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There is a substantial number of telerobotics and teleoperation applications ranging from

space operations, ground/aerial robotics, drive-by-wire systems tomedical interventions.

Major obstacles for such applications include latency, channel corruptions, and

bandwidth which limit teleoperation efficacy. This survey reviews the time delay problem in

teleoperation systems. We briefly review different solutions from early approaches which

consist of control-theory-based models and user interface designs and focus on newer

approaches developed since 2014. Future solutions to the time delay problem will likely

be hybrid solutions which includemodeling of user intent, prediction of robot movements,

and time delay prediction all potentially using time series prediction methods. Hence, we

examine methods that are primarily based on time series prediction. Recent prediction

approaches take advantage of advances in nonlinear statistical models as well as

machine learning and neural network techniques. We review Recurrent Neural Networks,

Long Short-Term Memory, Sequence to Sequence, and Generative Adversarial Network

models and examine each of these approaches for addressing time delay. As time delay

is still an unsolved problem, we suggest some possible future research directions from

information-theory-based modeling, which may lead to promising new approaches to

advancing the field.

Keywords: teleoperation, Robotics, telesurgery, time series prediction, machine learning, recurrent neural

network, Long Short-Term Memory, Sequence to sequence model

1. INTRODUCTION

Teleoperation or telerobotics is a broad area in robotics with a long and rich history which has been
a major area of interest over the last decade with numerous applications. This form of robotics has
a user at a local (master) location controlling a robot at a remote site (slave) with feedback (usually
video) from that remote location. Goertz and Thompson (1954) started managing radioactive
material with the help of mechanically built teleoperators and pioneered modern teleoperation in
the 1950s. Interest in teleoperation has recently surged with critical applications in many domains,
especially medicine (Sanchez et al., 2012; Livatino et al., 2014). The recent Covid19 pandemic
has heightened the need for remote operations for both medical interventions and other logistics
(Yang et al., 2020).

Examples of useful recent applications of teleoperation range from space operations, military
(Chen, 2010), underwater exploration (Saltaren et al., 2007), mining, nuclear/toxic material
handling, military, and robotic-assistedmedical interventions (Madder et al., 2019). Figure 1 shows
three applications from our laboratory, which includes three remote users of medical, space, and
ground robots. A recent paper in medical robotics (Madder et al., 2019) studied the effect of time
delay on a robotic coronary telestenting system. They use a robotic system at distances over 100
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FIGURE 1 | Different applications of teleoperation. (A) Operator of a space robot arm, (B) the space robot arm (Chintamani et al., 2009). (C) Telesurgery with a

research da Vinci surgical system (Eslamian et al., 2020), surgeon side. (D) Remote patient side, (E) ground robot control with aerial view (Lucas et al., 2012)—

operator controls ground robots using eye-tracking and (F) the ground robots (Lucas et al., 2012).

miles and simulate network latency from 0 to 1,000 ms. They
show that 400 ms latency is acceptable (they are able to perform

Abbreviations: AIC, akaike information criterion; AR, auto-regressive; ARIMA,
auto-regressive integrated moving average; ARMA, auto-regressive moving
average; convLSTM, convolutional LSTM; GAN, generative adversarial networks;
GRU, gated recurrent unit; HSMM, hidden semi-Markov model; HWES,
holt winter’s exponential smoothing; LQG, linear quadratic gaussian; LSTM,
long short-term memory networks; LSTM-VAE, LSTM and variational auto-
encoder; MA, moving average; MIMO, multiple-input and multiple-output;
NN, neural network; RNN, recurrent neural networks; SARIMA, seasonal
autoregressive integrated moving-average; SARIMAX, seasonal autoregressive
integrated moving-average with exogenous; SES, simple exponential smoothing;
Seq2Seq, sequence-to-sequence; SMLR, sparse multivariate linear regressive;
VARMA, vector autoregression moving-average; VARMAX, vector autoregression
moving-average with exogenous regressors.

stents), delays between 100 and 250 ms did not make a significant
difference from no delay, and more than 400 ms delay affected
the surgeon’s performance. More investigation on the effect
of time delay on the surgeon’s performance in the medical
teleoperation systems is explored by Rosen andHannaford (2006)
and Lum et al. (2009). Also, Orosco et al. (2020) found that
negative motion scaling (less remote instrument movement for a
particular master controller movement) improved performance
for time-delayed robotic surgery.

Several recent review papers on the topic of teleoperation
with time delay have been published. Sun et al. (2014) review
wave variable control methods, which are an extension of
passivity theory. They highlighted the issues of wave reflection
and drift as barriers to this approach. Muradore and Fiorini
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(2016) review bilateral teleoperation algorithms where haptic
feedback is difficult with a time-delayed interface. They review
algorithms that lead to the stability of haptic interfaces based
on passivity theory. Uddin and Ryu (2016) survey predictive
control approaches to mitigate time delay. They cover model-
based approaches mostly related to predictive control. Kebria
et al. (2018) review internet-based teleoperation systems. They
deal with issues of delay, packet loss, jitter, and blackout seen in
internet-based approaches and cover traditional and adaptive-
based control approaches, neural networks, and fuzzy-based
approaches where they model the uncertainty by modeling
time delay.

