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We develop a synchronous rendezvous strategy for a network of minimally actuated

mobile sensors or active drifters to monitor a set of Lagrangian Coherent Structure (LCS)

bounded regions, each exhibiting gyre-like flows. This paper examines the conditions

under which a pair of neighboring agents achieves synchronous rendezvous relying solely

on the inherent flow dynamics within each LCS bounded region. The objective is to

enable drifters in adjacent LCS bounded regions to rendezvous in a periodic fashion to

exchange and fuse sensor data. We propose an agent-level control strategy to regulate

the drifter speed in each monitoring region as well as to maximize the time the drifters

are connected and able to communicate at every rendezvous. The strategy utilizes

minimal actuation to ensure synchronization between neighboring pairs of drifters to

ensure periodic rendezvous. The intermittent synchronization policy enables a locally

connected network of minimally actuated mobile sensors to converge to a common orbit

frequency. Robustness analysis against possible disturbance in practice and simulations

are provided to illustrate the results.

Keywords: synchronous rendezvous, mobile sensor networks, multi-agent systems, optimal control, consensus

1. INTRODUCTION

There is much interest in using networked distributed robotic systems for large-scale
environmental monitoring applications, such as coastal surveillance, scientific data collection, and
surveying for oceanmining (Yuh et al., 2011; Zhang et al., 2015). Swarms ofmarine robots can cover
large areas and simultaneously collect, process, and interpret data at various distinct geographic
locations of interest over prolonged periods of time. Nevertheless, these vehicles must operate
with finite power budgets and thus it is extremely important to consider energy aware control and
coordination strategies for any data harvesting, exchange, and upload applications.

In this work, we consider the teams of networkedminimally actuated drifters or similarly power-
constrained mobile sensors that must leverage the dynamics of the ocean flow in order to minimize
consumption during navigation. These active drifters are limited to intermittent and short-range
interactions, which gives rise to a particular type of dynamic and sparse sensor network. This
network stays disconnected for most of the time, and has brief periods in which small, isolated
units come within communication range and form cliques in the network. Questions of interest
here are under which conditions such cliques are formed, how frequently do they appear, how could
information propagate if they share some members, and how can the formation of such cliques be
made more robust, given that the nodes can only interact with each other when they are in close
proximity, i.e., within communication range.
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Motion plans and control strategies for robots that are part
of a mobile sensor network needs to capture the interplay
between sensing, communication, and mobility. Existing work
has mostly focused on enabling robots to efficiently harvest and
transport data from stationary sensors deployed across large
geographical regions (Bhadauria et al., 2011; Sugihara and Gupta,
2011). This is typically done by tasking robots to assist in the
data exchange between sensor nodes by physically downloading,
carrying, and uploading data from one node to another. Such
an approach minimizes the transmission power needed at each
node as well as the number of relay nodes in the network.
Recent work (Zavlanos, 2010) considered the synchronous arrival
of pairs of robots at predefined set of stationary rendezvous
points, which was coined as the synchronous rendezvous problem.
Zavalanos developed distributed agreement protocols such that
robots travel between its two adjacent rendezvous points and wait
for a finite time upon arriving one of them to rendezvous with
its ineighbors.

In this work, we observe that synchronous rendezvous
between agents in the ocean-like flows is a variant of the
non-linear oscillator synchronization problem. However, since
robot motions are dictated by the geophysical fluid dynamics,
the synchronized arrival of these mobile sensors must rely on
motion plans and control strategies that are in concert with
the ocean current patterns. As such, the strategy of waiting
at a given rendezvous location (Zavlanos, 2010) would be too
power intensive to achieve with power-constrained vehicles.
Instead, our work leverages the geophysical fluid dynamics
in the selection of candidate rendezvous locations and the
synthesis of the autonomous vehicle control strategy. We employ
a tessellation of the workspace along Lagrangian coherent
structures (LCS). LCS are material lines that organize fluid-flow
transport and can be viewed as the extensions of stable and
unstable manifolds to general time-dependent systems (Haller,
2011). In two-dimensional (2D) flows, LCS are one-dimensional
separating boundaries analogous to ridges defined by local
maximum instability and can be quantified by local measures of
Finite-Time Lyapunov Exponents (FTLEs) (Shadden et al., 2005;
Haller, 2011). Recently, LCS have been shown to correspond to
minimum energy and time optimal paths in the ocean (Inanc
et al., 2005). Despite being global features of the flow field,
it has been shown that LCS can be tracked in real time by
teams of autonomous vehicles using only local measurements
of the flow velocity (Hsieh et al., 2015). Figure 1 shows a
simulation of the dispersion of particulates in a time-varying
wind-driven double-gyre flow where the LCS boundaries are
marked as red curves and the corresponding velocity field
is shown in Figure 2. Figure 1 suggests that (a) Lagrangian
Coherent Structure (LCS) boundaries behave as basin boundaries,
and thus fluid from opposing sides of the boundary do not
mix; (b) in the presence of noise1, particles can cross the LCS
boundaries, and thus LCS denote regions in the flow field where
more escape events occur (Forgoston et al., 2011); and (c) it
makes sense to decompose the oceanic workspace along LCS

1Noise can arise from uncertainty inmodel parameters and/ormeasurement noise.

boundaries and assign sensors to each LCS-bounded region for
large-scale monitoring operations (Hsieh et al., 2014).
While the model shown in Figures 1, 2 presents an idealized
representation of the flow field, a snapshot of the ocean surface
currents in August 2005 (Figure 3) shows a variety of flow
patterns including jets and gyres similar to those in Figures 1, 22.
The states of the loop current can be extracted from sea surface
height data (Zeng et al., 2015; Liu et al., 2016). In fact, the time-
varying wind-driven double-gyre model is often used to model
large-scale ocean circulation (Veronis, 1966).

Leveraging our understanding of LCS, we assume that the
workspace can be modeled as a collection of LCS bounded
regions exhibiting gyre-like flows. Decomposing the workspace
along LCS boundaries allows mobile sensors to leverage the
surrounding fluid dynamics for navigation, thus enabling
an energy aware control strategy (Kularatne et al., 2018;
Wei et al., 2019). Within this geophysical fluid context, the
synchronous rendezvous problem can then be mapped to a
problem akin to the synchronization of networked oscillators
often found in physics, biology, neuroscience, and engineering
(Buck and Buck, 1968; Shuai and Durand, 1999; Pikovsky
et al., 2001). Nevertheless, existing strategies for distributed
oscillator synchronization does not map exactly to the problem
of persistent sensing and continuous monitoring by networks
of agents subject to spatiotemporal-dependent and intermittent
communication (Gazi and Passino, 2003; Sepulchre et al., 2004;
Papachristodoulou and Jadbabaie, 2006). Existing strategies do
not allow for the a priori prediction of the equilibrium consensus
state and existing phase or location synchronization. As such, the
work presented in this paper addresses the coordination problem
through phase or location synchronization.

