.908 35.3
008 79.6 3.95 158 70.6 13.5 109
009 98.4 0.419 3.09 98.5 0.451 1.98
010 87.9 3.97 85 84.7 3.89 10.1
011 95.7 1.47 44.9 97.5 0.974 5.39
019 97.4 0.282 2.63 96.3 0.893 4.04
021 86.9 3.88 44.9 96.8 0.558 7.56
024 94.4 1.34 24.4 97.5 0.485 3.09
025 94.6 0.496 111 97.0 0.536 35.1
035 97.1 0.733 3.51 92.7 2.2 15.7
036 92.2 2.08 5.19 94.3 1.86 2.01
037 86.2 3.3 29.6 95.8 0.977 5.71
040 90.6 2.89 45.4 95.9 1.69 6.68
051 42.8 17.8 75.6 46.7 16 64.8
052 31.0 16.2 75.4 37.6 13.6 53.3
061 97.0 1.8 178 96.9 0.78 11.7
ALL 87.6 5.36 66.6 88.6 6.39 31.2

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458311

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

4.3.7 Results on Velocity Estimation
We report a qualitative evaluation of the velocity estimates (linear
and angular) in Figure 4, where it is shown that tracking is
performed reliably. Given that the YCB Video Dataset does not
provide a ground truth for the velocities, we extracted it from the
ground truth poses of consecutive frames by means of finite
differences. The angular velocity, indicated as ω, was evaluated
starting from our estimate of the Euler angular rates _o using the
Euler kinematical equation (Stevens et al., 2015).

4.3.8 Effect of Outlier Rejection
Table 5 shows the effectiveness of the outlier rejection procedure
presented in Section 3.4. Our algorithm performs better when the
outliers are taken into account, especially in terms of reduced
angular error.

4.3.9 Frame Rate Comparison
We compare our frame rate against DenseFusion and PoseRBPF
in Table 6. For our algorithm, we evaluated the frame rate as the
inverse of the mean time, averaged on the total number of frames
of the testing sequences, required to perform outlier rejection and
the Kalman prediction and correction steps. We did not consider
the time required to segment the object in our evaluation since, as
described in Section 3.6, our method can run asynchronously

with respect to the frame rate of the segmentation algorithm. For
ICP, the evaluation was done on the mean time required to
perform the registration step between the source and target point
cloud. For DenseFusion and PoseRBPF we considered the frame
rates reported in the associated publications. We notice that the
frame rate reported by the authors of DenseFusion, i.e., 16.7 fps,
includes the time required to segment the object. In order to have
a fair comparison, we omitted the segmentation time resulting in
a frame rate of 30 fps for this algorithm.

We ran our experiments on an Intel i7-9750H multi-core CPU.
Our method is approximately one and a half times faster than
DenseFusion and ten times faster than PoseRBPF. Given its
simplicity, the ICP implementation that we adopted reaches 91.7 fps.

4.4 Results on Closed Loop Control
In this section we compare our method with DenseFusion and the
baseline ICP within a simulated robotic experiment where the
output of each method is fed as a reference signal to a closed loop
control system. For our experiments, we adopt the iCub
humanoid robotic platform (Metta et al., 2010) that we
simulated in the Gazebo (Koenig and Howard, 2004)
environment (Figure 5). We do not test against PoseRBPF
since the implementation of the algorithm is not publicly
available. Our results include the end-effector tracking errors
for several configurations of the control gains in order to compare
the algorithms on the tracking precision and reliability when the
amount of feedback given to the control system is varied. We also

FIGURE 4 | Comparison between estimated linear (v) and angular (ω) velocities for several algorithms within a video sequence from the YCB Video dataset. The
ground truth velocities are obtained from finite differences.

TABLE 5 | Effect of the outlier rejection procedure on the performance of
MaskUKF with PoseCNN segmentation (averaged ADD-S and RMSE). A bold
entry indicates a strictly better result (i.e. if different algorithms have the same best
result, the associated entries are not bolded).