In this paper, we review the trends and strategies used to solve
the time delay issues related to teleoperation. First, we will briefly
review some of the early approaches and examine predictive and
statistical approaches. Then we explore the closely related field of
time series prediction using machine learning and AI techniques
and how they have been or can be applied to this field. We
will also provide our analysis and projection for open research
questions and on future research directions that can utilize the
recent explosion and progress in deep neural networks, machine
learning, and information theory.

In section 2, we review the early approaches for the time
delay in teleoperation, which consist of primarily control theory
approaches. In section 3, we introduce the time series prediction
problem and highlight the similarities between the time delay
problem and the general time series problem. In this section,
we review statistical models and Neural Networks (NN) based
methods. Finally, in section 4, we compare and discuss the
methods and conclude with some future avenues of research and
new ideas to solve time delay in teleoperation.

2. TRADITIONAL APPROACHES TO
MITIGATING TIME DELAY IN
TELEOPERATION

Early research in the field deals primarily with creating
appropriate user interfaces for teleoperation (Sheridan, 1992) and
issues related to the communication channels between the remote
and local sites. Due to distance, low speed, poor quality of the
communication channels, and time delay, data corruption often
occurs in teleoperation systems. Themain issue that is researched
in the literature is the time delay of communication channels.
This is a fundamental problem related to signal transmission’s
physical limits and not necessarily on the hardware. Data
transmission delay in teleoperation can be between less than a
few milliseconds to many minutes based on the distance between
the master and slave locations and the communication medium.
Excessive delays can make teleoperation very difficult to perform.
Research techniques to stabilize and mitigate time delay issues
have been a significant area of interest in teleoperation.

2.1. Defining a Model for Time Delay
Ferrell and Sheridan’s experiments (Ferrell, 1965) determined
the impact of time delay on human operator performance
in teleoperated manipulators. They used the servo-driven

manipulator with two parallel slave fingers controlled by a human
operator (master). In this experiment, the time delay is added to
command signals from the human operator before it is received
by the slave. Their research showed that operators respond to the
delay with amove and wait strategy. Thatmeans that the operator
moves the joystick and waits for feedback before responding
again to the remote robot. Then the user starts a corrective
step and waits again to recognize the remote system’s delayed
reaction and repeats the cycle until the operation is complete.
Based on Hokayem and Spong (2006), the completion time of an
assignment is defined as follows:

t(I) = tr +

N(I)∑

i=1

(tmi + twi)+ (tr + td)N(I)+ tg + td, (1)

where I is the measure of difficulty, N(I) is the number of the
movements, tr is the human’s reaction time, tmi is the movement
duration, twi is the waiting time after each move, tg is the
grasping time and td is the delay time introduced into the
communication channel. The completion time for a particular
assignment depends linearly on the delay factor in the control
loop; therefore, the longer the delay, the greater the completion
time. Ferrell and Sheridan’s experiments (Ferrell, 1965) conclude
that the move and wait strategy works; however, it takes a longer
time and has smoothness implications.

2.2. Supervisory Control Methods
Supervisory control with a direct connection between the master
and remote sides was introduced by Ferrell and Sheridan (1967),
to address the time delay problem. In supervisory control, based
on the difficulty of the task and the order of the autonomy
of the process, the control could be either of symbolic or
analog nature. In the symbolic approach, they introduce small
autonomous sub-tasks, which are high-level commands used for
the local controller. Whitney (1969) introduced the supervisory
methodology from an optimization perspective by developing a
discrete-state-space and applying search strategies to accomplish
the ideal performance of the task.

With the advancement in microprocessor design and
programming, yet another solution was introduced for the time
delay in teleoperation. In this approach, a processor (at the
remote site) was able to do simple tasks like close the gripper
or move it from point A to point B. Other complex tasks
could be performed by chaining the simple commands together.
In this way, only high-level task commands need to be sent.
Modular software for simple or repetitive tasks was introduced
in this area and improved the performance and minimized
communication time by using inter-processor communication
and control mode selection (Fong et al., 1986). Task-Oriented
Supervision Command System (Madni et al., 1983), and the
language-aided robotic teleoperation system in Sato and Hirai
(1987) provide a method to do simple tasks. In addition, visual
models helped control process by adding graphics models of the
motion of the robot (Stark et al., 1987; Hirzinger et al., 1989;
Bejczy and Kim, 1990). Bejczy et al. (1990) used the phantom
robot models to predict real robot motion. Buzan and Sheridan
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(1989), applied a predictive operator aid to handle the time delay
in telemanipulator systems.

2.3. Predictive Control-Based Approaches
for Time Delay
Time delay is a challenge when designing stable controllers.
Control solutions for time-delayed teleoperation systems open
up new questions for the interpretation of the fundamental
principles of control systems and render it necessary to re-
evaluate these ideas. In many instances, traditional techniques
fail to stabilize systems, especially when the time delay varies
or blackout occurs. The impact of time delay on the stability
of a remotely controlled system was studied by Varkonyi et al.
(2014). The authors consider a remotely controlled system where
keeping the system stable with time delay was a challenge.
Varkonyi et al. (2014), they showed that traditional control
system methods are not successful when there is a variable time
delay or communication blackout.