This paper builds upon our preliminary work (Wei et al.,
2018a) and contributes new synchronous rendezvous strategies
and analyses on the conditions for rendezvous for any pair of
agents undergoing periodic motion in 2D or 3D flows. In Wei
et al. (2018a), we provided strategies for a team of robots to
synchronize their frequencies and realize periodic rendezvous.
However, noise and disturbance in the system may drift the
agents from their synchronized frequencies and result in: (i) some
agents may miss their neighbors in a scheduled rendezvous or
(ii) some of the agents’ rendezvous may be delayed for too long,
and as such is not applicable in the real world. In this work, we
addressed both issues by analyzing the robustness of the overall
synchronization strategy and the susceptibility of network to
uncertainties. Our results show that it is very rare for pairs of
sensors in gyre-like flows never rendezvous and for synchronized
pairs of sensors lose their synchronicity in the presence of noise
or disturbances. The resulting robust strategy is only possible
due to the careful synthesis of ideas from non-linear dynamics,
transport theory, and distributed control.

The rest of the paper is organized as follows: section 2 offers
a more complete problem statement, while section 3 presents the
analysis of the synchronous rendezvous conditions for a single

2For the full animation visit http://svs.gsfc.nasa.gov/vis/a000000/a003800/

a003827/
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FIGURE 1 | Simulation of a contaminant spill in a time-varying wind-driven double-gyre flow. The LCS boundaries are shown as red curves and the red x denotes the

source position of the spill. Black particles denote particulates emanating from the source. The center vertical LCS boundary oscillates horizontally about x = 1.

FIGURE 2 | Phase portrait of the wind-driven double-gyre model at t = 0.

pair of agents, and section 4 provides the synthesis of the short-
range coordination strategies. Section 5 analyzed the effect of
disturbance in the input. Section 6 presents simulation results.
Conclusions and final thoughts close the paper in section 7.

2. PROBLEM FORMULATION

Let the workspace W be composed of N adjacent non-
overlapping gyres similar to Figures 2, 3. Motions within each

gyre can be abstracted to N non-overlapping circular orbits in
R
2 indexed by i ∈ {1, . . . ,N}. Each robot or active drifter

deployed within a gyre is assumed to have limited but enough
control authority to keep it on its designated circular orbit. Thus,
each agent travels along its corresponding orbit continuously and
has the same index as its orbit. In addition, each active drifter
is only capable of local communication and thus has a finite
communication range. The position of agent i on its orbit at time
t is denoted as xi(t) and can be represented as the phase of an
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FIGURE 3 | Snapshot (August 2005) of visualization of ocean surface currents

for June 2005 through December 2007 generated using NASA/JPLs

Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)

ocean model.

oscillator θi(t) ∈ (−π ,π]. Let φi = θi(0) denote the initial phase,
then the single vehicle dynamics is given by

θ̇i(t) = ωi + ui(t), (1)

where ωi denotes the natural frequency where agents move along
the orbit and ui(t) denotes the control input. In general, if ui(t) ≡
0 the agent’s natural period would be given by τi. The agent can
maintain a desired fixed period Ti if there exists a mapping of
ui = f (θi). Notice that any flow that allows an agent to travel on
a closed curve can be modeled as such circular orbits.

Two orbits are tangent to each other if the two gyres share
an LCS boundary. For a tangent pair i and j, the agents
can communicate with each other, stream data, or exchange
information, such as their location, phase, and frequency, as long
as they are both within a proximate neighborhood of the tangent
point γi.j or the rendezvous zone Ŵi,j as shown in Figure 4. The
actual range of the rendezvous zone may vary according to the
shapes and the states of the flows. For example, the rendezvous
zone can be

Ŵi.j =
{

x ∈ R
2|‖x− γi,j‖ < Bij

}

,

where Bi,j is a radius pre-selected according to the
communication range of both agents i and j. For the agent
traveling along orbit i, we mark the phase of the tangential
point γi,j as 9i,j, and the phases of it entering and exiting

Ŵi,j as 9−
i,j and 9+

i,j , with 9i,j,9
−
i,j ,9

+
i,j ∈ (−π ,π]. The

rendezvous condition xi ∈ Ŵi,j ∋ xj is therefore equivalent to

θi ∈ (9−
i,j ,9

+
i,j ) ∧ θj ∈ (9−

j,i ,9
+
j,i ).

Agents are only aware of the existence of other neighboring
agents when they are both within the rendezvous zones. We call
the rendezvous duration the period when a pair of agents are
both within the rendezvous zone. Agents can update their control
actions, ui, using the exchanged information when they are in the
rendezvous zones. Once agents leave the rendezvous zones, they
continue executing the same control input which is not updated
until the next time they enter the rendezvous zone and exchange
information with a neighboring agent. Without loss of generality,

FIGURE 4 | The details of a rendezvous zone Ŵi,j with the entering and the

exiting phases 9−
i,j and 9

+
i,j . The shape of the rendezvous zone may vary

according to the states of the flows.

we assume ui(t) = 0 prior to an agent achieving rendezvous with
any neighboring agents for the very first time. For pairs of agents
that successfully rendezvous periodically, their rendezvous period
is denoted by Ti,j. A pair of agents are synchronized if Ti,j is shorter
than a pre-selected limit. The collection ofmultiple tangent orbits
can be abstract to an undirected graph G = (V , E). Each orbit
with an agent is represented as a vertex inV = {v1, . . . vN}, and an
edge (i, j) ∈ E if orbits i and j are tangent to each other. Figure 5
shows an example of how a network of 7 agents is represented as
a graph.

In this work, we are interested in the synchronous rendezvous
of a team of agents deployed on a connected network of
orbits. The agents coordinate their motions with neighbors
they discovered in the rendezvous zone such that rendezvous
occurs periodically and the duration of each rendezvous event
is maximized. The problems addressed in this work are listed
as follows:

For a team of agents indexed as i = 1, . . . ,N, each deployed
in a circular orbit and together they form a network that can
be described as a connected undirected graph G = (V , E). The
dynamics of each agent is defined as Equation (1). For any pair of
(i, j) ∈ E ,9−

i,j ,9
+
i,j ,9

−
j,i ,9

+
j,i are given.