Segmentation PoseCNN

AUC <2 cm er (cm) eo (°)

W/outlier rejection 94.2 95.9 3.07 26
W/o outlier rejection 83.3 68.9 5.05 76.9

TABLE 6 | Frame rate comparison (fps). Our method is approximately 1.5× faster
than DenseFusion and 10× faster than PoseRBPF.

DenseFusion (iterative) PoseRBPF (200 particles) ICP MaskUKF

30.0 5.0 91.7 52.6

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458312

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

show the qualitative evolution of the end-effector trajectories over
time in order to discuss the feasibility of the commanded
trajectories.

4.4.1 Description of the Experiment
In our experiment we consider the task of following a moving
container with the end-effector of a humanoid robot while the
robot is holding a bottle and pouring its content inside the
container. The task is depicted in Figure 6. We assume that
the 6D pose and the velocity of the container are estimated/
tracked using RGB-D information, while we assume that the
position of the bottle is known given the robot kinematics (i.e., we
focus on the task of tracking the container only). We are not
directly interested in the grasping task nor in the pouring action
per se but more on the possibility of exploiting the estimated
signal in a closed loop fashion in order to follow the container as
close as possible while avoiding contacts that might compromise

the pouring action. We adopted the YCB Object and Model Set
(Calli et al., 2015) for the objects of the experiment by choosing
the object 006_mustard_bottle as the bottle and the object
024_bowl as the container (Figure 5).

4.4.2 Implementation of the Experiment
We implemented our experiment in the Gazebo environment using
a simulated model of the iCub robotic platform (Metta et al., 2010).
Even though iCub features 53 DoF, only a subset of these are used in
our experiment, i.e., three DoF in the torso, seven DoF in the arm
and six DoF in the head, where the stereo vision system is mounted.

In our experiment we assume that the vision system of the
robot provides segmentation and RGB-D information that we use
to estimate and/or track the pose of the container. Additionally,
we use the iCub gaze control system (Roncone et al., 2016) to
track the container in the image plane by using the estimated
Cartesian position of the object as a reference gazing point.

FIGURE 5 | The iCub robot in the Gazebo environment.

FIGURE 6 | The iCub robot in the Gazebo environment while it follows a moving container (red bowl) during a pouring task using the estimate of the pose and
velocity of the container as feedback signal.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458313

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

In order to carry out the task described in Section 4.4.1, we
consider the torso (two DoF out of three) and one of the arms as a
nine DoF serial chain whose dynamic behavior is described by the
standard equation

M(q)€q + h(q, _q) � τ, (30)

where q, _q and €q ∈ R9 are the joints angles, velocities and
accelerations, respectively, M(q) ∈ R9×9 is the Mass matrix of
the chain, h(q, _q) ∈ R9 represents the effect of centrifugal,
Coriolis and gravity terms and τ ∈ R9 are the torques applied
to the chain joints axes.

In order to command the end-effector of the robot and follow
the moving container over time, we adopted a two-layer control
architecture. The first layer consists in an Inverse Dynamics
controller

τcmd � Jee(q)TΛ(q)(_Vdes − _Jee(q) _q) + h(q, _q),
Λ(q) � (Jee(q)M(q)− 1Jee(q)T)− 1. (31)

Here, Jee ∈ R6×9 is the Jacobian of the end-effector expressed in
the robot root frame which links the joints velocities _q with the
end-effector linear velocity vee ∈ R3 and angular velocity ωee ∈ R3

(vee
ωee

) � Jee(q) _q, (32)

both expressed in the robot root frame. The matrix Λ(q) ∈ R9×9
in Eq. 31 is also called the Task Space Mass matrix. The term
_Vdes ∈ R6 is a vector containing the desired linear acceleration of
the end-effector _vdes ∈ R3 and the desired angular
acceleration _ωdes ∈ R3

_Vdes � (_vdes
_ωdes

), (33)

both expressed in the robot root frame. If controlled using the
torques in Eq. 31, the system in Eq. 30 reduces to the system of
equations

_Vee � (_vee
_ωee

) � _Vdes, (34)

where _vee ∈ R3 is the linear acceleration of the end-effector and
_ωee ∈ R3 is the angular acceleration. In essence, the first layer
allows reducing the dynamics of the serial chain to a linear system
having _Vdes as input.