A good review, Uddin and Ryu (2016), provides a
comprehensive comparison and analysis of different approaches
for predictive control. This paper covers mostly model-
based approaches for teleoperation. A multi-model predictive
controller was proposed by Sirouspour and Shahdi (2006). They
propose a discrete linear quadratic Gaussian (LQG) controller
for teleoperation with time delay in communication (Sirouspour,
2005). In this case, the sampling rate was restricted as the delay
increases in order to decrease the computational load and
prevent potential numerical issues. This method has limits as the
closed-loop reaction and teleoperation stability can be adversely
affected by a small sampling rate.

Sirouspour and Shahdi (2006) propose a novel approach to the
reduction and output-feedback control ofMIMO (multiple-input
and multiple-output) systems with nonidentical delay and they
show that this system acquires the detectability and stabilizability
properties of the original system. Their second achievement in
that paper was that they formulate teleoperation under delay as a
multi-model continuous-time LQG synthesis problem using the
proposed output-feedback control approach.

2.4. Passivity-Based Methods
It is possible to model the delay problem mathematically as a
“passivity-based teleoperation.” Desoer and Vidyasagar (1975)
introduce passivity-based teleoperation in bilateral teleoperation
to ensure stability and performance with packet loss and time
delay. There are different passivity-based approaches to model
the master-slave teleoperator system, such as 2-port networks
(Buzan and Sheridan, 1989), impedance matrix (Raju et al.,
1989), hybrid matrix (Hannaford, 1989), scattering approach
(Anderson and Spong, 1992), constant time delay (Anderson
and Spong, 1992), scaling (Colgate, 1991), wave variables
(Niemeyer and Slotine, 1991a,b; Benedetti et al., 2001; Ganjefar
et al., 2002; Munir and Book, 2002), and geometric scattering
(Stramigioli et al., 2002). Hokayem and Spong (2006) examined
the theoretical control approaches to address the time delay
problem and information loss. In passivity-based teleoperation,
researchers represent the master/slave teleoperation system with

linear models. Nuño et al. (2011) review several passivity-
based controllers for non-linear bilateral teleoperation. Polat and
Scherer (2012) presents stability analysis for uncertain bilateral
teleoperation systems using the IQC framework. They formulate
stability using network theory and run numerical test cases
to verify their formulation. In addition, Tugal et al. (2016)
investigate the stability of passive multipliers and Zames-Falb
multipliers with the IQC framework for both time-invariant and
time-variant time delays.

Another kind of teleoperation that was introduced is internet-
based teleoperation (Goldberg et al., 1995; Kebria et al., 2018).
Different approaches to deal with random time delay in message
transmission over the internet have been researched. This area
of real-time communication for teleoperation over the internet
has been active since the 1990s. Xi and Tarn (2000) propose non-
time referenced action control method to deal with random time
delay, and Oboe (2003) show the success of real-time closed-loop
control systems for telerobotics over the internet.

Furthermore, predictive techniques are introduced to model
and mitigate the random time delay with fuzzy adaptive control
methods by Lu et al. (2017) and Mirfakhrai and Payandeh
(2002) where they used an autoregressive model. Ye et al. (2002)
and Shen et al. (2019) used nonlinear time series analysis to
understand the delay behavior and estimate time delay. The
application of neural networks for creating a robust teleoperation
system with time-varying communication delay was studied
by Li and Su (2013). These papers opened up a new area of
research with time series analysis/prediction. We will explain
time series prediction and the different avenues of research in the
next section.

In summary, control-based methods to mitigate time delay
for teleoperation systems can be divided into two approaches.
In the first approach, guaranteeing stability is used to deal
with variable time delay. In addition, Passivity-based control
methods are applied for modeling master-slave teleoperator
systems. A second approach is a predictive approach, which
consists of model-based approaches like the LQG controller
(Sirouspour, 2005; Sirouspour and Shahdi, 2006). This approach
has shown improvement in performance in terms of stability
and transparency. Another example of this approach is when a
processor performs complex tasks by chaining simple commands
together (Hirzinger et al., 1989). That method could take
advantage of a time series prediction to further mitigate
time delay.

3. TIME SERIES PREDICTION METHODS
FOR MITIGATING TIME DELAY IN
TELEOPERATION

An avenue of research in the time delay problem in teleoperation
is using time-series predictions, where time-series predictions are
used to compensate for the time delay. In time series prediction,
the goal is to predict future values based on past observations
which consist of intrinsic patterns. To determine a model that
expresses the pattern of time series, we need a method to describe
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FIGURE 2 | Hierarchical structure of time series prediction techniques in both statistical and machine learning approaches. For statistical methods, our main focus is

on the blue boxes (i.e., AR, MA, ARMA, and ARIMA) as they are the more fundamental methods. The remaining methods are their extensions. For Neural Network

Methods, we focus on the RNN, LSTM, Seq2Seq, and GAN methods, which are in blue boxes.

the important features of the time series pattern and explain how
the past affects the future or how two-time series can “interact.”

In general, time series have three major common patterns:

1. Trend: The specific direction of the time series can be a long-
term increase or decrease in the data (Parmezan et al., 2019).