P1: For (i, j) ∈ E , and ui(t) = f (θi(t)), uj(t) = f (θj(t)) specified
for t ≥ t0, we test whether

∃trend > t0

s.t. θi(t
rend) ∈ (9−

i,j ,9
+
i,j ) ∧ θj(t

rend) ∈ (9−
j,i ,9

+
j,i ).

If there exists trend satisfying the conditions above, we consider
agent i and j are able to rendezvous.

P2: We solve for the controller to guarantee
further rendezvous

ui(t),∀i = 1, . . . ,N,∀t > t0

s.t. ∃trendij > t,∀t > t0,∀i, j

θi(t
rend
ij ) ∈ (9−

i,j ,9
+
i,j ) ∧ θj(t

rend
ij ) ∈ (9−

j,i ,9
+
j,i ).
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FIGURE 5 | The layout of seven agents on their orbits, and the abstraction to a graph.

For any pair (i, j) ∈ E , let the dynamics be θ̇i/j(t) = ωi/j+ui/j(t)+
ηi/j(t), where ηi/j is a random variable. Let ui/j the same as the
solution of P2.

P3.1: If ηi,j is a random variable on a bounded interval
[−ηs, ηs], we solve for ηs, such that the rendezvous will still be
guaranteed to take place.

P3.2: If ηi,j is a Gaussian white noise N (µ = 0, σ 2), we
solve for kσ , such that the rendezvous will still take place with

a confidence level of
(

P(kσ )
)2
.

3. RENDEZVOUS CONDITION BETWEEN A
PAIR OF AGENTS

Whether a pair of oscillators would achieve rendezvous
spontaneously has been studied in Wei et al. (2018a,b). In Wei
et al. (2018a), oscillators were assumed to be one-dimensional,
with at most two rendezvous zones on the left/right end of the
line as a proximity around 0 or π . The quest of conditions
led to a spontaneous rendezvous between a pair of agents and
was addressed through integer programming. Wei et al. (2018b)
followed similar methods and derived a decision function
F(ωi,ωj,φi,φj) → {1, 0} to determine the possibility of a
spontaneous rendezvous based on the initial phases and natural
frequencies of both parties.

In this section we analyze the rendezvous condition for a more
general case that, by knowing the current phases at t = t0 and
future periodic control schemes (for t ≥ t0) for both agents i and
j, whether a further rendezvous would occur or not. As the future
motion of both agents is known through θi/j = ωi/j + ui/j, the
time before either agent’s first entrance of the rendezvous zone
from now on is denoted as1ti,j (or1tj,i) and satisfies

∫ 1ti,j

0
ωi + ui(t0 + t)dt = 9−

i,j − θi(t0)
∫ 1tj,i

0
ωj + uj(t0 + t)dt = 9−

j,i − θj(t0) (2)

and the time either agent enters the rendezvous zone for the
m-th time is tm−

i,j = t0 + 1ti,j + (m − 1)Ti (or t
m−
j,i = t0 +

1tj,i + (m − 1)Tj), where Ti and Tj are the periods of both

agents. For a pair of agents with no rendezvous before, we take

θi/j(t0) = φi/j and ui/j ≡ 0. Then 1ti,j/j,i =
9−
i,j/j,i−φi/j
ωi/j

, and

tm−
i,j/j,i = 1ti,j/j,i + (m− 1)τi/j.

The time either agent spends to travel through the rendezvous
zone is denoted as δti,j (or δtj,i) such that

∫ δti,j

0
ωi + ui(t

m−
i,j + t)dt = 9+

i,j −9
−
i,j

∫ δtj,i

0
ωj + uj(t

m−
j,i + t)dt = 9+

j,i −9
−
j,i . (3)

For a pair of agents with no rendezvous before, δti,j/j,i =
9+
i,j/j,i−9

−
i,j/j,i

ωi/j
.

Therefore the time that agent i or j is in the rendezvous zone is

⋃

m=1,2,...

(

tm−
i,j , tm−

i,j + δti,j
)

or
⋃

m=1,2,...

(

tm−
j,i , tm−

j,i + δtj,i
)

(4)

respectively. The rendezvous occurs when ∃trend > t0 and ki, kj ∈
N satisfying the following inequalities (as shown in Figure 6).

t
ki−
i,j < trend < t

ki−
i,j + δti,j,

and t
kj−
j,i < trend < t

kj−
j,i + δtj,i. (5)

For Equation (5) to hold, the time set for i and j to appear in the
rendezvous zone has to overlap, which means i should enter the
rendezvous zone before j exists and vice versa, which gives

∃(ki, kj) ∈ N
2, s.t.

1ti,j + kiTi < 1tj,i + δtj,i + kjTj,

and 1ti,j + δti,j + kiTi > 1tj,i + kjTj.

By rearranging the inequalities we get

Lemma 3.1. Consider two agents i and j travel on their
corresponding orbits periodically. The time set that agent i or j
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FIGURE 6 | Time schedule for a pair of agents. Shaded parts indicate the time the agents spent in the rendezvous zone. A rendezvous will occur if and only if there is

an overlap between shaded parts on both axis.

appears in a pre-defined rendezvous zone is defined as Equation
(4). Then i and j are able to rendezvous in the future if and only if

∃(ki, kj) ∈ N
2, s.t.

kiTi − kjTj ∈
(

1tj,i −1ti,j − δti,j, 1tj,i −1ti,j + δtj,i
)

. (6)

Proof: See Wei et al. (2018a), Corollary 1 and Wei et al. (2018b),
Lemma 1.

The solution space S of Equation (6) is a strip bounded by two

parallel lines of slope Ti
Tj
. Integer solutions are guaranteed to

exist as long as S is wider than one unit on either dimension.
Therefore, we have

Corollary 3.1.1. Consider two agents i and j travel on their
corresponding orbits periodically. The time set that agent i or j
appears in a pre-defined rendezvous zone is defined as Equation

(4). Then i and j are able to rendezvous in the future if
δi,j+δj,i

Ti
> 1

or
δi,j+δj,i

Tj
> 1.

Proof: Corollary 3.1.1 follow directly the proof of Lemma 3.1.

Corollary 3.1.1 is a weak sufficient condition. However, further
analysis on Lemma 3.1 reveals much tighter results.