The second control layer consists in a Proportional Derivative
controller

_Vdes � kpep + kdev , (35)

where ep ∈ R6 is the end-effector configuration error

ep � (pee − pdes
log(RdesR

T
ee)), (36)

and ev ∈ R6 is the end-effector velocity error

ev � (vee − vdes
ωee − ωdes

). (37)

Here, pee ∈ R3 is the Cartesian position of the end-effector,
Ree ∈ SO(3) is the orientation of the end-effector, vee ∈ R3 is the
linear velocity of the end-effector and ωee ∈ R3 is the angular
velocity that are known via the robot forward kinematics map
and forward differential kinematics map. Moreover, pdes ∈ R3 is
the desired position of the end-effector, Rdes ∈ SO(3) is the
desired orientation of the end-effector, vdes ∈ R3 is the
desired linear velocity of the end-effector and ωdes ∈ R3 is the
desired angular velocity. We recall that the expression
log(RdesRT

ee) in Eq. 36 represents a proper representation of
the angular error in the Lie algebra so(3) (Bullo and Murray,
1999).

In our experiment, we assume that position of the tip of the
bottle with respect to the robot end-effector is known at any time.
Given this assumption, we consider the end-effector frame ee in
Eqs. 36 and 37 to be a frame attached to the tip of the bottle.
Given this choice, we conclude the design of our control system
by setting the desired quantities as follows:

pdes � rt ,
Rdes � Rdes(R0, ot),
vdes � vt ,
ωdes � ωt(ot , _ot),

(38)

where rt , ot are the estimated container position and
orientation and vt , _ot are the estimated container Cartesian
velocity and the Euler angular rates as defined in Eq. 1. The
term Rdes(R0, ot) takes into account the orientation of the
container and a default pouring configuration R0 in order to
provide the desired orientation of the end-effector while the
term ωt(ot , _ot) represents the conversion from Euler rates to
angular velocities.

We remark that the Cartesian velocity and the angular velocity
of the container are directly provided by our method as part of the
state defined in Eq. 1. In order to execute the experiment with the
pose estimation algorithm DenseFusion and with the baseline
ICP, we approximated the Cartesian and angular velocity using
finite differences.

4.4.3 Evaluation Metrics
In order to compare different algorithms we use the Cartesian
error

ex �
∣∣∣∣∣∣∣∣pee,x − rgtt,x

∣∣∣∣∣∣∣∣, (39)

between a given coordinate x of the end-effector 3D position and
the real coordinate x of the 3D position of the object rgtt,x and the
geodesic angular error (Huynh, 2009)

eR �
∣∣∣∣∣∣∣∣∣∣log(Rdes(R0, o

gt
t)RT

ee)∣∣∣∣∣∣∣∣∣∣, (40)

between the orientation Ree of the end-effector and the desired
orientation Rdes(R0, o

gt
t) evaluated on the real orientation of the

object ogtt .

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458314

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

4.4.4 Results of the Experiment
We tested our method, DenseFusion and the baseline ICP on the
closed loop experiment described above under the following
assumptions:

• a sinusoidal trajectory is assigned to the moving container
along the y direction of the robot root frame;

• a sinusoidal trajectory is assigned to the orientation of the
container along one of its axis;

• before starting the experiment, the end-effector is reset to a
rest configuration near the container;

• each experiment lasts 1 min in order to test the reliability of
system;

• our method and ICP are initialized using the ground truth
from the simulator.

An excerpt of the trajectory of the moving container can be
seen in Figure 6.

In Figure 7 we compare the three algorithms in terms of
Cartesian error ey and the angular error eR. Specifically, we
consider the Root Mean Square Error (RMSE) along 1 min of
experiment for several choices of the proportional gain. For each
choice of the gain we assigned the derivative gain kd as 2

kp

√
as

this choice assures the fastest possible closed loop dynamics for
the double integrator system in Eq. 34.