2. Seasonality: The repetitive patterns at predictable intervals.
3. White Noise: The unpredictable fluctuation with no

seasonality or trend.

In this paper, we divide time series prediction methods into two
main methods: (as shown in Figure 2): Statistical approaches,
Neural Network approaches. We cover these two methods as
recent approaches for time series prediction.

3.1. Examples of Time Series Prediction in
Delay Mitigation
Several early approaches for delay mitigation used time series
prediction. Mirfakhrai and Payandeh (2002) employed an
autoregressive model to forecast future values of time delay. The
predictions were used with a look-up table to tune the system
by adjusting the gain and decreasing the mismatch between
forces and velocities at the master and slave sides. In their study,
the slave side is assumed to be precisely similar to the master
side; also, the slaves’ delay and master communication are equal,
and there is no scaling between the master and slave. Ye et al.

(2002) studied the delay for round trip time (RTT) in internet-
based communication. They use a linear correlation of RTT
by computing the autocorrelation and power spectrum. In this
paper, the authors used the maximum entropy principle (MEP)
which is a linear algorithm to predict one step ahead of the
RTT value.

Recently, there have been several papers that use time-
series predictions for teleoperation time delay mitigation. For
instance, Chen et al. (2020) utilizes a statistical approach
using a multivariate linear regression model to forecast time
delay for space teleoperation. When time delay is known in
advance, control of remote systems is improved in comparison
with the previous approaches that included sparse multivariate
linear regression (SMLR) (Chen et al., 2019), autoregressive
(AR), neural network (NN), and cubic polynomial model-based
(CPMB) approaches. Su et al. (2020b) apply deep convolution
neural networks to identify a robot tool’s dynamics for bilateral
teleoperation. Belhaj and Tagina (2009) apply RNNs tomodel and
predict internet end-to-end time delay. Su et al. (2020a) propose
an improved RNN to predict the trajectory of manipulators.
Aburime et al. (2019) applied recursive least squares filtering
to identify the delay and target waypoints. They were able to
show that an aerial vehicle can estimate a waypoint based on
an appropriate filter selection while it also monitors the user
commands. Zheng et al. (2019) also use a similar approach for a
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ground vehicle heading prediction. They use a blended approach
with a Taylor series expansion with estimated noise to model
the heading for remote-controlled vehicles. They use the delayed
signals to predict the heading of the vehicle such that in the
event of a delay, the vehicle does not go off course. Arita and
Suzuki (2019) employ an exponential statistical prediction model
of human gaze points to assist in the maneuvering of teleoperated
robots. They use a first-order gaze movement model with a time
delay to predict specific target points and use these as points
of movement during the time delay. Jung et al. (2019) utilize a
predictive display using a kinematic model of the human head
and neck along with camera parameters. This is an interesting
approach where they use the relationship between camera
orientation and the human controllers’ positional changes to
predict future images based on current images using a simple
linear model of motion.

3.2. Statistical Models for Time Series
Prediction
In this subsection, we discuss the statistical methods for time
series prediction. We also explain the use of statistical models to
try and predict the near-term future to help mitigate time delay.
This approach uses predictions based on statistical methods
to model incoming data with the aim of predicting the next
steps and replacing the data which is not received because of
time delay.

Statistical models summarize the data with equations that
represent a relation between input and output (Wasserman,
2013). A predictive statistical model defines a process on data
to predict new or future observations (Shmueli, 2010) based on
the observed data. The evolution of statistical techniques started
with a simple technique of linear auto-regression (AR) (Mills
and Mills, 1991). This technique uses a model that predicts
future steps based on a linear model of the past data. Similarly,
some techniques use a moving average (MA) as a predictor of
future events (Box and Pierce, 1970). This technique also uses
a stochastic component that models noise in the system. Both
the AR and MA techniques were combined to create a system
that was named ARMA. In this method, predictions were based
on both a linear regression as well as a moving average. The
next evolution added a nonlinear component (integration) to
the formulation and was named ARIMA. The addition of the
integral term allowed better prediction of non-stationary signals
(Mondal et al., 2014). Simple Exponential Smoothing (SES) is
an extension of the MA method. It uses an exponential window
function, which exponentially weights previous observations in
the time series. It differs from MA which treats all previous
steps equally. Holt Winter’s Exponential Smoothing (HWES) is
a triple exponential smoothing method that predicts the next
time steps based on three factors—the weighted prior time
step, the trend and the seasonality (Kalekar, 2004). Vector
Autoregression Moving-Average (VARMA) is the generalization
of the ARMAmodel to forecast a multivariate time series. Vector
Autoregression Moving-Average with Exogenous Regressors
(VARMAX) is the extension of the VARMA model along with
the exogenous variables or covariates as the parallel independent

input sequences (Poskitt, 2016). Seasonal ARIMA or Seasonal
Autoregressive Integrated Moving-Average (SARIMA) is an
extended version of ARIMA with the ability to capture the
seasonality of the time series (Hyndman and Athanasopoulos,
2018) and Seasonal Autoregressive Integrated Moving-Average
with Exogenous Regressors (SARIMAX) is a method with
exogenous data to improve the prediction result. In the next
section, we will cover the details of these four methods: AR, MA,
ARMA, ARIMA. All the other methods are extensions of these
four methods and shown in Figure 2 as white boxes. The details
of these extensions are not covered extensively as they are closely
related to the core methods.