Corollary 3.1.2. Consider two agents i and j travel on their
corresponding orbits periodically. WLOG, assuming that Ti ≤ Tj.
The time set that agent i or j appears in a pre-defined rendezvous
zone is defined as Equation (4). Then i and j will never rendezvous
in future iff.

∀kj ∈ N, ∃ki ∈ N, s.t.

ki ∈
(

kj
Tj

Ti
+
1tj,i −1ti,j + δtj,i

Ti
− 1, kj

Tj

Ti
+
1tj,i −1ti,j − δti,j

Ti

)

.

(7)

Proof: Corollary 3.1.2 follows directly the proof of Lemma 3.1.

Notice that Equation (7) holds only when δtj,i − Ti < −δti,j. If
there is δtj,i + δti,j ≥ Ti, Equation (7) cannot hold and i and j will
rendezvous. This echos Corollary 3.1.1.

We now analyze Equation (7) in two categories: (i) Ti
Tj

is a

rational number, and Ti
Tj

can be reduced to Ii
Ij
with Ii, Ij ∈ Z

+ are

co-prime; and (ii) Ti
Tj

is an irrational number. For the first case,

Lemma 3.2. Consider two agents i and j travel on their
corresponding orbits periodically. The time set that agent i or j
appears in a pre-defined rendezvous zone is defined as Equation

(4), with Ti
Tj

= Ii
Ij
, and Ii

Ij
is a proper irreducible fraction. Then i

and j are guaranteed to rendezvous in the future if the set

{

(Ii, Ij) ∈ R
2|IiTi − (Ij + 1)Tj +1ti,j −1tj,i + δti,j < 0 ∧ IiTi

−IjTj +1ti,j −1tj,i − δtj,i > 0
}

has a non-empty intersection with N2

Proof: Follow the steps for (Wei et al., 2018a, Corollary 1).

Notice that Lemma 3.2 suggests a similar but stronger result as
in (Wei et al., 2018a, Proposition 2), which is derived following
Khinchine’s flatness theorem (as in Dadush, 2012).

Lemma 3.2 suggests that after a time period of length T =
IjTi = IiTj, both agents would have completed integer multiples
of rounds and appears at the same locations of t0. The rendezvous
must happen before this t0 + T or a future rendezvous will never
occur. The test of whether a pair of agents are able to discover
each other (e.g., rendezvous under an unforced fashion for the
first time) can be tested within a finite time window. For any
trend that both θi(trend) and θj(trend) are inside the rendezvous
zone, θi(trend + T) and θj(trend + T) will be as well. Thus, i and
j are synchronized directly, and T can be seen as a conservative
estimate of the rendezvous period of i and j, or to say Ti,j ≤ T.

When Ti
Tj
is irrational, there will not be a periodic pattern in the

agents’ performance, and therefore we can neither test for a future
rendezvous within a finite time nor guarantee a synchronized
recurrence of rendezvous. On the other hand, some other results
can be derived, saying that i and j always rendezvous in this case.

Lemma 3.3. Consider two agents i and j travel on their
corresponding orbits periodically. The time set that agent i or j
appears in a pre-defined rendezvous zone is defined as Equation

(4), with Ti
Tj

an irrational number, and at least one of δti,j and δtj,i

is non-zero. Then i and j rendezvous infinitely often.
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Proof: See Appendix.

Together with previous lemmas, the cases that agents i and j
never rendezvous is significantly narrowed to a rational ratio of
Ti and Tj with some certain combinations of rendezvous zones
and current phases.

Theorem 3.4. Consider two agents i and j travel on their
corresponding orbits periodically. WLOG, assuming Ti ≤ Tj. The
time set that agent i or j appears in a pre-defined rendezvous zone
is defined as Equation (4). Then i and j are not able to rendezvous

if and only if (i) Ti
Tj

is a rational number; and (ii) the condition in

Equation (7) holds for some ki ∈ 1, . . . , Ij and kj ∈ 1, . . . , Ii.

Corollary 3.4.1. Consider two agents i and j travel on their
corresponding orbits periodically. The time set that agent i or j
appears in a pre-defined rendezvous zone is defined as Equation

(4). Then i and j are guaranteed to rendezvous if (i) Ti
Tj

is an

irrational number; or (ii) δti,j + δtj,i >
Tj
Ij
.

Proof: Theorem 3.4 and its corollary follow directly the proof of
previous lemmas and corollaries.

Since the set of rational numbers has a Lebesgue measure of zero,
we consider it is almost impossible for a pair of agents tomaintain
frequencies with an exact rational ratio. Practically, for agents
actuated to maintain such frequencies intentionally, noises and
disturbance always arise to deviate the agents and result in (most
likely) irrational ratios. According to our analysis, any tangent
pair of agents are almost always able to discover each other and
are re-united in the rendezvous region. The sensitivity analysis is
provided in section 5.

4. SYNCHRONOUS RENDEZVOUS AND
DESIGN OF CONTROLLERS

4.1. Synchronizing a Pair of Agents
Although a pair of agents are able to reach rendezvous relying
solely on their frequencies holding an irrational ratio, such
rendezvous cannot happen periodically, and the next rendezvous
may not occur until after a long interval. To synchronize a pair
into periodic rendezvous, the agents’ motion will be actuated
to yield desired frequencies. For agents i and j with a common
rendezvous zoneŴi,j, ideally, either agent shall travel at a constant
angular velocity outside of the rendezvous zone, such that it is
able to return to the zone after completing integer multiples of

periods Ti/j. A periodic rendezvous occurs only when Ti
Tj

is a

rational number, and if i completes mi periods in approximately
the same amount of time of j completing mj periods, where
mi,mj ∈ N. The rendezvous period Ti,j is therefore a common
multiple of Ti and Tj that satisfies Ti,j = miTi = mjTj, apparently,
mj

mi
= Ti

Tj
. If Tij is shorter than a finite time limit, we consider this

pair of agents reaches a synchronous rendezvous.
When the pair are both in the rendezvous zone, a coordinating

controller can be applied to actuate them such that a new pair
of angular velocities with a desired rational ratio will be reached

and maintained before either party exiting the rendezvous
zone. Meanwhile, this controller is tasked with maximizing the
rendezvous duration, which can be realized by regulating their
motions to align them before exiting the rendezvous zone. In
this section we show an example of designing a time-optimal
controller to adjust both agents’ angular velocities to the mean
value, and align the agents to hit the tangent point at the same
time, which satisfies

θi(t)− θj(t) = 9i,j −9j,i + 2kπ , k ∈ Z.