As can be seen from Figure 7, both the errors decrease for all
the algorithms when the gain increases up to kp ≈ 50. For higher
gains, the error increases for both DenseFusion and ICP resulting
in a failure in the experiment for kp � 160. Conversely, our
method allows increasing the gain up to kp � 320 and
reaching a lower tracking error especially for the orientation

FIGURE 7 | Comparison between RMSE Cartesian and angular error for the object following experiment for varying proportional gains kp. Our method allows
increasing the gain up to kp � 320 reaching better tracking performance.

FIGURE 8 | Evolution of the y coordinate of the end-effector for several algorithms and different proportional gains.

FIGURE 9 | Evolution of the angular error of the end-effector for several algorithms and different proportional gains.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458315

Piga et al. MaskUKF

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

part. This behavior can be explained in terms of the smoothness
of the pose estimates produced by our method as we discussed in
Section 4.3.5. Furthermore, our method naturally provides a
smooth estimate of the velocity of the object, as shown in Section
4.3.7, while for the other algorithms we resorted to velocities
obtained by finite differences. Finite difference approximations
are typically noisy, even in the case of DenseFusion (whose pose
estimates are quite precise but noisy, see Figure 2), thus reducing
the maximum possible amount of feedback hence the tracking
performance of the closed loop system.

We conclude our analysis by showing the actual trajectories of
the end-effector for two specific choices of kp, namely 80 and 160.

In Figure 8, we show the desired and achieved trajectory of the
y coordinate for the first 20 s. As can be seen in the case of
kp � 160, with our method the end-effector achieves a steady and
smooth behavior. When using ICP, the end-effector fails to track
the container after ≈ 17 s and shows a moderately noisy
behavior. With DenseFusion, tracking is lost after ≈ 10 s and
the motion is characterized by non-neglibile spikes which make it
unsafe for the robot.

In Figure 9, we show the evolution of the angular error over
time for the same choice of the proportional gain. As can be seen,
moving from kp � 80 to kp � 160 helps reducing the mean
angular error when using our method and ICP. However, as
already seen for the y coordinate, with ICP tracking is lost at some
point and the error diverges. When using DenseFusion with
kp � 80, the error is much higher than with MaskUKF and ICP
and it diverges when moving to kp � 160.

In summary, our method provides better performance in
terms of tracking precision and reliability when the amount of
feedback given to the control system is increased. We stress that
this result depends in large part on the adoption of a Kalman
filtering framework for our method which, leveraging even a
rather simple motion model as in Eq. 28, can produce smooth
estimates of both object pose and velocity.

5 CONCLUSION

We proposed MaskUKF, an approach that combines deep
instance segmentation with an efficient Unscented Kalman
Filter to track the 6D pose and the velocity of an object from
RGB-D images. We showed that MaskUKF achieves, and in most
cases surpasses, state-of-the-art performance on the YCB video
pose estimation benchmark, while providing smooth velocity
estimation without the need for expensive pose annotation at
training time.

Experiments with the state-of-the-art segmentation algorithm
Mask R-CNN at relatively low frame rate of 5 fps suggest possible
future research on the integration with recent architectures such

as SiamMask (Wang Q. et al., 2019) or Siamese Mask R-CNN
(Michaelis et al., 2018) that have proven to provide comparable
accuracy at higher frame rates.

Our results show that for some objects, simple solutions like
ICP, that operates without a motion model, perform very
similarly to the state of the art. This seems to suggest that
the YCB Video dataset is not challenging enough, despite
having become a popular dataset for pose estimation
benchmarking. As future work, we propose to develop more
challenging pose estimation and tracking datasets that can
effectively show the shortcomings of classical approaches as
ICP and motivate the necessity for complex deep learning-
based architectures.

Experiments in a simulated dynamical environment highlights
superior performance of our method for closed loop control tasks
on robotic platforms. At the same time, they show how state-of-
the-art RGB-D deep approches, while being precise enough for
pose estimation purposes, might be inadequate for control tasks
due to unregulated noise in the output which limits the overall
performance. As a future work, we propose to develop standard
benchmarks, specifically tailored to the robotic community, to
ascertain the actual usability of pose estimation/tracking
algorithms for such tasks.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can
be found here: https://rse-lab.cs.washington.edu/projects/posecnn/.