3.2.1. AR Model

Auto-regressive (AR) models describe the linear dependency of
the previous values to the predicted values. The basic components
of an AR model include linear coefficients for prediction, a
model of error (noise) in the system, and a method to determine
the extent of the past data needed for prediction based on an
autocorrelation function. The first-order Auto-regressive model
AR(1) is the linear model between the value of time step at time
xt and previous time step xt−1 which includes coefficients (φ0, φ1)
with assumption |φi| < 1, where i = 1, 2 and noise at time t, ωt

is defined as:

xt = φ0 + φ1xt−1 + ωt (2)

where ωt ∼ N(0, σ 2
ω) (i.e., Gaussian distribution with zero mean

and σ 2
ω as a variance) is the present error and φ1 is the slope

of AR(1).
In general an AR(p) model (where p is the order of the model

which can be selected as a design parameter) is given by the
following equation:

xt = φ0 + φ1xt−1 + φ2xt−2 + · · · + φpxt−p + ωt (3)

Mirfakhrai and Payandeh (2002) and Hu et al. (2012) use this
auto-regressive model to predict the value of time delay in the
future. In their model xt is the signal that is modeled and ωt is
the white noise with auto-correlation. To determine the order
of the AR model researchers use the Partial Autocorrelation
Function (PACF) (Mishra and Desai, 2005). The PACF shows
the autocorrelation between the variable and a lag without
considering the effect of lower-order lags. For example, when the
PACF tends to zero at k lags, it shows the order of our AR model
p is equal to k. Once an appropriate order has been determined, a
model can be formed to allow prediction.

3.2.2. MA Model

Another method for modeling the time series data is the moving
average (MA) model. The MA model takes the average of the
previous values of the time series to predict future values. The
basic components of an MA model are similar to the AR model
except that in this model, we want to know how much noise in
the past affects the prediction. The first order of an MA model is
denoted by MA(1) and is defined as:

xt = µ + ωt + θωt−1 (4)
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where µ is the mean of the time series, θ is the parameter of
the model and ωt is the white noise with zero mean and σ 2

ω as
a variance.

General MA(q) models:

xt = µ + ωt + θ1ωt−1 + θ2ωt−2 + · · · + θqωt−q (5)

A property of MA(q) models in general is that there are nonzero
autocorrelations for the first q lags and autocorrelations = 0 for
all lags ≥ q. Similar to AR, in the MA model, we can find
the order of the model based on the Autocorrelation Function
(ACF). The ACF shows the autocorrelation of a variable and
a lag of itself (Moayedi and Masnadi-Shirazi, 2008). Once an
appropriate order has been determined, a model can be formed
to allow prediction.

3.2.3. ARMA Model

The AR model is a prediction based on the lags of the data. The
MAmodel is a prediction based on the past noise of the signal. In
order to create a more general model that incorporates both these
features, researchers combined these techniques (Choi, 2012).
The combination of AR andMAmodels creates an autoregressive
moving average model ARMA. There are three basic steps of
creating an ARMA model. The first is, model selection, the
second is parameter estimation and the third ismodel checking

(Box et al., 2015). Model selection and parameter estimation
are challenging problems in time series prediction. Rojas et al.
(2008) introduced a method to determine the linear model
automatically. An ARMA(p,q) model (where p and q are model
orders) can be defined based on the AR(p) and MA(q) equations
as follows:

xt = φ1xt−1 + · · · + φpxt−p + ωt + θ1ωt−1 + · · · + θqωt−q (6)

where the ω is the noise and the φ are the coefficients of AR and
the θ are the coefficients of MA. The ARMA model can be used
to predict stationary time series which have constant stochastic
properties (mean, variance and correlation) with respect to
time. Real-world time series data cannot be guaranteed to be
stationary. Hence, a term needs to be added to make the model
that can fit nonlinear non-stationary signals. Hua et al. (2013)
employ this statistical method to estimate the time delay of a
one-way internet connection.

3.2.4. ARIMA Model

By adding a differentiation term (d) to the ARMA model,
researchers converted the non-stationary signal to a stationary
signal. The difference term added to a non-stationary signal
makes it stationary, and this is commonly referred to as an
integrated signal. Hence, this technique with the integrated signal
addition is called the ARIMA model and is used for non-
stationary time series prediction (Lorek and Willinger, 1996).

The ARIMA(p,d,q) model, is the combination of
Autoregression, AR(p), integration, and Moving Average,
MA(q). Here, p refers to the order of autoregression, d is
the degree of difference and q is the order of the moving
average terms.

In order to assess the trade-off between the goodness of fit
and over-fitting, researchers have introduced a measure called
the Akaike Information Criterion (AIC). AIC is used to compare
the quality of statistical models. Based on Montgomery et al.
(2015, Equation 2.44), AIC is used as a criterion to select the best
ARIMA model parameters and is defined as:

AIC = −2L+ (log(n)+ 1)k (7)

where the L is the likelihood function logarithm, n is the number
of observations, and k is the number of estimated parameters.
A smaller AIC points to a better/more optimized model. AIC
increases if the model is overfitting. Hence, AIC analysis allows
us to balance our model between adding more parameters (at the
cost of over-fitting) and better fitting.