The synchronization task is accomplished in a split way. WLOG
agent j adjusts its frequency to the desired value, and the other
agent takes j as an anchor and adjusts its own frequency and
phase to track agent j. In this case, the desired frequency is
the mean of the pair’s angular velocity before the rendezvous
was initiated. This new frequency shall be achieved by agent j
through applying

uj(t) =
θ̇i(t

rend)+ θ̇j(trend)
2

− θ̇j(trend). (8)

The controller letting agent i track j is set to be time-optimal to
give the pair the best chance to accomplish the synchronization
task within a very limited rendezvous duration. The controller
can be implemented by defining the error states as

ǫ1 = θi(t)− θj(t)−
⌊

θi(t)− θj(t)
2π

⌋

2π −
(

ψi,j − ψj,i

)

,

ǫ2 = θ̇i(t)− θ̇j(t).

with the error dynamics as follows

[

ǫ̇1
ǫ̇2

]

=
[

0 1
0 0

] [

ǫ1
ǫ2

]

+
[

0
vi,j

]

. (9)

The control input in Equation (9), vi,j, is the difference between
ui and uj. As uj is determined by Equation (8), ui can be acquired
straightforwardly by designing a bang-bang controller following
Athans and Falb (2007). The details are hereby omitted. Notice
that the controllers here are designed to be time optimal, and we
set the desired frequencies as the mean value of both agents as
an example. It is also possible to design controllers with other
optimization objectives, such as minimizing the energy required.

4.2. Synchronizing Multiple Agents in a
Network
After rendezvous was initiated between a pair of agents, they
synchronize themselves to a common rendezvous period that
should become invariant. Such synchronization can be extended
to a connected network of multiple agents. Wei et al. (2018a)
proposed one way that could be used in a chain of one-
dimensional oscillators, such that any pair of agents would have
only one chance of actuation. A pair of agents that have never
actuated their frequencies would both be synchronized to the
average angular velocity of theirs while reaching rendezvous
and be locked to this committed frequency. When any of
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the committed agents reaches rendezvous simultaneously with
an uncommitted agent, the uncommitted one would join this
committed frequency. This protocol can be extended to higher
dimensional agents that form chains or trees. It was also shown in
Wei et al. (2018a) that the implementation of this protocol may
lead to the creation of sub-graphs of synchronized agents, with
each sub-graph having its own committed frequency.

Wei et al. (2018b) suggests an alternative synchronization
policy which can be implemented if all agents are allowed to
modify their frequencies on a continuous basis. Interaction
between agents is still bounded to the intermittent and brief
rendezvous duration, but every pair of agents will switch to their
average angular velocity while in rendezvous,

θ̇i(t
+) = θ̇j(t

+) =
1

2

(

θ̇i(t
rend)+ θ̇j(trend)

)

. (10)

Wei et al. (2018b) shows that the frequency synchronization
propagates to the whole network if all agents are connected
intermittently, and eventually the agents converge to a common
oscillating frequency:

Theorem 4.1. For N agents connected over a graph, each having
an initial frequency θ̇i(0) = ωi for i = 1, . . . ,N, and assuming
that the condition of Theorem 3.4 is always false for any pair of
adjacent agents, then all agents’ frequencies converge to the average
of their initial values, i.e., for all i ∈ {1, . . . ,N}, limt→∞ θ̇i(t) =
ω̄N = 1

N

∑N
n=1 ωn.

Proof: See Appendix.

The discussion in section 3 points out it is extremely rare for a
neighboring pair of agents not to rendezvous in practice. In the
even rarer cases that certain links in the graph are sabotaged due
to a loss of rendezvous occurring (e.g., all pairs forming theses
links meet the very rare condition of Theorem 3.4,) and the graph
becomes disconnected, the network shall exhibit several isolated
components, with each isolated component achieving its own
synchronization.

Section 3 also points out that one key factor to make sure
a pair of agents always rendezvous in the future is that noise
and disturbance exist in the system which deviate the frequency
ratio to a most likely irrational number. It is also worth noticing
that, for an already synchronized pair of agents, the achieved
(rational) frequency ratio may also be deviated by the inevitable
noise and disturbance. The resulting irrational ratio may not
cause a total loss of future rendezvous, but is still able to result in a
much longer rendezvous period that is not applicable for certain
real world cases. In section 5 we will analyze the effect of noise
and disturbance.

5. SENSITIVITY ANALYSIS

The analysis in section 3 provides a theoretical basis for
a promised future rendezvous for any pair of agents on
neighboring circular orbits. However, in practice, there are at
least two types of factors that may cause a loss of a synchronized
rendezvous scheme: (i) There is usually an upper bound of

the rendezvous period due to the requirements of the specific
application, for example (but not limited to) the recharging of an
agent, uploading data from an agent’s limited storage, or a regular
recalibration of an agent; and (ii) the disturbance and noise that
accumulated in the agents’ dynamics, especially when an agent
is not in rendezvous, which deviate the agents’ angular velocities
from the desired value.

Definition 1. If agents i and j are synchronized to a periodic
rendezvous that occurs every Ti,j = miTi = mjTj amount of
time, with mi.mj ∈ N, and mi,mj co-prime, we say that agents
i and j are synchronized to an mi-mj rendezvous scheme. A
synchronized pair fails to maintain itsmi-mj rendezvous scheme
is said to be desynchronized.

In this section we analyze in what conditions the effect of
the disturbance and noise will cause a synchronized pair of
agents fail to rendezvous in their pre-selected scheme and, when
such desynchronization happens, whether they would be able
to synchronize themselves into another periodic rendezvous
scheme. Consider agents i and j on a pre-selected mi-mj scheme,

where WLOG Ti < Tj, and Ti,j < T̄, T̄ is the required
upper bound of the rendezvous period. Between two consecutive
rendezvous, the control inputs remain constant, such that

(ωi/j + ui/j)Ti,j = 2π . (11)

The agent dynamics contains certain noise that results in a
disturbance on the control input. The dynamics shown in
Equation (1) is therefore rewritten as

θ̇i/j(t) = ωi/j +
(

ui/j(t)+ ηi/j
)

, (12)

where ηi/j is the disturbance associated with agent i and j. Either
of ηi/j is an independent random variable. The actual period of

either agent, T̃i/j satisfies

ωi/jT̃i/j +
∫ T̃i/j

0

(

ui/j(t)+ ηi/j
)

dt = 2π . (13)

We discuss two typical types of η, (i) that ηi/j is a random variable
on a bounded interval [−ηs, ηs]; and (ii) that ηi/j is unbounded,
but a Gaussian white noise with a mean of µ = 0 and a standard
deviation σ . In the first case that η is bounded, we have T̃i

bounded by T̃i ∈
[

2π
ωi+ui+ηs ,

2π
ωi+ui−ηs

]

. Together with Equation

(11), we have

Ti −
ηsTi

ωi + ui + ηs
≤ T̃i ≤ Ti +

ηsTi

ωi + ui − ηs
, (14)

and T̃j bounded the same way.