AUTHOR CONTRIBUTIONS

NP designed and implemented the core algorithm presented in
the paper and carried out the experiments on the YCB Video
dataset. He designed and implemented the closed loop
experiments with the iCub humanoid robot in the Gazebo
environment. FB prepared the training data from the YCB
Video Dataset and trained the Mask R-CNN instance
segmentation network used as input to the algorithm. NP, CF,
and GV contributed to the design of the filtering algorithm and
the measurement model. LN, UP, GV, CF, and FB contributed to
the presented ideas and to the review of the final manuscript.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/
full#supplementary-material.

REFERENCES

Bar-Shalom, Y., Kirubarajan, T., and Li, X.-R. (2002). Estimation with applications
to tracking and navigation. New York, NY: John Wiley & Sons, Inc.

Besl, P. J., and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE
Trans. Pattern Anal. Mach. Intell. 14, 239–256. doi:10.1109/34.121791

Bullo, F., and Murray, R. M. (1999). Tracking for fully actuated mechanical
systems: a geometric framework. Automatica 35, 17–34. doi:10.1016/S0005-
1098(98)00119-8

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458316

Piga et al. MaskUKF

https://rse-lab.cs.washington.edu/projects/posecnn/
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full#supplementary-material
https://doi.org/10.1109/34.121791
https://doi.org/10.1016/S0005-1098(98)00119-8
https://doi.org/10.1016/S0005-1098(98)00119-8
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., and Dollar, A. M. (2015).
“The YCB object and model set: towards common benchmarks for
manipulation research,” in 2015 International conference on advanced
robotics (ICAR), Istanbul, Turkey, July 27–31, 2015 (IEEE), 510–517.
doi:10.1109/ICAR.2015.7251504

Curtin, R. R., and Gardner, A. B. (2016). “Fast approximate furthest neighbors with
data-dependent candidate selection,” in Similarity search and applications.
Editors L. Amsaleg, M. E. Houle, and E. Schubert (Cham, Switzerland:
Springer International Publishing), 221–235.

Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., and Fox, D. (2019).
“PoseRBPF: a rao-blackwellized particle filter for 6D object pose
estimation,” in Proceedings of robotics: science and systems University of
Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019. Editors A. Bicchi,
H. Kress-Gazit, and S. Hutchinson. doi:10.15607/RSS.2019.XV.049

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). “Model globally, match locally:
efficient and robust 3D object recognition,” in 2010 IEEE computer society
conference on computer vision and pattern recognition, San Francisco, CA,
June 13–18, 2010 (IEEE), 998–1005.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in 2017
IEEE international conference on computer vision (ICCV), Venice, Italy,
October 22–29, 2017 (IEEE), 2980–2988. doi:10.1109/ICCV.2017.322

Hodan, T., Michel, F., Brachmann, E., Kehl, W., GlentBuch, A., Kraft, D., et al.
(2018). “BOP: benchmark for 6D object pose estimation,” in Proceedings of the
European conference on computer vision (ECCV), Munich, Germany,
September 8–14, 2018. Editors V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss (Cham, Switzerland: Springer International Publishing), 19–34.
doi:10.1007/978-3-030-01249-6_2

Huynh, D. Q. (2009). Metrics for 3D rotations: comparison and analysis. J. Math.
Imaging Vis. 35, 155–164. doi:10.1007/s10851-009-0161-2

Issac, J., Wüthrich, M., Cifuentes, C. G., Bohg, J., Trimpe, S., and Schaal, S. (2016).
“Depth-based object tracking using a robust Gaussian filter,” in 2016 IEEE
international conference on robotics and automation (ICRA), Stockholm,
Sweden, May 16–21, 2016 (IEEE), 608–615. doi:10.1109/ICRA.2016.7487184

Jack, S., and Morrison, W. J. (1950). Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix. Ann. Math.
Stat. 21, 124–127. doi:10.1214/aoms/1177729893

Julier, S. J., and Uhlmann, J. K. (2004). Unscented filtering and nonlinear
estimation. Proc. IEEE 92, 401–422. doi:10.1109/jproc.2003.823141

Koenig, N., and Howard, A. (2004). “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ international conference
on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566), Sendai,
Japan, September 28–October 2, 2004 (IEEE), 2149–2154.

Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018). “DeepIM: deep iterative
matching for 6D pose estimation,” in The European conference on computer
vision (ECCV)Munich, Germany, September 8–14, 2018. Editors V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss (Cham, Switzerland: Springer
International Publishing).

Martin, S., Zoltan-Csaba, M., Maximilian, D., Manuel, B., and Rudolph, T. (2018).
Implicit 3D orientation learning for 6D object detection from RGB images,” in
The European conference on computer vision (ECCV)Munich, Germany,
September 8–14, 2018. Editors V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss (Cham, Switzerland: Springer International Publishing).

McManus, C., and Barfoot, T. (2011). “A serial approach to handling high-
dimensional measurements in the sigma-point Kalman filter,” in
Proceedings of robotics: science and systems, Los Angeles, CA, June 27–30,
2011. Editors H. Durrant-Whyte, N. Roy, and P. Abbeel (Cambridge,
Massachusetts: MIT Press). doi:10.15607/RSS.2011.VII.029

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010). The
iCub humanoid robot: an open-systems platform for research in cognitive
development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.2010.08.010

Michaelis, C., Ustyuzhaninov, I., Bethge, M., and Ecker, A. S. (2018). One-shot
instance segmentation. arXiv preprint. doi:10.3726/b14558

Mitash, C., Boularias, A., and Bekris, K. E. (2018). “Robust 6D object pose
estimation with stochastic congruent sets,” in British machine vision
conference 2018, BMVC 2018, Newcastle, United Kingdom, September 3–6,
2018. (Durham, UK: BMVA Press), 277.

Roncone, A., Pattacini, U., Metta, G., and Natale, L. (2016). “A cartesian 6-DoF
gaze controller for humanoid robots,” in Proceedings of robotics: science and

systems, AnnArbor, MI. Editors D. Hsu, N. Amato, S. Berman, and S. Jacobs.
doi:10.15607/RSS.2016.XII.022

Rusu, R. B., and Cousins, S. (2011). “3D is here: point cloud library (PCL),” in 2011
IEEE international conference on robotics and automation, Shanghai, China,
May 9–13, 2011 (IEEE), 1–4. doi:10.1109/ICRA.2011.5980567

Stevens, B. L., Lewis, F. L., and Johnson, E. N. (2015). Aircraft control and
simulation: dynamics, controls design, and autonomous systems. New York,
NY: John Wiley & Sons.

Thrun, S., Burgard, W., and Fox, D. (2008). Probabilistic robotics. Cambridge, MA:
MIT Press.

Tjaden, H., Schwanecke, U., and Schomer, E. (2017). “Real-time monocular pose
estimation of 3D objects using temporally consistent local color histograms,”
in Proceedings of the IEEE international conference on computer vision.
Venice, Italy, October 22-29, 2017 (IEEE) , 124–132.

Vezzani, G., Pattacini, U., Battistelli, G., Chisci, L., and Natale, L. (2017). Memory
unscented particle filter for 6-DOF tactile localization. IEEE Trans. Robot. 33,
1139–1155. doi:10.1109/TRO.2017.2707092

Viña, F. E., Karayiannidis, Y., Pauwels, K., Smith, C., and Kragic, D. (2015). “In-
hand manipulation using gravity and controlled slip,” in 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
Hamburg, Germany, September 28–October 2, 2015 (IEEE), 5636–5641.
doi:10.1109/IROS.2015.7354177

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., and Schaal, S. (2013).
“Probabilistic object tracking using a range camera,” in 2013 IEEE/RSJ
international conference on intelligent robots and systems, Tokyo,
Japan, 3–7 November 2013 (IEEE), 3195–3202. doi:10.1109/IROS.
2013.6696810

Wan, E. A., andMerwe, R. V. D. (2000). “The unscented kalman filter for nonlinear
estimation,” in Proceedings of the IEEE 2000 adaptive systems for signal
processing, communications, and control symposium (Cat. No.00EX373),
Lake Louise, AB, Canada, October 4, 2000 (IEEE), 153–158. doi:10.1109/
ASSPCC.2000.882463