Although ARIMA is the most general statistical model for
forecasting in time series, it cannot deal with all nonlinear
relationships like seasonality. Seasonal ARIMA or SARIMA is
an extended version of ARIMA with this ability to capture
the seasonality of the time series. There are various features
of time series which can be analyzed with non-parametric
(Aneiros-Pérez and Vieu, 2008) or hybrid models (Faruk,
2010). In addition, some machine learning algorithms were also
introduced for the time series problem. The evolution of time
series prediction using machine learning techniques has had
several avenues of research and development in teleoperation
and robotics. Yang et al. (2018) used a hidden semi-Markov
model (HSMM) and Gaussian mixture models to improve the
performance of teleoperation systems. In the following section,
we see how this work was extended and review some neural
network models for time series prediction.

3.3. Neural Network Methods for Time
Series Prediction Problem
In this section, we examine various neural network-based
methods. Prediction of individual sequences in terms of time or
time series prediction is challenging and at the same time an
important area of study in machine learning (Giles et al., 2001;
Anava et al., 2013, 2015; Ak et al., 2015; Fang et al., 2017, 2020).
Extracting good representative pairs of input and output data is
essential in machine learning algorithms. These pairs are then
used to train various types of neural network architectures. There
are inherent properties of certain structures that make these
predictions more accurate. Time series prediction uses models
known as sequential data models. These sequential data models
must maintain a particular order of the data streams.

Recurrent Neural Networks (RNNs) was among the first
type of neural networks method for time series prediction
(Mikolov et al., 2010). These networks then evolved to Long
Short-Term Memory networks (LSTM) in order to model the
past dependency in a more rigorous way (Hochreiter and
Schmidhuber, 1997). A further refinement in neural network
architecture was made with sequence-to-sequence (Seq2Seq)
modeling. This architecture used LSTM in novel ways to improve
time series prediction (Sutskever et al., 2014). Other neural
network methods for time series prediction are Gated Recurrent
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FIGURE 3 | Recurrent Neural Network with feedback (left). Unfolding of the

Recurrent Neural Network (right): The X values are the inputs (past values of

the signal). Y values are the predictions. Each successive X is considered

when predicting the next Y value. For instance Y1 is predicted based on h1,

but Y2 is predicted based on both h1 and h2, and X2.

Unit (GRU) (Cho et al., 2014), LSTM and Variational Auto-
Encoder (LSTM-VAE) (Park et al., 2018), convolutional LSTM
(convLSTM) (Karim et al., 2017), and Generative Adversarial
Networks (GANs) for time series prediction (Yoon et al., 2019).

In the following section, we will review the basics of RNNs,
LSTM, LSTM-VAE, Seq2Seq, and GAN techniques for time
series prediction.

3.3.1. RNN Model

RNNs are different from feed-forward (traditional) neural
networks in that they have a closed feedback loop and contain
an element of memory. RNNs can remember the past with the
use of a loop construct. This loop allows RNNs to persist the
information. We can imagine the RNN as multiple copies of
the same network, as shown in Figure 3. RNNs work well when
we want to look at the recent information to predict the future.
Connor et al. (1994) proposed a robust learning algorithm based
on filtering anomalies from the data and used this filtered data
for estimating parameters and do forecasting. In Giles et al.
(2001), they examine the difficulties of RNNs for forecasting non-
stationary and noisy data, and they introduced a pre-processing
method to overcome these problems. However, when the gap
between the relevant information and the prediction is large,
RNNs become very slow and, in some cases, are unable to learn
the long-term dependencies (Bengio et al., 1994).

3.3.2. LSTM Model

RNNs have issues with long-term dependencies and vanishing
gradients. In order to deal with these issues (Hochreiter and
Schmidhuber, 1997) introduced the LSTM networks (Figure 4).
In this model, each ordinarily hidden layer is changed by adding
a memory cell. We call these kinds of networks LSTM because
it has long-term memory in terms of the weights and these
weights can be altered by training. In addition, it also has short
term memory (implemented by gates) in terms of a temporary
activation (Lipton et al., 2015). Hence, in the LSTM, we have two
main parts of the network the “forget gate” and “input gate.” The
forget gates decide which information should be pushed away

FIGURE 4 | LSTM memory cell. Inputs: current input xt, state of previous time

step St−1 and output of previous time step ht−1. Outputs: updated state St

and current output ht.

from the cell state, and the input gate decides which information
needs to be stored in the cell state.