Let αi,j = T̃i
T̃j

denote the portion that j completes αi,j of a circle

while i completes one circle. According to Equation (14), αi,j is
bounded by

ωj + uj − ηs
ωi + ui + ηs

≤ αi,j ≤
ωj + uj + ηs
ωi + ui − ηs

. (15)
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Take the time that i exits the rendezvous zone as the
beginning of the next period, and let the time that j exits

the rendezvous zone as 1t̃j,i ∈
(

− δti,j
Ti

T̃i,
δtj,i
Tj

T̃j

)

. The

time window that i is able to rendezvous with j while

completing its mi-th circle is
[

(mi −
δti,j
Ti

)T̃i,miT̃i

]

, and j is

able to rendezvous with i while completing its mj-th circle is
[

(mj −
δtj,i
Tj

)T̃j +1t̃j,i,mjT̃j +1t̃j,i

]

.

Lemma 5.1. For a pair of tangent agents with dynamics defined
as in (12), and η is a random variable on a bounded
interval [−ηs, ηs]. A controller is designed following section 4 to
synchronize them to a pair of desired periods Ti and Tj, such
that miTi = mjTj, with mi,mj ∈ N. The pair is guaranteed to
rendezvous on an mi-mj scheme under the effect of disturbance

iff. ∃1t̃j,i ∈
(

− δti,j
Ti

T̃i,
δtj,i
Tj

T̃j

)

, such that ∀αi,j = T̃i
T̃j

∈
[

ωj+uj−ηs
ωi+ui+ηs ,

ωj+uj+ηs
ωi+ui−ηs

]

, the following inequalities are satisfied.

miT̃i > (mj −
δtj,i

Tj
)T̃j +1t̃j,i,

and mjT̃j +1t̃j,i > (mi −
δti,j

Ti
)T̃i. (16)

Proof: Given the agents are aligned such that 1t̃j,i satisfies
(16), there is always an overlap of agents i and j’s time in
the rendezvous zone. While both agents find themselves in the
rendezvous zone, they are able to actuate themselves and re-
align their phases to satisfy (16), expecting the next rendezvous
to occur. The pair therefore conducts a rendezvous on an mi-mj

periodic scheme.

Since in practice, both
δtj,i
Tj

and
δti,j
Ti

are infinitesimal,

sometimes we may take
δtj,i
Tj

= δti,j
Ti

here, which yields the

following result.

Theorem 5.2. For a pair of tangent agents with dynamics
defined as in (12), and η is a random variable on a bounded
interval [−ηs, ηs]. A controller is designed following section 4 to

FIGURE 8 | Seventeen agents converge to the same frequency.

FIGURE 7 | Seven agents converge to the same frequency; the black dash line shows how 1(t) decreases.
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synchronize them to a pair of desired periods Ti and Tj, such
that miTi = mjTj, with mi,mj ∈ N. The pair is guaranteed to
rendezvous on an mi-mj scheme under the effect of disturbance if
and only if

ηs <
ωi + ui

mi





mi
δtj,i
Tj

+mj
δti,j
Ti

mi +mj +
∣

∣

∣

δti,j
Ti

− δtj,i
Tj

∣

∣

∣



 . (17)

If the rendezvous zone is defined such
δtj,i
Tj

= δti,j
Ti

, then

ηs <
δti,j (ωi + ui)

miTi
. (18)

Proof: See Appendix.

For disturbance greater than the limit provided in Corollary
5.2, agents are not able to rendezvous in the pre-selected mi-mj

scheme. However, it is still possible that the pair may fall into

another scheme. We denote λi =
9+
i,j−9

−
i,j

2π , and λj =
9+
j,i−9

−
j,i

2π , the
following result can be derived.

Lemma 5.3. For a pair of tangent agents with dynamics defined as

in (12), as T̃i and T̃j determined through (13), and αi,j = T̃i
T̃j
, the

pair is guaranteed to rendezvous on an mi-mj scheme if and only if

αi,j ∈
(

mj − λj
mi

,
mj

mi − λi

)

. (19)

Proof: Lemma 5.3 follow directly the proof of Lemma 5.1.

If the requirements of the specific application arise that the pair
needs to rendezvous before T̄ amount of time, if T̄ ≥ T̃j, the
condition becomes

FIGURE 9 | Two-hundred agents converge to four subgroups.

Lemma 5.4. For a pair of tangent agents with dynamics defined

as in (12). As T̃i and T̃j determined through (13), and αi,j = T̃i
T̃j
,

the pair is guaranteed to rendezvous before agent j completes Mj

periods if and only if

αi,j ∈
Mj
⋃

mj=1

⋃

∀mi∈N

(

mj − λj
mi

,
mj

mi − λi

)

. (20)

Proof: This lemma holds directly following Lemma 5.3.

For any given pair of mi and mj, the range of a valid αi,j is a

neighborhood around
mj

mi
. For a fixedmj, with the increase ofmi,

the distribution of
mj

mi
becomesmore andmore dense.Whenmi is

great enough, all valid ranges of αi,j overlap with each other and
form a continuous range.

Theorem 5.5. For a pair of tangent agents with dynamics defined

as in (12). As T̃i and T̃j determined through (13), and αi,j = T̃i
T̃j
, the

pair is guaranteed to rendezvous within T̄ <∞ amount of time if

T̃j ≤ T̄ and αi,j <
1

Mi − λi
,

where Mi =
⌈1− λi − λj + λiλj

λj

⌉

. (21)

Proof: See Appendix.

Corollary 5.5.1. For a pair of tangent agents with dynamics
defined as in (12), and η is a random variable on a bounded
interval [−ηs, ηs], a controller is designed following section 4 to
synchronize them to a pair of desired periods Ti and Tj, such
that miTi = mjTj, with mi,mj ∈ N. The pair is guaranteed to
rendezvous under the effect of disturbance if

ηs <
T̄(ωj + uj)− 2π

T̄
and ηs <

(ωi + ui)− (Mi − λi)(ωj + uj)

Mi − λi + 1

where Mi =
⌈1− λi − λj + λiλj

λj

⌉

.