Wang, C., Xu, D., Zhu, Y., Martin-Martin, R., Lu, C., Fei-Fei, L., et al. (2019).
“DenseFusion: 6D object pose estimation by iterative dense fusion,” in 2019
IEEE/CVF conference on computer vision and pattern recognition
(CVPR), Long Beach, CA, June 15–20, 2019 (IEEE). doi:10.1109/cvpr.
2019.00346

Wang, Q., Zhang, L., Bertinetto, L., Hu, W., and Torr, P. H. (2019). “Fast online
object tracking and segmentation: a unifying approach,” in 2019 IEEE/CVF
conference on computer vision and pattern recognition (CVPR), Long Beach,
CA, USA, June, 15-20, 2019 (IEEE). doi:10.1109/cvpr.2019.00142

White, K. B., Cline, D., and Egbert, P. K. (2007). “Poisson disk point sets by
hierarchical dart throwing,” in 2007 IEEE symposium on interactive ray tracing,
Ulm, Germany, September 10–12, 2007 (IEEE), 129–132. doi:10.1109/RT.2007.
4342600

Wong, J. M., Kee, V., Le, T., Wagner, S., Mariottini, G., Schneider, A., et al. (2017).
“SegICP: integrated deep semantic segmentation and pose estimation,” in 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS),
Vancouver, BC, Canada, September 24–28, 2017 (IEEE), 5784–5789. doi:10.
1109/iros.2017.8206470

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2018). “PoseCNN: a
convolutional neural network for 6D object pose estimation in cluttered
scenes,” in Proceedings of robotics: science and systems, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018Editors H. Kress-
Gazit, S. Srinivasa, T. Howard, and N. Atanasov. doi:10.15607/RSS.2018.
XIV.019

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Piga, Bottarel, Fantacci, Vezzani, Pattacini and Natale. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 59458317

Piga et al. MaskUKF

https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.15607/RSS.2019.XV.049
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1007/978-3-030-01249-6_2
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1109/ICRA.2016.7487184
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1109/jproc.2003.823141
https://doi.org/10.15607/RSS.2011.VII.029
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.3726/b14558
https://doi.org/10.15607/RSS.2016.XII.022
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/TRO.2017.2707092
https://doi.org/10.1109/IROS.2015.7354177
https://doi.org/10.1109/IROS.2013.6696810
https://doi.org/10.1109/IROS.2013.6696810
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/cvpr.2019.00346
https://doi.org/10.1109/cvpr.2019.00346
https://doi.org/10.1109/cvpr.2019.00142
https://doi.org/10.1109/RT.2007.4342600
https://doi.org/10.1109/RT.2007.4342600
https://doi.org/10.1109/iros.2017.8206470
https://doi.org/10.1109/iros.2017.8206470
https://doi.org/10.15607/RSS.2018.XIV.019
https://doi.org/10.15607/RSS.2018.XIV.019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Segmentation
	3.2 Serial Unscented Kalman Filter
	3.2.1 The Unscented Transform Algorithm
	3.2.2 Serial Correction Step

	3.3 Measurement Model
	3.3.1 Implementation of the Measurement Model

	3.4 Outlier Rejection
	3.5 Motion Model
	3.6 6D Object Pose Tracking Framework

	4 Experiments
	4.1 Comparison with the State of the Art
	4.2 Implementation Details
	4.3 Results on YCB Video Dataset
	4.3.1 Description of the YCB Video Dataset
	4.3.2 Evaluation Metrics
	4.3.3 ADD-S Metric
	4.3.4 RMSE Metric
	4.3.5 Qualitative Evaluation
	4.3.6 Multi-Rate Experiment
	4.3.7 Results on Velocity Estimation
	4.3.8 Effect of Outlier Rejection
	4.3.9 Frame Rate Comparison

	4.4 Results on Closed Loop Control
	4.4.1 Description of the Experiment
	4.4.2 Implementation of the Experiment
	4.4.3 Evaluation Metrics
	4.4.4 Results of the Experiment

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