In each step, the forget gate considers the previous output
h(t−1) and input xt . The output of this forget gate is a number
between 0 or 1. 1 represents “keep the value,” and 0 represents
“forget value.” The following equation represents the forget gate:

f (t) = σ (Wf [x
(t) + h(t−1)]+ bf ) (8)

where σ is the sigmoid function, h, Wf , and bf are hidden layer,
weight and bias of the forget gate, respectively. In order to decide
what part of the information we have to keep and use in the cell
state at the next time step, we need the “input gate” it to specify
which values we are updating. Then another gate with tanh as
the activation function (shown by gt), is used to create a vector
of the new candidate values to be added to the state cell St . As a
result, this method updates the new state based on multiplying
the forget gate by the previous state and multiplication of input
gate g(t) as follow:

S(t) = f (t) ⊙ S(t−1) + g(t) ⊙ i(t) (9)

where the ⊙ is element-wise multiplication. Finally, we have
to determine the “output gate” ot , which relies on the previous
output h(t−1) and the input xt . Then the updated output ht is
calculated by multiplication of the “output gate” and tanh of the
updated cell state as follows:

h(t) = o(t) ⊙ tanh(s(t)) (10)

There are a lot of extensions of the LSTM memory cells which
are used for different time-series applications like convLSTM
(Kim et al., 2010; Xingjian et al., 2015) for weather forecasting
and video prediction (Lotter et al., 2016). Gated Recurrent Unit
(GRU) is a simple version of LSTM (Cho et al., 2014). It combines
the forget and input gate of the LSTM and reduces the complexity
by decreasing the number of parameters.
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FIGURE 5 | Sequence to Sequence model: This mode uses “encoder-decoder” and maps input sequence with “encoder states” and use it as initial state of

the decoder.

3.3.3. LSTM-VAE Model

Another framework of LSTM is the LSTM-VAE, which is a
neural network based on both a variational autoencoder to
compress the input and an LSTM for prediction. The encoder-
decoder LSTM architecture for time series data is used by
Park et al. (2018) for multi-modal anomaly detection for robot
assistant feeding. Park et al. (2018) employed the LSTM unit for
modeling the dependencies in the time series, as a variational
autoencoder models the probability distribution of observations
using variational inference (VI). LSTM has the advantage of both
short and long term memory. However, in the case of multiple
time series step predictions with dynamic output lengths, the
system needs retraining to get new model parameters due to the
requirement of different output lengths. In the next section, a new
LSTM-basedmodel called Seq2Seq is introduced. It can allow and
improve dynamic multiple time series prediction.

3.3.4. Seq2Seq Model

A Seq2Seq model was first introduced by Sutskever et al. (2014)
as a learning method for natural language processing. This
translation application is like time series prediction because it
has a sequential model and it also has sequential input-output
pairs. In their method, they use a multi-layered LSTM to map
the input sequence to a vector with a fixed dimension. Then
this vector is used by another deep LSTM to decode the target
sequence from that vector. The sequence to sequence model
consists of two blocks of LSTMs, which are incorporated into an
encoder and decoder block, as shown in Figure 5. Their main
result was that on an English to French translation tasks from
theWMT-14 dataset, they produced a good result compared with
other methods.

Mariet and Kuznetsov (2019) provided a theoretical
study for time series prediction with sequence to sequence
models. They found the generalization bound of sequence
to sequence models for time series prediction. Furthermore,
they proposed a measurement based on the sequence data
properties to determine whether the Seq2Seq model can be
successful. Seq2Seq models are also used extensively for the
dynamic, spatial-temporal characteristic of multivariate time

series data (Zhu and Laptev, 2017; Du et al., 2018; Yang
et al., 2019; Salinas et al., 2020). Another application of the
sequence to sequence model is in video and image captioning
(Venugopalan et al., 2015; Yang et al., 2017).

3.3.5. GAN Model

Generative Adversarial Network (GAN) is a kind of neural
network which was introduced by Goodfellow et al. (2014) as a
framework to estimate a generative model using an adversarial
operation. This structure consists of two neural networks. First, a
generative network produces new data based on the distribution
of a training set. Second, a discriminative model evaluates the
probability that a sample was drawn from it. Therefore, in time
series prediction, it can generate new time series samples with
the same distribution. GANs are quite new and were introduced
and found suitable for unsupervised learning (Radford et al.,
2015), deep reinforcement learning (Ho and Ermon, 2016) and
semi-supervised learning (Donahue et al., 2016). There is an
extensive exploration in time series prediction using GAN. Zhang
et al. (2019) compare GAN with baseline models from ARIMA.
They also compare shallow and deep LSTMs with GAN for
stock market price predictions. Based on the result of this paper,
the best performance is with a shallow LSTM; however, GAN
has an acceptable performance. ForGAN is a model based on a
conditional GAN with an LSTM/GRU layer and was proposed
by Koochali et al. (2019) as a novel approach for forecasting
future values. Another GAN model for time series prediction
introduced by Zec et al. (2019). This model is a recurrent
conditional GAN and uses LSTMs both as the generator and
discriminator to express the long-term dependencies in time
series. In this approach, they trained the network using the
Seq2Seq method. Furthermore, Yoon et al. (2019) proposed
the TimeGAN framework to capture the temporal dynamics
of the time series data. They compared their novel network
with Conditional and Recurrent GAN. Recently GAN-based
architectures have become more popular for sequential data due
to the generative property of these models. However, most papers
and research in the time series prediction field still employ RNNs
or LSTM.
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TABLE 1 | Comparison of the selected methods reviewed in this paper.