FIGURE 10 | The rendezvous network formed by the agents synchronized

following the second approach. An edge means that the pair is able to

rendezvous periodically with a period no longer than T̄ = 30 s.
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Notice that Theorem 5.5 and Corollary 5.5.1 suggest that there
exists some gap between the valid ranges of αi,j, such that for
mj ≤ Mj, i and j are not guaranteed for a future rendezvous. It

is because the set of all rational numbers
mj

mi
with a finitemj is not

dense on the real number axis. If mj can go infinitely large such
that all rational numbers are included, the gaps are narrowed to
only some points upon certain rational numbers.

For the case that η is not bounded but a Gaussian white

noise N (µ = 0, σ 2), the actual distribution of αi,j = ωj+uj+ηi
ωi+ui+ηj

is a Cauchy distribution with both tails determined case by
case through the specific values of ωi + ui and ωj + uj. As
a necessary and sufficient condition on η that yields certain
rendezvous schemes with a good confidence is hard to solve
analytically, a sufficient condition is still relatively easy to obtain.
The probability that a normal deviate lies in the range between
(µ− kσ ,µ+ kσ ) is given by

P(kσ ) = F(µ+ kσ )− F(µ− kσ ) = erf

(

k
√
2

)

,

where F is the cumulative distribution function.
The probability of αi,j falls between the bounds

αi,j ∈
(

ωj + uj − kσ

ωi + ui + kσ
,
ωj + uj + kσ

ωi + ui − kσ

)

is simply
(

P(kσ )
)2
. Thus we have

Theorem 5.6. For a pair of tangent agents with dynamics defined
as in (12), and each of ηi,j isN (µ = 0, σ 2). A controller is designed
following section 4 to synchronize them to a pair of desired periods
Ti and Tj, such that miTi = mjTj, with mi,mj ∈ N. If the

rendezvous zone is defined such that
δtj,i
Tj

= δti,j
Ti

holds, the pair

will rendezvous on an mi-mj scheme with a confidence level of at

least
(

P(kσ )
)2

under the effect of disturbance if

kσ <
δti,j (ωi + ui)

2miTi − δti,j
. (22)

Theorem 5.7. For a pair of tangent agents with dynamics defined
as in (12), and each of ηi,j is N (µ = 0, σ 2). A controller is
designed following section 4 to synchronize them to a pair of desired
periods Ti and Tj, such that miTi = mjTj, with mi,mj ∈ N. will
rendezvous on a periodic scheme with a confidence level of at least
(

P(kσ )
)2

under the effect of disturbance if

(Mi − λi)(ωj + uj + kσ ) < ωi + ui − kσ ,

where Mi =
⌈1− λi − λj + λiλj

λj

⌉

.

Proof: Both theorems follow Theorem 5.2 and Corollary
5.5.1 directly.

6. SIMULATION

In this section we show simulations of the synchronization and
desynchronization of a network of multiple agents. We first
show seven agents deployed as shown in Figure 5 synchronized
without existence of noise or disturbance. The initial phases of
the agents are randomly generated, and the natural frequencies
of all agents were randomly selected between [0.1π , 0.25π].

FIGURE 12 | The rendezvous network after this group of agents has been

desynchronized due to the existence of a disturbance. Agent 3 is disconnected

from all the neighbors, and the network was split into two sub-graphs.

FIGURE 11 | The comparison between the rendezvous events in the beginning and near the end of the simulation. Every bar has two readings, indicating that the two

agents are in rendezvous at this time. The width of each bar is the rendezvous duration.
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FIGURE 13 | The comparison between the rendezvous events in the beginning and near the end of the simulation. The bar indicating the rendezvous between agent

1 and 3 disappeared below the axis (after 400 s of simulation).

FIGURE 14 | The control input to align an agent’s phases with any companion it is in rendezvous with. Agent 3 failed to rendezvous with any of its neighbors since

∼ 240 s, and therefore no control input was generated after that time.

Any agent would only know about the others after rendezvous
with them simultaneously. Figure 7 shows the synchronization
of their frequencies. The dash line shows 1(t). The system is
synchronized while1(t) decreased to zero.

Figures 8, 9 show more examples of synchronizing 17 or 200
agents. Notice that in Figure 9 the network of the agents were not
connected, but separated into four sub-graphs.

Now we show the effect of the noise and disturbance on the
synchronized system. We take the synchronized groups formed
by seven agents, which is shown as in Figure 10. We introduce
white noise to all agents’ dynamics. The noise follows a normal
distribution with zero mean and different levels of σ . A pair of
agents are considered to be synchronized with the existence of
noise only if they are able to rendezvous every T̄ = 30s. By
choosing 3σ = ηs, the network almost always maintains its
current configuration. We ran the simulation for a 50,000 s time
window. Figure 11 shows a comparison between the rendezvous
events in the very beginning (0–20 s) and close to the end

(49, 972–49, 992 s) of the simulation. The distribution of the
rendezvous events are almost identical in both time periods. Only
some of the rendezvous events are shorter due to the accumulated
disturbance delaying one of them from joining the rendezvous
as scheduled.

While the disturbance is set to be a normal distribution
of zero mean, and 2σ = ηs, the network is more likely to
be desynchronized.

Figure 12 shows an example that the network is disconnected
under this level of disturbance. Figure 13 is the comparison
between the rendezvous events on the first 20 s and after 400 s.
We can see that the short bar indicating the rendezvous between
1 and 3 disappeared. Figure 14 shows the control input onAgents
3, 4, and 6 to align them with their companions in rendezvous.
Notice that the controllers are only activated while an agent is
in rendezvous. We can see that Agent 4 and 6 have rendezvous
events all the time, but Agent 3 has no rendezvous event with any
other agent after∼ 240 s.
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7. CONCLUSION

This paper addressed a synchronous rendezvous problem for a
network of mobile sensors monitoring large-scale ocean regions
bounded by LCS. It approximated the coherent structures as
circular orbits tangential to each other, and assuming that
the agents flowing along these orbits can only interact while
in close proximity, this formulation gave rise to a graph of
intermittently interacting 2-D oscillators. Conditions under
which a pair of oscillators can rendezvous solely relying on
flow dynamics were presented, controllers were designed to
lock them into subsequent periodic rendezvous, and sensitivity
analysis was provided for two typical types of disturbance on the
control input.

The results in this paper can also find use in other fields,
such as perimeter surveillance or space docking. In this work,
agents are assumed to travel only along their own circular orbits.