Method Linearity Stationarity Advantage Disadvantage

AR Linear Stationary Applies lags and shifts of historical data; simplicity Unsuitable for nonlinear and non-stationary signals;

susceptibility to noise

MA Linear Stationary Reliable result for stationary signal Unsuitable for nonlinear and non-stationary signals; can

only predict one step in the future

ARMA Linear Stationary AR model with a MA to improve the result Not appropriate for long-term prediction and

non-stationary signals

ARIMA Nonlinear Non-stationary Promotes ARMA by adding an integral term to handle

non-stationery

Unsuitable for long-term prediction, cannot fully capture

the non-linearity

RNN Nonlinear Non-stationary Utilizes the saved information in the past via feedback Long-term dependencies; vanishing gradient and

exploding gradient

LSTM Nonlinear Non-stationary Solves long-term dependencies and vanishing gradient

in RNN

More prone to overfitting, longer training time and require

more memory to train because of more parameters

Seq2Seq Nonlinear Non-stationary Better mapping of input and output relationships;

suitable for nonlinear time series

More parameters in comparison with LSTM, slower

learning

GAN Nonlinear Non-stationary Generative inheritance to learn the distribution of time

series, shows good results for temporal setting

Because of adversarial component it cannot guarantee

to capture the dependencies

4. DISCUSSION

In this paper, we reviewed the time delay problem in the
teleoperation. In the first section, we reviewed the early
approaches and studies in this field. Most of the early methods
focused on understanding and estimating the delay. Some work
concentrated on the design of systems to reduce the computation
load. Next, we focused on reviewing solutions for the time delay
problem, which has the potential be used to help mitigate issues
with time delay. We surveyed two major areas for time series
prediction, which included both statistical and neural network
approaches. In Table 1, we compare all the main methods for
time series prediction covered here.

The general advantage of the statistical methods is that
they do not require training data and tend to be relatively
simple methods with clear implementation avenues. Though
the statistical methods are the traditional solutions for time
series prediction, they cannot model all non-stationary signals.
There are some extensions of the ARMA model that can handle
non-stationary signals like ARIMA. If the data has seasonality,
then other models such as SARIMA/SARIMAX were introduced.
However, all these techniques deal with a specific kind of non-
stationarity. Another disadvantage of these statistical methods is
that they are not suitable for modeling complex tasks. The longer
the dependencies, the more difficult to predict. These techniques
are more appropriate for short-term predictions. In contrast
with statistical models, neural network methods can be used to
describe the data without necessarily knowing the distribution
of the data. Moreover, by introducing LSTM networks, the
literature shows that we can model complicated time series data
taking into account many of the past dependencies. It is also
possible that neural networks could be used in an adaptive
way to change behaviors as more data is available. In this
paper, we reviewed new neural network architectures for time
series prediction. These methods consist of Seq2Seq and GAN
models. The main advantage of these methods over traditional
NN methods is that they are able to take inputs of variable
sizes. These methods are promising for time series prediction

due to the capability of their architecture to capture the time
series distributions.

In the various neural network-based approaches, the relation
between input and output is not clearly understood. It is modeled
mostly as a black box of weights. In order to have a greater
understanding of the mechanism of this transfer function, we
point to a new approach by using the concepts of information
theory. Information theory allows us to explain better and perhaps
control the complex relationships. This idea is beginning to be
used in deep learning by Shwartz-Ziv and Tishby (2017) and
followed by Alemi et al. (2016) for variational autoencoders.

Readers are directed to the following repository, where several
of the promising techniques described here are implemented
https://github.com/parinazfa/Recent-Trends-in-Teleoperation-
Time-DelayMitigation.git.

5. CONCLUSION

The time delay problem in teleoperation systems is an important
challenge; therefore, several approaches from control-based to
deep learning methods have been reviewed in this paper.
This survey paper was divided into two parts: first, we
covered traditional approaches to mitigating time delay in
teleoperation. These methods included stability analysis and
predictive methods for teleoperation systems. These methods
focused on understanding and estimating the delay. Second, we
covered time series prediction methods for mitigating time delay.
These methods included the model of user intent or the system
using time series prediction techniques. We reviewed statistical
and NN based methods which are applied to mitigating time
delay in teleoperation systems.We also reviewed some other deep
learning models which may prove to beneficial for mitigation of
time delay in teleoperation systems.

We believe that the new machine learning methods for time
series prediction open a promising avenue for solving the time
delay problem in teleoperation systems. A system that can predict
the short-term future may be able to compensate for the time
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delay. It could also be able to adapt to new data and change its
mode based on the situation.

Time series prediction opens a new avenue for safety. A related
application to teleoperation is based on the prediction capability
of time series approaches. If one can predict the immediate future
when teleoperating (even in real-time teleoperation), dangerous
future events can be mitigated to create safer systems. For
example, in telesurgery systems, time series prediction along
with real-time surface mapping and registration can warn the
surgeon (or even stop or dampen movements) before dangerous
tool’s movements lead to bleeding, etc. Similarly, in other
teleoperation systems, the map of the remote site along with
an intelligent overwatch system, can inform the operator about
possible dangers and inadvertent movements. Hence, solving the

time delay issue with predictive technologies will also have these
other important and related applications.
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