Future directions include allowing agents to drive off the orbits
to explore the inner circle of the bounded region and to optimally
plan its trajectory subject to the ocean environment.
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APPENDIX

Lemma 3.3

Proof: Let z ∈ Z to be the ceiling of | 2π
ψ+
i,j−ψ

−
i,j

|. The orbit of agent
i can therefore be divided into z consecutive parts, with one of
them to be totally covered by the rendezvous zone for i.

Without loss of generality, take the time point when agent
j enters the rendezvous zone as t = 0, and the phase of i at
this time as θi(0). Before i and j rendezvous for the first time, j
has a constant angular velocity θ̇j, and enters rendezvous zone

at the time points 2kπ
θ̇j

, for k ∈ N+. The corresponding phases

of i are θi(0) + 2kπ θ̇i
θ̇j

= θi(0) + kq · (2π). If ∃k such that

(kq− ⌊kq⌋) · 2π + θi(0) ∈ [ψ−
i,j ,ψ

+
i,j ], then i and j rendezvous.

An irrational q can be approximated arbitrarily close from
above and below by a rational, such that there exists a rational

number a
b
with a, b ∈ Z

+ such that a
b
< q, and

a+ 1
z

b
> q. If

k = b, then (kq− ⌊kq⌋) · 2π ∈ (0, 2πz ). If k is an integer multiple
of b, then the corresponding phase of i can match every of the z
parts on the orbit. Since one of them is a subset of the rendezvous
zone, agent iwill eventually be in the rendezvous zone when j just
enters the zone.

Theorem 4.1

Proof: Let ϑi(t) = θ̇i(t) − ω̄N , and 2(t) =
∑N

i=1 |ϑi(t)|. The
theorem’s statement is equivalent to having limt→∞1(t) = 0.

Pick randomly any pair (i, j) of agents in rendezvous, and
consider the time interval between the time of their encounter,
trend, and the minimum time t̄ between any of them departing
the rendezvous region and any other pair of agents coming into
rendezvous. For t ∈ (trend, t̄),

|ϑi(t)| + |ϑj(t)| = |θ̇i(trend)+ θ̇j(trend)− 2ω̄N |.

If ϑi(t) and ϑj(t) share the same sign, then

|ϑi(t)| + |ϑj(t)| = |ϑi(trend)| + |ϑj(trend)|. (23)

Thus note that2(t) remains constant for t ∈ (trend, t̄) and is non-
increasing over consecutive rendezvous events. It can be shown
that2(t) cannot remain constant for ever.

While the network of oscillators has not yet reached consensus
on their frequencies, there is bound to be at least one agent
with angular velocity greater than ω̄N , and at least one with
angular velocity smaller than ω̄N . If one pair of those oscillators
with frequencies on opposite sides of ω̄N are in fact neighbors,
then when they meet (and the falsification of the condition of
Theorem 3.4 guarantees they will), 2(t) will decrease. Indeed,
while2(t) 6= 0, rendezvous between neighbors on opposite sides
of ω̄N is bound to occur because the network is assumed to be
connected. Agents on opposite sides of ω̄N still interact via shared
neighbors: eventually pairs of adjacent agents with frequencies at
different sides of ω̄N will appear. Otherwise, at least two isolated
sub-graphs would exist in the network, which would contradict
the connectivity assumption.

Theorem 5.2

Proof: Rearranging (16) in section 5 yields

miT̃i −mjT̃j −
δti,j

Ti
T̃i < 1t̃j,i < miT̃i −mjT̃j +

δtj,i

Tj
T̃j. (24)

For a valid 1t̃j,i to exist, we have that (i) the left hand side of

(24) must be strictly less than the right hand side, and (ii) the

range of (24) must overlap with
(

− δti,j
Ti

T̃i,
δtj,i
Tj

T̃j

)

. The first part

of the condition holds directly for both
δti,j
Ti

and
δtj,i
Tj

are positive.

The second part holds iff. the following inequalities hold for all
possible αi,j in the range of (15) in section 5.

miT̃i −mjT̃j −
δti,j

Ti
T̃i <

δtj,i

Tj
T̃j,

and −
δti,j

Ti
T̃i < miT̃i −mjT̃j +

δtj,i

Tj
T̃j. (25)

Rearranging (25) provides us with

mj −
δtj,i
Tj

mi +
δti,j
Ti

<
T̃i

T̃j

<
mj +

δtj,i
Tj

mi −
δti,j
Ti

. (26)

Since (26) holds for all αi,j exists in (15) in section 5, it is clear that
we should have

mj −
δtj,i
Tj

mi +
δti,j
Ti

<
ωj + uj − ηs
ωi + ui + ηs

; and
ωj + uj + ηs
ωi + ui − ηs

<
mj +

δtj,i
Tj

mi −
δti,j
Ti

.

(27)

As
mj

mi
= ωj+uj

ωi+ui
, (27) is equivalent to

ηs <
ωi + ui

mi





mi
δtj,i
Tj

+mj
δti,j
Ti

mi +mj +
∣

∣

∣

δti,j
Ti

− δtj,i
Tj

∣

∣

∣



 , (28)

and ηs <
δti,j(ωi+ui)

miTi
holds for

δti,j
Ti

= δtj,i
Tj

.

Theorem 5.5

Proof: For any

mi ≥ Mi =
⌈1− λi − λj + λiλj

λj

⌉

, (29)

there is

1

mi + 1− λi
>

1− λj
mi

and
1

mi − λi
>

1− λj
mi + 1

. (30)

therefore the valid ranges of αi,j to realize mi-1 scheme and

(mi + 1)-1 scheme overlap for mi ≥ Mi. Any αi,j satisfying (21)

in section 5 falls into some rendezvous scheme as long as both

agents can finish at least one round within T̄ amount of time.

Frontiers in Robotics and AI | www.frontiersin.org 14 September 2019 | Volume 6 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Synchronous Rendezvous for Networks of Marine Robots in Large Scale Ocean Monitoring
	1. Introduction
	2. Problem Formulation
	3. Rendezvous Condition Between a Pair of Agents
	4. Synchronous Rendezvous and Design of Controllers
	4.1. Synchronizing a Pair of Agents
	4.2. Synchronizing Multiple Agents in a Network

	5. Sensitivity Analysis
	6. Simulation
	7. Conclusion
	Author Contributions
	Acknowledgments
	References
	Appendix
	Lemma 3.3
	Theorem 4.1
	Theorem 5.2
	Theorem 5.5



